термоэмиссионный преобразователь

Классы МПК:H01J45/00 Разрядные приборы, работающие как термоэлектронные генераторы
Автор(ы):
Патентообладатель(и):Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (RU)
Приоритеты:
подача заявки:
2011-04-04
публикация патента:

Изобретение относится к термоэмиссионным преобразователям тепловой энергии в электрическую, они широко применяются в ядерных энергетических установках. Термоэмиссионный преобразователь содержит два изолированных электрода, находящихся в вакуумном объеме. Резервуар с рабочим телом - цезий тритиевый гидрид (Cs1 H3), соединен с преобразователем. Изобретение позволяет повысить выходные электрические характеристики ТЭП, выходную электрическую мощность. 1 ил. термоэмиссионный преобразователь, патент № 2449410

термоэмиссионный преобразователь, патент № 2449410

Формула изобретения

Термоэмиссионный преобразователь, содержащий вакуумный объем с помещенными в него двумя электрически изолированными друг от друга электродами, соединенный с резервуаром с рабочим телом на основе цезия, средства для подвода и отвода тепла, отличающийся тем, что рабочее тело представляет собой цезий-тритиевый гидрид (Cs1H3).

Описание изобретения к патенту

Термоэмиссионный преобразователь тепловой энергии в электрическую (ТЭП) является одним из перспективных устройств, преобразующих непосредственно тепловую энергию в электрическую, они широко применяются в ядерных энергетических установках.

Термоэмиссионный преобразователь энергии в общем случае представляет собой диод с металлическими электродами, установленный с межэлектродным зазором 0,1термоэмиссионный преобразователь, патент № 2449410 1,0 мм в вакуумный объем. Электроды друг от друга заизолированы металлокерамическим переходником. Температура электродов с помощью внешних источников тепла устанавливается и поддерживается в следующем диапазоне: эмиттера 1400термоэмиссионный преобразователь, патент № 2449410 2300 К, коллектора 800термоэмиссионный преобразователь, патент № 2449410 1200 К.

Для эффективного преобразования тепловой энергии в электрическую в межэлектродный зазор ТЭП из резервуара с рабочим телом подают атомы цезия в качестве вещества, обладающего наименьшим потенциалом ионизации 3,89 эВ. Ионы цезия в ТЭП выполняют следующие функции:

регулируют работу выхода электронов на электродах за счет монослойной адсорбции на их поверхности и компенсируют отрицательный электронный заряд между электродами. Наличие ионов в межэлектродном промежутке при определенных условиях возбуждает аномальную низковольтную плазму, которая позволяет эффективно преобразовать внешне подводимое тепло в электрическую энергию. Подробно все виды подачи рабочего тела в ТЭП изложены в работе (Каландаришвили А.Г. Источники рабочего тела для термоэмиссионных преобразователей энергии. - 2-е издание, доп. - М.: Энергоатомиздат, 1993 г. - 304 с.).

Подача рабочего тела в межэлектродный зазор ТЭП обычно осуществляется из специального резервуара, в котором помещают подаваемое рабочее тело: жидкий конденсат цезия или другие соединения цезия (цезий-кислород, цезий-висмут, цезий-водород и др.). Использование различных соединений цезия связано с возможностью повышения выходных электрических параметров ТЭП по сравнению с чисто цезиевым наполнением при одновременной подаче в межэлектродный зазор пара цезия и кислорода, или другой добавки. В этом случае основной рост выходных электрических параметров ТЭП связан с влиянием добавок на работу выхода за счет адсорбции на поверхности электродов.

Наиболее близким к заявляемому является ТЭП, содержащий вакуумный объем с помещенными в него двумя электрически изолированными друг от друга электродами, соединенный с резервуаром с рабочим телом, представляющим собой гидрид цезия, а также средства для подвода и отвода тепла (Каландаришвили А.Г. Источники рабочего тела для термоэмиссионных преобразователей энергии. - 2-е издание, доп. - М.: Энергоатомиздат, 1993 г. - стр.272).

Недостатком этих источников является недостаточное ионообразование в межэлектродном зазоре ТЭП, что лимитирует реализацию более высокого значения выходной электрической мощности преобразователя.

Технический результат - повышение выходных электрических характеристик ТЭП - электронного тока, проходящего через ТЭП, выходной электрической мощности, что в свою очередь приведет к повышению кпд.

Для достижения этого технического результата предложен термоэмиссионный преобразователь энергии, содержащий вакуумный объем с помещенными в него двумя электрически изолированными друг от друга электродами, соединенный с резервуаром с рабочим телом на основе цезия, средства для подвода и отвода тепла, при этом рабочее тело представляет собой цезий-тритиевый гидрид (Cs1H3).

Обычно образование ионов цезия осуществляется по нескольким механизмам: за счет поверхностной ионизации атомов цезия на поверхности эмиттера при высокой температуре эмиттера около 2000 К и выше, когда работа выхода эмиттера приближается по своему значению к потенциалу ионизации цезия. Второй механизм ионизации атомов цезия происходит в низковольтной дуге после ее поджига при умеренных температурах 1500термоэмиссионный преобразователь, патент № 2449410 2000 К. Однако при температурах на эмиттере 1300термоэмиссионный преобразователь, патент № 2449410 1500 К поддержание дугового режима затруднено в связи с трудностями ионизации атомов цезия.

В предложенном изобретении за счет того, что в качестве источника пара рабочего тела используется цезий-тритиевый гидрид (Cs1H 3), в рабочем состоянии межэлектродный зазор ТЭП заполняется смесью цезия и трития в парогазовой фазе, что приводит к дополнительному образованию ионов цезия и, следовательно, к повышению электронного тока, проходящего через ТЭП. Процесс ионизации цезия атомами трития происходит за счет бэта-распада атомов трития с выделением средней энергии Еср. - 5,7 кэВ.

На чертеже дан общий вид ТЭП.

Предлагаемый ТЭП содержит следующие основные узлы:

1. Резервуар с источником рабочего тела на основе гидрида цезий-тритий;

2. Патрубок, соединяющий резервуар с рабочим объемом ТЭП;

3. Рабочий объем ТЭП;

4. Эмиттер ТЭП, нагреваемый до рабочих температур от внешнего источника тепла до температур 1400термоэмиссионный преобразователь, патент № 2449410 2300 К;

5. Атомы и ионы цезия в межэлектродном зазоре ТЭП;

6. Бэта-излучатель - тритий;

7. Металлокерамические переходники;

8. Нагрузка;

9. Коллектор ТЭП.

Изобретение реализуется следующим образом: В резервуар рабочего тела 1 помещают цезий-тритиевый гидрид (Cs1H3), который при нагреве выше 500 К полностью разлагается по реакции

термоэмиссионный преобразователь, патент № 2449410

При этом в межэлектродном зазоре ТЭП 5 устанавливается стабильная парогазовая смесь с оптимальной величиной давления пара цезия и трития, что приводит к дополнительному образованию ионов цезия, и, как следствие, происходит повышение выходных электрических параметров ТЭП.

ПРИМЕР.

Расчет количества массы трития, необходимого для оптимальной работы термоэмиссионного преобразователя энергии.

Выберем следующие исходные параметры:

- рабочий объем ТЭП 3 - V=10 литров;

- величина давления пара трития в парогазовой смеси в рабочем объеме ТЭП - Р=200 Па;

- средняя рабочая температура - Т=1000 К.

Из уравнения состояния идеального газа: PV=nRT, где Р - давление пара трития, V - занимаемый паром тритием рабочий объем, Т = рабочая температура, определяем концентрацию трития: n=PV/RT, где R - газовая постоянная равная - R=0,0821 л атм мол -1К-1.

Подставляя вышеприведенные значения, получаем:

n=0,25·10-3 мол. трития, отсюда масса, масса трития m=0,75·10-3 г = 0,75 мг.

Это то минимальное количество трития, необходимое для работы ТЭП в оптимальном режиме.

Таким образом, использование в качестве рабочего тела цезий-тритиевого гидрида (Cs1H3) приводит к дополнительному образованию ионов цезия в межэлектродном зазоре ТЭП с помощью бэта-излучателя-1H3 со средней энергией излучения Еср. - 5,7 кэВ и, следовательно, к повышению электронного тока, проходящего через ТЭП, и повышению кпд устройства. Особенно привлекательным представляется использование такого ТЭП при разработке низкотемпературных ТЭП в интервале температур эмиттера 1400термоэмиссионный преобразователь, патент № 2449410 1800 К. Также перспективным является его применение в ТЭП, в которых нагрев электродов осуществляется радиоактивным источником тепла, т.е. имеется дефицит тепловой энергии, поэтому изделия с высоким кпд более предпочтительны.

Класс H01J45/00 Разрядные приборы, работающие как термоэлектронные генераторы

крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева -  патент 2506199 (10.02.2014)
радиационная защита космической ядерной энергетической установки -  патент 2499322 (20.11.2013)
термотуннельный преобразователь -  патент 2479886 (20.04.2013)
многоэлементный термоэмиссионный электрогенерирующий канал -  патент 2477543 (10.03.2013)
электрогенерирующий канал термоэмиссионного реактора-преобразователя -  патент 2465678 (27.10.2012)
способ формирования режима работы термоэмиссионного электрогенерирующего канала -  патент 2465677 (27.10.2012)
устройство для подачи пара цезия в термоэммисионный преобразователь -  патент 2464668 (20.10.2012)
блок термоэлектрических преобразователей со щелочным металлом -  патент 2456699 (20.07.2012)
термоэлектрический преобразователь со щелочным металлом -  патент 2456698 (20.07.2012)
способ электроснабжения автономно функционирующих газоредуцирующих объектов магистральных газопроводов и газовых сетей низкого давления -  патент 2417337 (27.04.2011)
Наверх