способ электроснабжения автономно функционирующих газоредуцирующих объектов магистральных газопроводов и газовых сетей низкого давления

Классы МПК:F17D1/04 для распределения газа 
H01J45/00 Разрядные приборы, работающие как термоэлектронные генераторы
H01L35/28 основанные только на эффектах Пельтье или Зеебека
Автор(ы):, , , , , ,
Патентообладатель(и):ООО "Газпром трансгаз Санкт-Петербург" (RU)
Приоритеты:
подача заявки:
2009-03-24
публикация патента:

Изобретение относится к технологическим приемам решения задачи обеспечения электрической энергией потребностей собственных нужд (средства телемеханики, контрольно-измерительные приборы, освещение, охранно-пожарная сигнализация и т.д.) автономно функционирующих газоредуцирующих объектов магистральных газопроводов и газовых сетей низкого давления. Способ выработки электрической энергии основан на использовании при редуцировании сжатого газа эффектов Ранка-Хилша и Зеебека. Для повышения эффективности выработки электрической энергии в термоэлектрическом модуле объединение горячего и холодного потоков газа низкого давления вихревой трубы происходит в эжекторе, в котором горячий газ выступает в качестве рабочего, а холодный - инжектируемого потока. 1 ил., 1 табл.

способ электроснабжения автономно функционирующих газоредуцирующих   объектов магистральных газопроводов и газовых сетей низкого давления, патент № 2417337

Формула изобретения

Способ электроснабжения автономно функционирующих газоредуцирующих объектов, включающий вихревое энергоразделение природного газа высокого давления в вихревой трубе на горячий и холодные потоки газа низкого давления и их последующее объединение в единый газовый поток после прохождения теплообменников термоэлектрического модуля, используемого для выработки электрической энергии, отличающийся тем, что объединение горячего и холодного потоков газа низкого давления происходит в эжекторе, в котором горячий газ выступает в качестве рабочего, а холодный - инжектируемого потока.

Описание изобретения к патенту

Изобретение относится к технологическим приемам решения задачи обеспечения электрической энергией потребностей собственных нужд автономно функционирующих газоредуцирующих объектов магистральных газопроводов и газовых сетей низкого давления (средства телемеханики, контрольно-измерительные приборы, освещение, охранно-пожарная сигнализация и т.д.).

Известны предложения использовать для этих целей энергосберегающие технологии, основанные на возобновляемых природных источниках энергии (ветроэнергетические /Абдрахманов Р.С., Назмеев Ю.Г., Якимов А.В. Об эффективности использования ветроэнергетики в регионах с умеренными скоростями ветра // Изв. РАН. - Энергетика. - 2001. - № 5. - с.93-102/, солнечные батареи /Ананенков А.Г., Булучевский А.Н., Каратаев Ю.П., Кудояр Ю.А., Ремизов В.В., Салихов З.С., Семененко В.Ф., Якупов З.Г. Автономная система энергоснабжения на газовой скважине // Газовая промышленность. - 2001. - № 7. - с.56-58/), а также утилизации энергии давления природного газа магистрального газопровода в детандер-генераторных агрегатах /Степанец А.А. Об эффективности детандер-генераторных агрегатов в тепловой схеме ТЭЦ, Энергетик, № 4, 1999/.

Существенным недостатком первых является зависимость от климатических условий, а второго - ограниченный по времени ресурс работы, а также необходимость постоянного или периодического обслуживания специальным, высокопрофессиональным техническим персоналом, что для удаленных, автономно функционирующих газоредуцирующих станций (ГРС) магистральных газопроводов и газоредуцирующих пунктов (ГРП) газовых сетей низкого давления зачастую оказывается неприемлемым.

Также известен энергосберегающий способ решения задачи электроснабжения, базирующийся на утилизации энергии давления сжатого газа с помощью вихревого энергоразделяющего устройства (вихревой трубы) и термоэлектрического электрогенератора - способ- прототип /Патент РФ № 2234161 «Вихревой термоэлектрический генератор», 10.08.2004/.

Его существо заключается в том, что для расширения потока сжатого газа используется вихревое энергоразделяющее устройство - вихревая труба. Генерируемые вихревой трубой потоки горячего и холодного газа используются в термоэлектрическом устройстве для выработки электрической энергии.

После этого они объединяются и возвращаются в магистраль низкого давления.

Достоинством подобного решения является простота и надежность эксплуатации составляющих устройство элементов (в конструкциях нет движущихся частей), практически неограниченный ресурс работы, а также отсутствие необходимости в его текущем обслуживании.

Недостатком способа является сравнительно невысокий уровень термодинамического совершенства. Интегральный коэффициент полезного действия (кпд) устройства при преобразовании тепловой энергии в электрическую энергию не превышает (1-2%). Частично это обусловлено низким значением кпд работы вихревой трубы.

Существует достаточно большое число действующих газоредуцирующих объектов, где степень расширения газа не превышает 3способ электроснабжения автономно функционирующих газоредуцирующих   объектов магистральных газопроводов и газовых сетей низкого давления, патент № 2417337 4 раз, реально достижимая разность температур между горячим и холодным потоками газа, которая собственно и определяет объем выработки электрической энергии в термоэлектрическом генераторе, не превышает 62 К.

Целью настоящего изобретения является повышение эффективности использования способа при общем сохранении достоинств, присущих подобному подходу к решению задачи производства электроэнергии.

Поставленная цель достигается тем, что в предлагаемом способе электроснабжения автономно функционирующих газоредуцирующих объектов предпринимаются дополнительные технические действия, направленные на увеличение достигаемой разности температур между горячим и холодными потоками газа, генерируемыми вихревой трубой.

Практическая реализация задачи осуществляется следующим образом. Горячий и холодный потоки газа, выходящие из вихревой трубы, после прохождения теплообменников термоэлектрического генератора и выдачей в сеть низкого давления, объединяются в эжекторе. При этом горячий газ выступает в качестве рабочего, а холодный - инжектируемого потока. Подобная организация процесса обеспечивает повышение степени расширения газа на холодном и ее снижение на теплом конце вихревой трубы. Следствием является понижение и возрастание абсолютных значений температур газа низкого давления на холодном и горячем участках работающей вихревой трубы соответственно.

В результате наблюдается рост разности температур между теплым и холодным потоками газа, подаваемыми в термоэлектрический генератор, а следовательно, возрастает и объем вырабатываемой в нем электроэнергии. Пример реализации способа. В качестве примера рассматривается природный газ магистрального газопровода, обладающий составом и имеющий технологические параметры, характерные для ряда газораспределительных станций Северо-Запада РФ:

- Состав:

СН4 - 98.045способ электроснабжения автономно функционирующих газоредуцирующих   объектов магистральных газопроводов и газовых сетей низкого давления, патент № 2417337 98.105% (об.)

С2Н6 - 0.723% (об.)

С3Н8 - 0,260% (об.)

i-C4H10 - 0,049% (об.)

n-С4Н10 - 0,051%(об.)

i-C5H12 - 0,004% (об.)

n-С 5Н12 - 0,01%(об.)

СO2 - 0,04способ электроснабжения автономно функционирующих газоредуцирующих   объектов магистральных газопроводов и газовых сетей низкого давления, патент № 2417337 0,1%(об.)

N2-0,755% (об.)

- Давление газа на входе ДВТ (P1) - 2,6 МПа

- Давление на выходе ДВТ (Рх) - 0,69 МПа

- Температура газа на входе в ДВТ (T 1) -+7°С

Для расчета эффективности энергоразделения сжатого природного газа в ДВТ используются эмпирические зависимости адиабатного кпд и доли холодного потока (µ) от степени расширения газа в вихревой трубе / И.Л.Ходорков, Н.В.Пошернев. Опыт работы универсальной конической вихревой трубы на природном газе.//Химическое и нефтегазовое машиностроение, 2003, № 10/.

Расчеты величины разности температур между горячим и холодным потоками делящей вихревой трубы проведены при µ=0,65 (при этом достигается максимальный адиабатный кпд) для способа-прототипа и предлагаемого способа. Расчеты эжектора выполнены в соответствии с методикой, изложенной в /Соколов Е.Я., Зингер Н.М. Струйные аппараты. - 3 изд. - перераб. - М:. Энергоатомиздат, 1989. - 352 с./.

Полученные результаты приведены в таблице 1.

Таблица 1
№ п/пНаименование параметраЕдиница измеренияЗначение параметра
Простая вихревая труба
1Степень расширения газа холодного- 3,77
способ электроснабжения автономно функционирующих газоредуцирующих   объектов магистральных газопроводов и газовых сетей низкого давления, патент № 2417337 потока способ электроснабжения автономно функционирующих газоредуцирующих   объектов магистральных газопроводов и газовых сетей низкого давления, патент № 2417337 способ электроснабжения автономно функционирующих газоредуцирующих   объектов магистральных газопроводов и газовых сетей низкого давления, патент № 2417337
2Степень расширения газа горячего- 3,77
способ электроснабжения автономно функционирующих газоредуцирующих   объектов магистральных газопроводов и газовых сетей низкого давления, патент № 2417337 потока способ электроснабжения автономно функционирующих газоредуцирующих   объектов магистральных газопроводов и газовых сетей низкого давления, патент № 2417337 способ электроснабжения автономно функционирующих газоредуцирующих   объектов магистральных газопроводов и газовых сетей низкого давления, патент № 2417337
3Температура холодного потока°С -24,5
4Температура горячего потока°С +37,0
5Разность температур °C 61,5
Вихревая труба с использованием эжектора
1Степень расширения газа холодного потока способ электроснабжения автономно функционирующих газоредуцирующих   объектов магистральных газопроводов и газовых сетей низкого давления, патент № 2417337 4,33
2 Степень расширения газа горячего потока способ электроснабжения автономно функционирующих газоредуцирующих   объектов магистральных газопроводов и газовых сетей низкого давления, патент № 2417337 1.86
3 Температура холодного потока °С-27,1
4 Температура горячего потока °С+43,4
5 Разность температур °С70,5

В соответствии с эффектом Зеебека термоЭДС, вырабатываемая термоэлементом, прямо пропорциональна разности температур его спаев. Следовательно, в случае объединения горячего и холодного потоков газа низкого давления делящей вихревой трубы в эжекторе эффективность работы термоэлемента по сравнению с прототипом возрастет в 1,15 раза.

Схема организации газовых потоков в предлагаемом способе приведена на чертеже.

При реализации предлагаемого способа часть потока сжатого природного газа перед газоредуцирующим объектом 1 (газораспределительной станцией (пунктом) - ГРС (ГРП)) отделяется от основного потока и направляется в энергоразделяющее устройство - вихревую трубу 2.

В процессе расширения в вихревой трубе сжатый газ редуцируется и разделяется на «холодный» 3 и «горячий» 4 потоки газа низкого давления. В дальнейшем каждый из них направляется в соответствующие рабочие полости термоэлектрического генератора 5 для обеспечения выработки электрического тока и зарядки аккумуляторной батареи 8, используемой в качестве источника энергопитания потребителей собственных нужд газоредуцирующего объекта. Отработавшие в термоэлектрическом генераторе потоки газа объединяются в эжекторе 6, при этом «горячий» поток 4 выступает в качестве рабочего, а «холодный» поток 3 - инжектируемого потока. После эжектора 6 объединенный поток 7 выводится в магистраль низкого давления за газоредуцирующим объектом.

Класс F17D1/04 для распределения газа 

способ работы газораспределительной станции -  патент 2525041 (10.08.2014)
комплекс для доставки природного газа потребителю -  патент 2520220 (20.06.2014)
способ подготовки природного газа для транспортирования -  патент 2500950 (10.12.2013)
устройство для подготовки природного газа для транспортирования -  патент 2498153 (10.11.2013)
обратимая электротурбодетандерная установка -  патент 2497051 (27.10.2013)
способ доставки природного газа потребителю -  патент 2496048 (20.10.2013)
гидравлическая система для заправки сжатым природным газом и способ управления заправкой газом -  патент 2493477 (20.09.2013)
газораспределительная станция -  патент 2489638 (10.08.2013)
способ транспортировки и распределения между потребителями гелийсодержащего природного газа -  патент 2489637 (10.08.2013)
способ утилизации энергии сжатого газа -  патент 2483239 (27.05.2013)

Класс H01J45/00 Разрядные приборы, работающие как термоэлектронные генераторы

крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева -  патент 2506199 (10.02.2014)
радиационная защита космической ядерной энергетической установки -  патент 2499322 (20.11.2013)
термотуннельный преобразователь -  патент 2479886 (20.04.2013)
многоэлементный термоэмиссионный электрогенерирующий канал -  патент 2477543 (10.03.2013)
электрогенерирующий канал термоэмиссионного реактора-преобразователя -  патент 2465678 (27.10.2012)
способ формирования режима работы термоэмиссионного электрогенерирующего канала -  патент 2465677 (27.10.2012)
устройство для подачи пара цезия в термоэммисионный преобразователь -  патент 2464668 (20.10.2012)
блок термоэлектрических преобразователей со щелочным металлом -  патент 2456699 (20.07.2012)
термоэлектрический преобразователь со щелочным металлом -  патент 2456698 (20.07.2012)
термоэмиссионный преобразователь -  патент 2449410 (27.04.2012)

Класс H01L35/28 основанные только на эффектах Пельтье или Зеебека

Наверх