жаропрочная сталь

Классы МПК:C22C38/32 с бором
Автор(ы):, , , , , , , ,
Патентообладатель(и):Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" (ОАО НПО "ЦНИИТМАШ") (RU)
Приоритеты:
подача заявки:
2011-04-15
публикация патента:

Изобретение относится к области металлургии, в частности к составам жаропрочных сталей для тепловых энергетических установок с рабочей температурой пара до 650°C. Сталь содержит, мас.%: углерод 0,001- 0,009; кремний 0,005-0,10; марганец 0,2-0,4; хром 8,5-9,5; кобальт 2,5-4,0; молибден 0,4-0,6; вольфрам 1,8-3,0; ванадий 0,15-0,30; ниобий 0,04-0,09; алюминий не более 0,015; никель не более 0,2; кальций 0,005-0,05; азот 0,04-0,10; церий 0,02-0,05; магний 0,005-0,05; бор 0,003-0,01; фосфор не более 0,015; сера не более 0,010; свинец, олово, мышьяк не более 0,006 каждого; железо - остальное, при отношении концентрации азота к концентрации углерода: жаропрочная сталь, патент № 2448192 , отношении суммарного содержания азота и углерода к суммарному содержанию ванадия и ниобия: жаропрочная сталь, патент № 2448192 , и суммарном содержании вольфрама и молибдена не менее 2,3 и не более 3,2. Сталь имеет мелкозернистую структуру с размером зерна 10-40 нм после пластической деформации и термической обработки при температуре нормализации 1040-1060°C и отпуска 740-780°C. Сталь характеризуется высоким уровнем жаропрочности, пластичности, ударной вязкости, стабильностью при длительных изотермических выдержках. 1 з.п. ф-лы, 2 табл.

Формула изобретения

1. Жаропрочная сталь, содержащая углерод, кремний, марганец, хром, молибден, вольфрам, кобальт, ванадий, ниобий, алюминий, никель, азот, бор, фосфор, кальций, серу, церий, олово, магний, свинец и железо, отличающаяся тем, что она дополнительно содержит мышьяк при следующем соотношении компонентов, мас.%:

углерод0,001-0,009
кремний 0,005-0,10
марганец0,2-0,4
хром 8,5-9,5
молибден 0,4-0,6
вольфрам 1,8-3,0
кобальт 2,5-4,0
ванадий 0,15-0,30
ниобий0,04-0,09
алюминий не более 0,015
никель не более 0,2
азот0,04-0,10
бор 0,003-0,01
фосфорне более 0,015
кальций 0,005-0,05
серане более 0,010
церий 0,02-0,05
оловоне более 0,006
магний 0,005-0,05
свинецне более 0,006
мышьяк не более 0,006
железоостальное,


при выполнении отношения содержания азота к содержанию углерода: [N]/[C]=6-20 и отношения суммарного содержания азота и углерода к суммарному содержанию ванадия и ниобия: ([C]+[N])/([Nb]+[V])=0,1-0,5, причем суммарное содержание вольфрама и молибдена не менее 2,3 мас.%.

2. Жаропрочная сталь по п.1, отличающаяся тем, что она обладает мелкозернистой структурой с размером зерна 10-40 нм после пластической деформации и термической обработки при температуре нормализации 1040-1060°C и отпуске при температуре 740-780°C.

Описание изобретения к патенту

Изобретение относится к области металлургии, в частности к составам жаропрочных сталей для тепловых энергетических установок с рабочей температурой пара до 650°C.

Известна жаропрочная сталь, содержащая углерод, кремний, марганец, хром, молибден, ванадий, ниобий, церий, кальций, азот, фосфор и серу при следующем соотношении компонентов, мас.%: углерод 0,08-0,12; кремний 0,17-0,37; марганец 0,3-0,6; хром 8,0-10,0; молибден 0,6-2,0; ванадий 0,15-0,35; ниобий 0,10-0,20; церий 0,02-0,05; кальций 0,005-0,05; азот 0,03-0,07; фосфор не более 0,03; сера не более 0,015, железо остальное (RU 2229532, C22C 38/26, опубликовано 27.05.2004).

Эта сталь имеет опыт эксплуатации в теплоэнергетике в качестве материала трубопроводов и других элементов, работающих при температурах до 600°C включительно, но не обеспечивает возможность повышения параметров пара тепловых энергоблоков свыше 600°C.

Известна жаропрочная сталь для деталей паровых турбин, содержащая углерод, кремний, марганец, хром, молибден, вольфрам, кобальт, ванадий, ниобий, алюминий, никель, азот, бор, фосфор, серу, олово и железо. Кроме того, компоненты стали находятся в определенных соотношениях между собой (RU 2404281, C22C 38/60, C22C 3854, C22C 38/32, опубликовано 20.11.2010).

Однако указанная сталь также не отвечает требованиям к стали для тепловых энергоблоков с параметрами температуры до 650°C и давления пара до 35 МПа, которая должна иметь при температуре 650°C длительную прочность жаропрочная сталь, патент № 2448192 10жаропрочная сталь, патент № 2448192 5 не менее 98 Н/мм2 и длительную пластичность не менее 10%.

Наиболее близкой по составу компонентов является мартенситная нержавеющая сталь, содержащая углерод, кремний, марганец, хром, молибден, вольфрам, кобальт, ванадий, ниобий, алюминий, никель, азот, бор, фосфор, кальций, серу, церий, олово, магний, свинец и железо (RU 2321670, C22C 38/58, опубликовано 10.04.2008).

Однако эта сталь не является жаропрочной при температурах свыше 600°C даже при схожести качественного состава компонентов со сталью по изобретению, поскольку имеет низкое содержание хрома (до 5 мас.%), достаточно высокое содержание углерода (0,05-0,5 мас.%), кобальта (5-15 мас.%), меди (до 8 мас.%), молибдена и вольфрама (до 6 мас.%), а также ванадия и ниобия.

Задачей изобретения и его техническим результатом является жаропрочная сталь со следующими характеристиками жаропрочности: длительная прочность при температуре 620°C жаропрочная сталь, патент № 2448192 620жаропрочная сталь, патент № 2448192 140 Н/мм2, при температуре 650°C жаропрочная сталь, патент № 2448192 650жаропрочная сталь, патент № 2448192 110-115 Н/мм2, длительная пластичность при температуре 650°C жаропрочная сталь, патент № 2448192 650жаропрочная сталь, патент № 2448192 20,5%.

Сущностью изобретения является жаропрочная сталь, содержащая углерод, кремний, марганец, хром, молибден, вольфрам, кобальт, ванадий, ниобий, алюминий, никель, азот, бор, фосфор, кальций, серу, церий, олово, магний, свинец, мышьяк и железо при следующих соотношениях компонентов, мас.%: углерод 0,001-0,009, кремний 0,005-0,10, марганец 0,2-0,4, хром 8,5-9,5, молибден 0,4-0,6, вольфрам 1,8-3,0, кобальт 2,5-4,0, ванадий 0,15-0,30, ниобий 0,04-0,09, алюминий не более 0,015, никель не более 0,2, азот 0,04-0,10, бор 0,003-0,01, фосфор не более 0,015, кальций 0,005-0,05, сера не более 0,010, церий 0,02-0,05, олово не более 0,006, магний 0,005-0,05, свинец не более 0,006, мышьяк не более 0,006 и железо остальное, при выполнении отношения содержания азота к содержанию углерода: [N]/[C]=6-20, и отношения суммарного содержания азота и углерода к суммарному содержанию ванадия и ниобия: [C]+[N]/[Nb]+[V]=0,1-0,5, причем суммарное содержание вольфрама и молибдена не менее 2,3 мас.%.

Технический результат также достигается тем, что сталь обладает мелкозернистой структурой с размером зерна 10-40 нм после пластической деформации и термической обработки при температуре нормализации 1040-1060°C и отпуске при температуре 740-780°C.

Содержание углерода в стали по изобретению 0,001-0,009 мас.% при содержании азота 0,04-0,10 мас.% и бора 0,003-0,01 мас.% обеспечивает требуемый уровень длительной прочности. Содержание углерода более 0,009 мас.% не обеспечивает необходимого уровня длительной прочности, так как при рабочих температурах 650°C карбиды коагулируют, сильно увеличиваясь в размерах, и разупрочняют сталь.

При содержании углерода в стали 0,001-0,009 мас.% имеет место смещение термодинамического равновесия между кислородом и углеродом в системе Fe-Cr-C-O в сторону увеличения содержания кислорода (до 0,028 мас.%). Это приводит к формированию большого количества неметаллических включений в стали, преимущественно оксидов и оксисульфидов, и, следовательно, к резкому снижению длительной прочности. Поэтому сталь должна содержать такое количество элементов-раскислителей, которое при изготовлении стали обеспечивает содержание кислорода на уровне до 0,001-0,0015 мас.%. В обычных сталях с этой ролью успешно справляются алюминий и кремний. В стали по изобретению такими раскислителями являются алюминий, кремний и магний в заявленных концентрациях. Магний обладает высокой раскислительной способностью, продукты взаимодействия его с кислородом легко выводятся из расплава (ассимилируются шлаком). Кроме того, магний способствует глобуляризации неметаллических включений, уменьшает количество оксидных включений типа глинозема и шпинелей, очищает границы зерен и повышает ударную вязкость.

Требуемый уровень длительной прочности при сохранении необходимого уровня пластичности при рабочих температурах порядка 650°C обеспечивает использование нитридно-боридного упрочнения стали. Поддержание отношения содержания азота к содержанию углерода: [N]/[C]=6-20, и отношения суммарного содержания азота и углерода к суммарному содержанию ванадия и ниобия: [C]+[N]/[Nb]+[V]=0,1-0,5, не допускает возможности образования карбидов и карбонитридов и обеспечивает образование мелкодисперсных тугоплавких нитридов ванадия и ниобия, равномерно распределенных в объеме зерна.

Содержание кобальта в количестве 2,5-4,0 мас.% способствует уменьшению скорости диффузии легирующих элементов и, как следствие, увеличению дисперсности упрочняющих карбидных и интерметаллидных частиц, а также уменьшению количества жаропрочная сталь, патент № 2448192 -феррита в структуре стали, что приводит к увеличению характеристик длительной прочности.

Содержание вольфрама в количестве 1,8-3,0 мас.% за счет упрочнения твердого раствора и выделения фазы Лавеса Fe2W, а также содержание молибдена 0,4-0,6 мас.% повышает жаропрочность стали. При этом для достижения оптимального эффекта суммарное содержание вольфрама и молибдена должно быть не менее 2,3 мас.%, но, желательно, не более 3,2 мас.%.

Содержание бора 0,001-0,01 мас.% обеспечивает длительную прочность и длительную пластичность за счет растворения бора как поверхностно-активного элемента в граничных зонах с упрочнением границ зерен и замедлением протекания диффузионных процессов в этих участках.

Содержание ниобия 0,04-0,09 мас.% способствует получению более мелких нитридов NbN и, как следствие, повышению длительной прочности.

Содержание никеля не более 0,2 мас.% и легкоплавких элементов олова и свинца не более 0,006 мас.% каждого способствует повышению длительной прочности.

Содержание хрома 8,5-9,5 мас.% обеспечивает заданное количество, не более 10%, структурно-свободного феррита, технологичность стали в трубном производстве, ее высокую жаропрочность и ударную вязкость.

Содержание ванадия в количестве 0,15-0,30 мас.% способствует повышению длительной прочности. При содержании ванадия менее 0,15 мас.% не обеспечивается нужная жаропрочность, при содержании более 0,30 мас.% его влияние отрицательно, так как ванадий, находясь в твердом растворе, уменьшает силы межатомных связей.

Содержание в стали кальция в количестве 0,005-0,05 мас.% способствует обеспечению изотропности свойств, снижая вторичное окисление стали и способствуя равномерному распределению сульфидных и оксидных включений.

Содержание в стали церия в количестве 0,02-0,05 мас.% способствует глобуляризации неметаллических включений, уменьшает количество оксидных включений типа глинозема и шпинелей, очищает границы зерен и повышает ударную вязкость.

Содержание фосфора не более 0,015%, серы не более 0,010% и, дополнительно, мышьяка не более 0,006 способствует получению более высоких характеристик пластичности.

Жаропрочная сталь по изобретению обладает мелкозернистой структурой с размером зерна 10-40 нм после пластической деформации и термической обработки при температуре нормализации 1040-1060°C и отпуске при температуре 740-780°C. При температуре нормализации выше 1060° наблюдается рост зерна, а при температуре ниже 1040°C снижается длительная прочность. Температура последующего отпуска 740-780°C. Обеспечивает образование мелкодисперсных наноразмерных упрочняющих фаз.

Химический состав стали приведен в таблице 1, а механические свойства - в таблице 2.

Испытания проводили на материалах, выплавленных в вакуумно-индукционных печах. Испытание на растяжение проводили на цилиндрических образцах с диаметром рабочей части 6 мм по ГОСТ 1497 и ГОСТ 9651, испытания на жаропрочность проводили на цилиндрических образцах с диаметром рабочей части 10 мм по ОСТ 108.901.102-78.

Из таблицы 2 видно, что сталь по изобретению обеспечивает достижение поставленного технического результата: длительную прочность при температуре 620°C жаропрочная сталь, патент № 2448192 620жаропрочная сталь, патент № 2448192 140 Н/мм2, при температуре 650°C жаропрочная сталь, патент № 2448192 650жаропрочная сталь, патент № 2448192 110-115 Н/мм2, длительную пластичность при температуре 650°C жаропрочная сталь, патент № 2448192 650жаропрочная сталь, патент № 2448192 20,5%.

Сталь рекомендуется для изготовления трубопроводов и пароперегревателей котлов со сверхкритическими параметрами (температура до 650°С, давление до 35 МПа).

Таблица 1
Содержание № плавки
элементов, мас.% 12 3
Углерод 0,0041 0,00520,0087
Кремний 0,008 0,0570,09
Марганец 0,200,21 0,37
Хром 8,7 9,279,45
Молибден 0,40,50 0,60
Вольфрам 1,83 1,962,84
Кобальт 2,723,28 3,9
Ванадий 0,17 0,230,28
Ниобий 0,050,09 0,09
Алюминий 0,013 0,0150,015
Никель 0,10 0,100,1
Азот 0,040,05 0,09
Бор 0,004 0,0080,0098
Фосфор 0,003 0,0030,003
Кальций 0,005 0,0060,047
Сера 0,0060,006 0,006
Церий0,02 0,0220,047
Олово 0,0050,005 0,005
Магний0,006 0,007 0,047
Свинец 0,005 0,0050,005
Мышьяк 0,004 0,0040,004
Кислород 0,0015 0,00150,002
Железо остальное остальноеостальное

Таблица 2
Механические свойства стали № плавки
12 3
жаропрочная сталь, патент № 2448192 жаропрочная сталь, патент № 2448192 В, Н/мм2 715723 725
Температура жаропрочная сталь, патент № 2448192 0.2, Н/мм2 630645 623
20°С жаропрочная сталь, патент № 2448192 , %20,6 22,8 20,5
жаропрочная сталь, патент № 2448192 жаропрочная сталь, патент № 2448192 , %75,0 75,1 72,0
жаропрочная сталь, патент № 2448192 жаропрочная сталь, патент № 2448192 B, Н/мм2 350361 354
Температура жаропрочная сталь, патент № 2448192 0.2, Н/мм2 343350 354
650°C Длительная 23 324,4 24,1
жаропрочная сталь, патент № 2448192 пластичность жаропрочная сталь, патент № 2448192 650, % жаропрочная сталь, патент № 2448192 жаропрочная сталь, патент № 2448192 жаропрочная сталь, патент № 2448192
жаропрочная сталь, патент № 2448192 жаропрочная сталь, патент № 2448192 , %76 80,0 78
Температура 620°СДлительная прочность жаропрочная сталь, патент № 2448192 620 за 140150 142
жаропрочная сталь, патент № 2448192 105 часов, Н/мм2жаропрочная сталь, патент № 2448192 жаропрочная сталь, патент № 2448192 жаропрочная сталь, патент № 2448192
ТемператураДлительная прочность жаропрочная сталь, патент № 2448192 650 за 111118 112
650°С 105 часов, Н/мм 2жаропрочная сталь, патент № 2448192 жаропрочная сталь, патент № 2448192 жаропрочная сталь, патент № 2448192

Класс C22C38/32 с бором

коррозионно-стойкая легированная нейтронно-поглощающая сталь для изготовления шестигранных чехловых труб для уплотненного хранения в бассейнах выдержки и транспортировки ядерного топлива -  патент 2519064 (10.06.2014)
проволока из высокоуглеродистой стали с превосходными свойствами способности к волочению и усталостными характеристиками после волочения -  патент 2507292 (20.02.2014)
высокопрочная бесшовная стальная труба, обладающая очень высокой стойкостью к сульфидному растрескиванию под напряжением для нефтяных скважин и способ ее изготовления -  патент 2493268 (20.09.2013)
высокопрочная сталь -  патент 2481416 (10.05.2013)
высокоуглеродистая сталь для производства подката для получения холоднодеформированного арматурного периодического профиля для железобетонных изделий -  патент 2479665 (20.04.2013)
способ производства борсодержащей стали -  патент 2477324 (10.03.2013)
способ термомеханического придания формы конечному продукту с очень высокой прочностью и полученный таким образом продукт -  патент 2469102 (10.12.2012)
прокат полосовой из борсодержащей марганцовистой стали -  патент 2458177 (10.08.2012)
сталь -  патент 2446226 (27.03.2012)
конструкционная сталь -  патент 2445396 (20.03.2012)
Наверх