способ доставки природного газа потребителю
Классы МПК: | F17D1/065 устройства для перемещения газов или паров F17D1/04 для распределения газа F17D1/16 облегчение перемещения жидкостей или воздействие на перемещение вязких продуктов изменением их вязкости C10L3/10 обработка природного или синтетического природного газа C07C9/04 метан C07C9/02 с числом атомов углерода от одного до четырех |
Автор(ы): | Лапшин Виктор Дорофеевич (RU), Гульков Александр Нефедович (RU) |
Патентообладатель(и): | Лапшин Виктор Дорофеевич (RU), Гульков Александр Нефедович (RU) |
Приоритеты: |
подача заявки:
2012-08-16 публикация патента:
20.10.2013 |
Изобретение относится к способу доставки природного газа потребителю. Способ включает получение газовых гидратов, их перемещение потребителю, разложение газогидрата с получением газа и характеризуется тем, что газогидрат получают в виде водогидратной пульпы с содержанием частиц газогидрата около 50% ее объема. При этом процесс получения газовых гидратов осуществляют при термодинамических параметрах, соответствующих образованию газогидрата, с отбором тепла от смеси природного газа и воды водоледяной пульпой, предпочтительно, с крупностью частиц не более 10 мкм, с содержанием частиц льда около 50% объема водоледяной пульпы, которые равномерно распределяют по объему реактора, перевозку газогидратной пульпы осуществляют в герметичных, теплоизолированных грузовых помещениях транспортного средства, при термодинамических параметрах, исключающих разложение газогидрата, причем разложение газогидратной пульпы с отбором газа, по завершению его перевозки, осуществляют снижением давления в грузовом помещении транспортного средства до атмосферного. При этом водоледяную пульпу, образовавшуюся в процессе разложения газогидратной пульпы, возвращают, с сохранением ее температуры, к месту получение газовых гидратов, где повторно используют при производстве водоледяной пульпы, пригодной для производства газогидрата. Использование настоящего изобретения позволяет снизить энергетические, капительные и текущие затраты на получение газового гидрата, а также снизить материалоемкость оборудования, необходимого для реализации способа. 1 з.п. ф-лы, 5 ил.
Формула изобретения
1. Способ доставки природного газа потребителю, включающий получение газовых гидратов, их перемещение потребителю, разложение газогидрата с получением газа, отличающийся тем, что газогидрат получают в виде водогидратной пульпы с содержанием частиц газогидрата около 50% ее объема, при этом процесс получения газовых гидратов осуществляют при термодинамических параметрах, соответствующих образованию газогидрата, с отбором тепла от смеси природного газа и воды водоледяной пульпой, предпочтительно с крупностью частиц не более 10 мкм, с содержанием частиц льда около 50% объема водоледяной пульпы, которые равномерно распределяют по объему реактора, перевозку газогидратной пульпы осуществляют в герметичных, теплоизолированных грузовых помещениях транспортного средства, при термодинамических параметрах, исключающих разложение газогидрата, причем разложение газогидратной пульпы с отбором газа, по завершению его перевозки, осуществляют снижением давления в грузовом помещении транспортного средства до атмосферного, при этом водоледяную пульпу, образовавшуюся в процессе разложения газогидратной пульпы, возвращают, с сохранением ее температуры, к месту получения газовых гидратов, где повторно используют при производстве водоледяной пульпы, пригодной для производства газогидрата.
2. Способ по п.1, отличающийся тем, что процесс получения газовых гидратов и их хранение в процессе перевозки осуществляют при температуре -0,2°C и давлении 1 МПа.
Описание изобретения к патенту
Изобретение относится к газовой промышленности и может быть использовано при получении, хранении и беструбопроводном транспорте природного газа.
Газификация объектов, удаленных от магистральных трубопроводов, низконапорными отводами с существенно различными расходами по ним в весенне-летний и осенне-зимний периоды является малорентабельной, а в определенной своей части убыточной. В силу этого актуальным является расширение сети беструбопроводных поставок природного газа, удовлетворительное по рентабельности и простоте реализации как для поставщика, так и для потребителя.
Известен способ доставки природного газа потребителю в виде сжиженного природного газа (СПГ) при получении последнего на газоредуцирующих станциях (ГРС) с применением турбодетандеров (Васильев Ю.Н. «Моторные топлива будущего». «Газовая промышленность» 1995 г., № 1).
Недостатком указанного способа является сложность изготовления турбодетандеров на большие расходы, работающих в области криогенных температур, необходимость использования специальных криогенных конструкционных материалов для изготовления детандера и соответственно большие капитальные затраты, необходимость глубокой очистки газа от высококипящих по сравнению с метаном компонентов, которые в противном случае замерзают и выводят турбодетандер из строя, принципиальная невозможность непрерывной работы однодетандерной системы, в то время как резервирование ведет к повышению затрат, сложность управления режимами работы детандера при изменяющихся давлениях, расходах и температурах проходящего через ГРС природного газа.
Известен способ доставки природного газа потребителю в теплоизолированных грузовых помещениях транспортного средства и диссоциацию газогидрата подводом теплоты от забортной морской воды с температурой +20°C. При реализации данной технологической схемы транспортировка газового гидрата на борту судна осуществляется навалом, в форме твердых фрагментов различной формы, при атмосферном давлении и температуре минус 20°C, что резко снижает интенсивность подвода теплоты к гидрату (на этапе его разложения) по причине его замораживания в крупные агломераты. Кроме того, морская вода, при температуре близкой к 0°C удаляется за борт и полезно не используется, как хладоноситель при получении нового гидрата (см. J.S. Gudmundsson and A. Boslashrrehaug. Frozen Hydrate for transport of Natural Gas. AE&NUST. 1996).
Известен также способ доставки природного газа потребителю, включающий, получение газовых гидратов их перемещение потребителю, разложение газогидрата с получением газа (см. RU № 2200727, кл. C07C 5/02, 1997 г.).
К недостаткам способа относится то, что процесс доставки газа потребителю является высоко энергозатратным, т.к. на стадии получения газогидрата требуется неоднократное компремирование и последующее охлаждение газа, и использование этой же энергии на создание условий гидратообразования и консервацию гидратов, также высоки затраты энергии и на этапе разложения газогидрата с получением газа.
Задача, на решение которой направлено заявленное изобретение выражается в снижении энергозатрат на доставку газа потребителю.
Техническим результатом, ожидаемым от использования данного изобретения, является снижение энергетических, капитальных и текущих затрат для получения газового гидрата и обратной его диссоциации после доставки потребителю. Кроме того снижается материалоемкость комплекта оборудования необходимого для реализации способа.
Указанный технический результат достигается тем, что также способ доставки природного газа потребителю, включающий, получение газовых гидратов их перемещение потребителю, разложение газогидрата с получением газа отличается тем, что газогидрат получают в виде водогидратной пульпы с содержанием частиц газогидрата около 50% ее объема, при этом, процесс получения газовых гидратов осуществляют при термодинамических параметрах, соответствующих образованию газогидрата, с отбором тепла от смеси природного газа и воды водоледяной пульпой, предпочтительно, с крупностью частиц не более 10 мкм, с содержанием частиц льда около 50% объема водоледяной пульпы которые равномерно распределяют по объему реактора, перевозку газогидратной пульпы осуществляют в герметичных, теплоизолированных грузовых помещениях транспортного средства, при термодинамических параметрах исключающих разложение газогидрата, причем разложение газогидратной пульпы с отбором газа, по завершению его перевозки, осуществляют снижением давления в грузовом помещении транспортного средства до атмосферного, при этом, водоледяную пульпу, образовавшуюся в процессе разложения газогидратной пульпы возвращают, с сохранением ее температуры, к месту получение газовых гидратов, где повторно используют при производстве водоледяной пульпы, пригодной для производства газогидрата. Кроме того, процесс получения газовых гидратов и их хранение в процессе перевозки осуществляют при температуре -0,2°С и давлении 1 МПа.
Сравнение признаков заявленного решения с признаками аналогов и прототипа свидетельствует о его соответствии критерию "новизна".
Признаки отличительной части формулы изобретения решают следующие функциональные задачи:
Признаки «газогидрат получают в виде водогидратной пульпы с содержанием частиц газогидрата около 50% ее объема» обеспечивают высокую подвижность пульпы и обеспечивают возможность эффективного отвода тепла (на этапе формирования частиц газогидрата) или отвода холода от частиц газогидрата (на этапе разложения газогидрата), что обеспечивает либо оперативное эффективное формирование газогидрата, либо его разложение.
Признаки «процесс получения газовых гидратов осуществляют при термодинамических режимах, соответствующих образованию газогидрата, с отбором тепла от смеси природного газа и воды водоледяной пульпой» обеспечивают высокую эффективность теплоотвода (тепловая энергия, выделяющаяся при зарождении частиц гидрата эффективно поглощается плавящимися частицами водного льда - теплота гидратообразования природного газа составляет 410 кДж/кг, а теплота плавления водного льда 335 кДж/кг). Причем, 1 кг водоледяной пульпы (при 30%-й концентрации в ней частиц водного льда) в 5 раз эффективнее по хладоемкости любых однофазных хладоносителей, и в т.ч. воды. При этом частицы водного льда служат центрами зарождения новой фазы газового гидрата (см. Olga Zatsepina. HYDRATE FORMATION IN ENVIROMENT. University of British Colambia. 1997), обеспечивая гетерогенный механизм рост частиц гидрата, т.к. на них адсорбируются пузырьки природного газа (Рамм В.М. Адсорбция газов. М.: Химия, 1976 г. - 549 с.), являющиеся компонентом гидрата.
Признаки указывающие, что предпочтительно используют частицы с крупностью «не более 10 мкм которые равномерно распределяют по объему реактора» обеспечивают реализацию известного в теории теплообмена тезиса, что лучший вид теплообменной поверхности это ее отсутствие. Теплота отводится от образующихся частиц гидрата сопоставимыми по размеру и находящимися в непосредственной близости и контакте с ними частицами льда, находящимися в льдосодержащей пульпе, при этом интенсивность обеспеченного таким образом межфазного теплообмена (коэффициент теплоотдачи , Вт/м2*К) между поверхностью растущих частиц гидрата и плавящихся частиц водного льда размером 3-5 мкм достигает 3000-5000 Вт/м2*К (Р. Pronk, I. Celigueta Azurmendi, J.W. Meewisse and C.A. Infante Ferreira. FLUIDIZED BED FOR ICE SLURRY PRODUCTION, PHASE 2, SECOND PROGRESS REPORT DELFT UNIVERSITY OF TECHNOLOGY. Faculty of Design, Construction and Production Mechanical Engineering and Marine Technology, July 2002 to December 2002), что по эффекту сопоставимо с погружением частиц гидрата в кипящий Фреон-22 (Перелыытейн И.И., Парушин Е.Б. Термодинамические и теплофизические свойства рабочих веществ холодильных машин и тепловых насосов. - М., Пищевая промышленность, 1998, 232 с.).
Признаки, указывающие, что в льдосодержащей пульпе «содержание льда составляет, около 50% ее объема» обеспечивают возможность прокачивать пульпу насосом при сравнительно небольших затратах энергии на перекачивание.
Признаки «перевозку газогидратной пульпы осуществляют в герметичных, теплоизолированных грузовых помещениях транспортного средства» исключают возможность разложения газогидрата на этапе его перевозки.
Признаки, указывающие, что перевозку газогидратной пульпы осуществляют «при давлении 1 МПа и температуре - 0,2°C» позволяют снизить требования к грузовым помещениям транспортного средства, упростить их изготовление и снизить затраты энергии на сохранение газогидрата в процессе его транспортирования.
Признаки «разложение газогидратной пульпы с отбором газа, по завершению его перевозки, осуществляют снижением давления в грузовом помещении транспортного средства до атмосферного» обеспечивая перевод термодинамических параметров газогидратной пульпы в область соответствующую диссоциации гидрата на газ и воду, упрощая эту процедуру и исключая затраты энергии на нее.
Признаки, указывающие, что «водоледяную пульпу, образовавшуюся в процессе разложения газогидратной пульпы возвращают, с сохранением ее температуры, к месту получение газовых гидратов, где повторно используют при производстве водоледяной пульпы, пригодной для производства газогидрата» позволяют существенно сократить издержки на производство водоледяной пульпы, используемой при производстве газогидрата.
Признаки второго пункта формулы изобретения обеспечивают возможность реализации способа в достаточно простых условиях с позиций требований, предъявляемых к материалам, используемым для изготовления оборудования и, кроме того, минимизируют потребление энергоресурсов.
Изобретение поясняется чертежами, где на фиг.1 дан фрагмент технологической схемы комплекса оборудования, обеспечивающего реализацию заявленного способа на этапах производства газогидратной пульпы и ее отгрузки в транспортное средство; на фиг.2 дан фрагмент технологической схемы комплекса оборудования, обеспечивающего реализацию заявленного способа на этапе выгрузки газогидратной пульпы из транспортного средства; на фиг.3 дана диаграмма формирования гидрата; на фиг.4 дана диаграмма состояния газового гидрата природного газа в координатах Р-Т; на фиг.5 дана транспортно-технологическая схема движения газогидратной и льдосодержащей пульпы в рамках заявленного способа.
На чертежах показаны:
- узел формирования газогидрата, включающий: реактор 1, его первый 2 и второй 3 входы, источник природного газа 4, накопитель льдосодержащей пульпы 5, первый 6 и второй 7 выходы реактора, узел хранения газогидрата 8, насосы 9, 10 и 11, соответственно, для перекачки льдосодержащей пульпы, для перекачки смеси рециркуляционной воды со льдом, для перекачки рассола, турбкомпрессор 12, генератор льда 13, отделитель льда от рассола 14, смеситель льда и рециркуляционной воды 15, источник питательной воды 16, газопроводы 17 и 18, пульпопроводы 19-21, соответственно, для перекачки газогидратной пульпы, для перекачки льдосодержащей пульпы и для перекачки льдосодержащей рассольной пульпы, трубопроводы 22-25 соответственно, для перекачки рециркуляционной воды, для перекачки рассола, перекачки питательной воды и подачи льда. Запорные и предохранительные клапаны, контрольно-измерительная аппаратура и прочие вспомогательные устройства, необходимые для работы узла формирования газогидрата, обеспечивающие реализацию заявленного способа на чертежах не показаны;
- танк 26 транспортного средства, его теплоизоляция 27; насос 28, запорный вентиль 29 патрубка 30, запорный вентиль 31 газопровода 32;
- средства выгрузки газа, включающие, компрессор 33, газгольдер 34.
В качестве реактора 1 используют теплоизолированный резервуар, выдерживающий давление более 10 бар, снабженный соответствующей запорной арматурой и контрольно-измерительной аппаратурой.
Кроме того, на чертежах показаны газогидратный завод 35, направление 36 транспортирования газогидратной пульпы, направление 37 транспортирования льдосодержащей пульпы, регазификационный завод 38.
Источник природного газа 4 (например, магистральный газопровод) сообщен газопроводами 17 с первым входом 2 реактора 1 и газовой турбиной (на чертежах не показана), обеспечивающей работу турбокомпрессора 12.
Второй вход 3 реактора 1 сообщен пульпопроводом 20 (через насос 9) с источником льдосодержащей пульпы 5.
Первый выход 6 реактора 1 сообщен пульпопроводом 19 с узлом хранения газогидрата 8, а его второй выход 7 сообщен трубопроводом 22 со смесителем льда и рециркуляционной воды 15, выход которого, продолжением трубопровода 22, через насос 10 сообщен со входом накопителя льдосодержащей пульпы 5.
Как накопитель льдосодержащей пульпы 5 использован теплоизолированный резервуар, выход которого сообщен со вторым входом 3 реактора 1.
В качестве узла хранения газогидрата 8 использован теплоизолированный резервуар (или несколько резервуаров), выполненных с возможностью сохранения термодинамического равновесия хранимой в них газогидратной пульпы и снабженных средствами отгрузки материала потребителю.
Как генератор льда 13 применяют вакуумный льдогенератор, предпочтительно марки IDE Tech, с приводом от турбкомпрессора 12. Конструктивно он представляет собой полый резервуар, заполненный каким либо водным раствором, агрегатированный турбокомпрессором, который создает в резервуаре вакуум, равный по величине давлению тройной точки использующегося раствора (в данном случае - морской воды). В данном вакуумном льдогенераторе холодильный коэффициент равен 12, при температуре кипения -3°C и конденсации +6°C, в то время как аммиачная холодильная установка при температуре конденсации +6°C имеет холодильный коэффициент не более 5, т.к. должна иметь температуру кипения -10°C (по причине того, что в испарителе невозможно обеспечить прямой контакт кипящего аммиака и кристаллизующейся морской воды). Дополнительное преимущество вакуумного льдогенератора, перед традиционными, заключается в применении турбокомпрессора, который использует в качестве энергоносителя природный газ, что позволяет при производстве газогидратных пульп значительно снизить расход электроэнергии. Вход генератора льда 13 сообщен трубопроводом 24 с источником питательной воды 16, в качестве которого используют водозаборник морской воды известной конструкции.
В качестве отделителя льда от рассола 14 используют известное устройство аналогичного назначения, производительность которого соответствует производительности установки.
Танк 26 транспортного средства выполнен в виде теплоизолированного резервуара, выдерживающего давление более 10 атм (1МПа) и является железнодорожной, автомобильной цистерной или танком морского или речного танкера. Его теплоизоляция 27 выполнена как слой пенополиуретана толщиной порядка 100 мм. Насос 28 установлен на патрубке 30 и отделен от полости танка 26 запорным вентилем 29. Кроме того, танк 26 снабжен предохранительным клапаном, выполненным известным образом (на чертежах - не показан), с возможностью аварийного сброса газа или газогидратной пульпы.
Для обеспечения отгрузки гидратосодержащей пульпы из узла хранения газогидрата 8 в танк 26 транспортного средства, используют гибкий тепло-изолированный трубопровод выполненный известным образом с возможностью разъемного соединения узла хранения газогидрата 8 и танка 26 (на чертежах этот трубопровод не показан).
Для обеспечения разгрузки танка 26 (отвода из него газа) используют гибкий теплоизолированный газопровод выполненный известным образом с возможностью разъемного соединения газопровода 32 танка 26 и компрессора 33 (на чертежах этот газопровод не показан).
Компрессор 33 и газгольдер 34 связаны газопроводом, выполненным известным образом, при этом газгольдер выполнен известным образом и рассчитан на соответствующее давление.
Продукты разделения льдосодержащей рассольной пульпы на пресный лед и рассол используют следующим образом - лед самотеком по трубопроводу 25 сбрасывают в смеситель льда и рециркуляционной воды 15, а рассол, концентрация солей в котором выше, чем в исходной морской воде, либо сбрасывают в море, либо, как показано на чертеже, по трубопроводу 23 возвращают в генератор льда 13.
Формирование гидрата проходит на линиях формирования гидрата (фиг.3), которые отделены от линии равновесия гидрат-газ-вода зонами метастабильного состояния (а-б, г-д, ж-з).
В генераторе газогидратной пульпы (фиг.1) из раствора природного газа (ПГ: метан-90%, этан-5%, пропан-3%) в воде образуется гидрат природного газа (ГПГ). Точки а, г, ж (фиг.3) соответствуют состоянию равновесия системы «гидрат-газ-вода», причем это состояние не может перейти в процесс гидратообразования (а-б, г-д, ж-з) до тех пор, пока к системе не будет приложена определенного значения «движущая сила» гидратообразования (Потенциал Гиббса G, химический потенциал µ, переохлаждение t, пересыщение = µ/RT). Все частные случаи проявления движущей силы зарождения и роста новой фазы объединяет потенциал Гиббса, при отрицательных значениях которого возможно прохождение всех фазовых переходов). Известно, что при всех прочих равных условиях, процесс гидратообразования начинается раньше и проходит быстрее при наличии в воде различных механических включений, пузырьков газа или молекулярных комплексов-ассоциатов, которые всегда являются центрами образования новой фазы, в данном случае гидратной (гетерогенное зарождение). Начало процесса гидратообразования совпадает с достижением фигуративной точки системы газ-вода спинодали (фиг.3). Удаление от линии равновесия в область устойчивого состояния гидрата иллюстрирует повышение «движущей силы» гидратообразования. В данном случае «движущая сила» гидратообразования представлена переохлаждением системы газ-вода (температурный градиент переохлаждения tПЕРЕОХЛ=ta-tб; t г-tд; tж-tз) по отношению к равновесному состоянию (точки а, г, ж на фиг.3). При этом очевидно, что при снижении температуры системы газ-вода до одинакового значения (на пример до -0,2°С) градиент, выраженный в переохлаждении, при различных давлениях будет различным. Это позволяет снизить в газогидратном генераторе давление и соответственно энергозатраты, имея высокий потенциал градиента гидратообразования, полученный за счет межфазного теплообмена, резко снижающего температурный градиент между растущими частицами гидрата и хладоносителем и соответственно повышающего градиент переохлаждения tПЕРЕОХЛ.
Кроме создания градиента обеспечивающего прохождение процесса гидратообразования в системе газ-вода, необходимо обеспечить отведение теплоты гидратообразования, которая для гидрата метана равна 410 кДж/кг.
В процессе гидратообразования одновременно с формированием частиц гидрата проходит их диссоциация, обусловленная локальными температурными флуктуациями, которые всегда сопровождают экзотермические фазовые переходы. Они возникают из-за невозможности эффективного отведения теплоты от каждой зарождающейся и растущей частицы новой фазы, в связи с их удаленностью от теплообменной поверхности. Статистическая и молекулярная физика вводят, как параметр интенсивности роста или разрушения какой либо фазы, показатель превышение интенсивности одного процесса над другим, или их равенства, при равенстве возникающих и исчезающих частиц новой фазы в единицу времени (динамическое равновесие). Очевидно, что при бесконечно большой интенсивности отвода теплоты от каждой зарождающейся и растущей частицы гидрата величина температурных флуктуации, и соответственно количество диссоциаций отдельных частиц гидрата в единицу времени будет стремиться к нулю, при этом энергетическая эффективность процесса гидратообразования будет стремиться к своему теоретическому максимуму.
В газогидратном генераторе, реализующем заявленный способ теплота, выделяемая образующимися частицами газогидрата отводится от них сопоставимыми по размеру и находящимися в непосредственной близости к ним (в т.ч. в контакте) частицами льдосодержащей пульпы. При этом интенсивность обеспеченного таким образом межфазного теплообмена (коэффициент теплоотдачи , Вт/м2*К) между поверхностью растущих частиц гидрата и плавящихся частиц водного льда размером 3 5 мкм достигает 3000 5000 Вт/м2*К, что по эффекту сопоставимо с погружением частиц гидрата в кипящий Фреон-22.
Причина столь значительного влияния размеров кристаллов льдосодержащей пульпы на скорость их плавления, и в конечном счете на интенсивность теплоотвода от растущих частиц гидрата, заключается в сути чисел Био ( ) и Фурье ( ). Установлено, что в термически тонких телах, при расстоянии от их термического центра до поверхности (R) порядка 5-10 мкм, скорость изменения температуры внутри объекта не зависит от теплопроводности, а определяется его размерами.
При значении безразмерного времени Fo=4 (для числа Bi=0,1) фактическое время прохождения процесса плавления кристалла водного льда размером 100 мкм составляет 0,2 секунды, а размером 5 мкм - 4*10-4 секунд
Таким образом, при зарождении и росте частиц гидрата в окружении частиц водного льда величина локальных температурных флуктуации будет сведена к своему теоретическому минимуму и практически будет равна нулю.
При этом частицы водного льда одновременно служат центрами зарождения новой фазы газового гидрата, обеспечивая гетерогенный механизм рост частиц гидрата, т.к. на них адсорбируются пузырьки природного газа, являющиеся компонентом гидрата. При зарождении частицы гидрата начинают выделять тепловую энергию, которая тотчас поглощается плавящимися частицами водного льда, присутствующими непосредственно в месте зарождения гидрата. Равномерность распределения частиц водного льда и гидрата достигается постоянным подводом в реактор водоледяной пульпы и отводом рециркуляционной воды (фиг.1).
В прототипе использован принцип теплоотвода за счет прямого контакта образующихся частиц гидрата с однофазным хладоносителем (циркуляционной водой), который для выполнения функции хладоносителя, охлаждают. Его недостаток - малая удельная хладоемкость всех однофазных хладоносителей, и в т.ч. воды (теплоемкость воды равна 4,19 кДж/кг*К, что при температурном перепаде в теплообменном аппарате в 5°С позволяет отвести от объекта охлаждения одним килограммом хладоносителя 21 кДж теплоты - Q=cm t=4,19*1*5=21 кДж, в то время как плавление льдосодержащей пульпы, при 30-%-й концентрации в ней частиц водного льда позволяет отвести одним килограммом пульпы от объекта охлаждения 110 кДж теплоты - Q=0,3*r*m=0,3*335*1=110 кДж).
Теплота гидратообразования природного газа составляет 410 кДж/кг, а теплота плавления водного льда 335 кДж/кг.
Низкий температурный градиент между образующимся газогидратом и плавящимся водным льдом является главным фактором энергоэффективности процесса формирования газогидрата. При применении теплообменных аппаратов контактного типа самых современных конструкций температурный перепад между средами равен 9°C (при использовании в аммиака), 12°C - для фреонов, в то время как применение эффекта межфазного теплообмена посредством применения в качестве хладоносителя пульп, позволяет снизить температурный перепад (расстояние б-в; д-е; з-и, фиг.2) до -0,2°C. В этом случае точки а, г, ж (фиг.3) сместятся на изотерму -0,2°C, а расстояние а-б; г-д; ж-з (температурный градиент tПЕРЕОХЛ, как «движущая сила» гидратообразования) увеличится до своего максимально возможного значения. Очевидно, что снижение температурного градиента между образующимися частицами гидрата и хладоносителем увеличивает градиент гидратообразования (переохлаждение системы газ-вода tПЕРЕОХЛ относительно равновесных температур t1, t4, t7, фиг.3). Увеличение «движущей силы» гидратообразования снижает время задержки зарождения частиц гидрата и соответственно увеличивает производительность процесса генерирования газогидратной пульпы.
Дополнительным фактором, повышающим эффективность процесса гидратообразования, является бесконечно большая площадь теплообмена между бесконечно большим количеством термически тонких тел (частиц гидрата и водного льда), что является причиной поддержания высоких значений теплового потока между растущими частицами гидрата и плавящимися частицами водного льда, при температурном градиенте между ними практически равным нулю.
При генерировании льда морская вода начинает отвердевать при температуре -2°C и давлении 420 Па (температура кипения - отвердевания снижается до -3°C, при вымораживании из воды 30% твердой фазы и, до -5°C, при вымораживании 50% твердой фазы), при этом лед представляет собой химически чистую воду в твердом агрегатном состоянии. Полученный в полости вакуумного льдогенератора водный лед, образует с жидкой фазой раствора льдосодержащую рассольную пульпу, которая передается на отделитель льда от рассола. После разделения льдосодержащей рассольной пульпы на пресный лед и рассол, лед самотеком подают в смеситель льда и рециркуляционной воды 15, а рассол либо сбрасывают в море, либо возвращают в генератор льда 13.
Льдосодержащая пульпа, включающая дисперсный лед (до 50% от объема пульпы) и пресную воду, аккумулируется в накопителе 5, откуда закачивается насосом в генератор газогидратной пульпы. В генераторе газогидратной пульпы частицы водного льда плавятся в процессе отвода теплоты от образующихся частиц гидрата и в виде рециркуляционной воды удаляются насосом в смеситель льда и рециркуляционной воды 15.
Готовая газогидратная пульпа накапливается в узле хранения газогидрата 8, откуда отгружается в танк 26 транспортного средства, с помощью насоса 28 установленного на патрубке 30 танка (при открытом запорном вентиле 29). В соответствии с действующими нормами и правилами загрузка танка 26 не превышает 80% его объема. Давление в танке 26 поднимают до 10 бар, например, закачкой природного газа при соответствующем давлении. После этой операции и отключения танка 26 от узла хранения газогидрата 8, в т.ч. и перекрытия запорного вентиля 29 патрубка 30, танк 26 оказывается подготовлен к транспортированию. При давлении 1 МПа и температуре порядка +2 +3°C (точка 1, фиг.4), обеспечиваемой «работой» теплоизоляции 27, газогидратная пульпа сохраняет достаточную для практического применения стабильность.
По прибытию транспортного средства на регазификационный завод 38, газопровод 32 танка 26 подключают через компрессор 33 к газгольдеру 34. Далее открывают запорный вентиль 31, и посредством компрессора 33 начинают откачку газовой подушки из танка 26, с переброской газа в газгольдер 34. Вследствие этого давление в танке 26 снижается до атмосферного (процесс 1-2), в результате чего частицы гидрата, входящие в состав пульпы, начинают диссоциировать на воду и свободный газ (точка 3, фиг.4).
Для того, чтобы диссоциация гидрата проходила непрерывно необходимо к его частицам непрерывно подводить тепловую энергию от какого либо источника, при этом сама пульпа содержит в себе сразу два источника тепловой энергии (теплота, заключенная в частицах самого гидрата и в жидкой фазе пульпы).
Теплота, заключенная в частицах гидрата, численно равна произведению температурного превышения гидрата над температурой термодинамического равновесия (-70°C) на изобарную теплоемкость гидрата (2,7 кДж/кг*К) (см. Макогон Ю.Ф., Гидраты природных газов, М., 1974).
Q=cP m t=2,7*1*75=200 кДж/кг
Таким образом, снижение давления в газогидратной пульпе до атмосферного запускает механизм диссоциации гидрата за счет теплоты, содержащейся внутри самого гидрата (200 кДж/кг). Эндотермический процесс диссоциации, в свою очередь, приводит к снижению температуры частиц гидрата, которое будет продолжаться до тех пор, пока температура частиц гидрата не достигнет равновесной температуры (точка 4, фиг.4). Однако, для развития такого сценария необходимо, чтобы частицы гидрата были каким либо образом изолированы от окружающей их воды. Т.к. частицы гидрата являются частью мелкодисперсной системы вода-гидрат, т.е. пульпы, то при снижении температуры гидрата ниже температуры жидкой фазы пульпы, начнется теплообмен, в результате которого возникнет тепловой поток от жидкости к частицам гидрата. После достижения гидратом температуры 0°C (точка 3, фиг.4), а вернее -0,2°C, начнется отвердевание жидкой фазы пульпы (т.е. воды), с выделением тепловой энергии в количестве 335 кДж/кг. Очевидно, что после диссоциации газогидратной пульпы на ее месте образуется другая пульпа - льдосодержащая, при этом количество частиц водного льда в льдосодержащей пульпе будет больше, чем частиц гидрата в газогидратной пульпе на 18% (410-335/410=0,18), а именно 50%, т.к. частицы гидрата потребляют больше тепловой энергии при диссоциации (410 кДж/кг), чем жидкая вода выделяет при отвердевании (335 кДж/кг). При этом свободный природный газ, выделившийся из гидрата при его диссоциации удаляется компрессором из танка в резервуары хранения.
Льдосодержащая пульпа, оставшаяся в танке 26 после удаления высвобожденного природного газа, отправляется к месту производства газогидратной пульпы для минимизации расхода электроэнергии на генерирование льда (для производства льдосодержащей пульпы).
Таким образом, диссоциация гидрата природного газа на регазификационном заводе возможна без подвода тепловой энергии к газогидратной пульпе извне. Более того, полученная льдосодержащая пульпа возвращается для производства газогидрата, где частицы водного льда при плавлении отведут теплоту гидратообразования от вновь получаемой газогидратной пульпы в количестве 168 кДж/кг (0,5*335 кДж/кг), что составляет до 40% от количества теплоты, которое необходимо отвести при образовании гидрата (168/410=0,41).
При возврате льдосодержащей пульпы на газогидратный завод в цилиндрических танках, теплоизолированных слоем пенополиуретана толщиной 100 мм (коэффициент теплопередачи К=0,25 Вт/м2К), потери льда за сутки составят
Q=K*F* t* =0,25*1200*20*24*3600=520000000 Дж
m=Q/r=520000000/335000-1550 кг/сутки,
что составляет 0,15% в сутки от транспортируемого льда. Заявленный способ доставки природного газа потребителю нетрубопроводным транспортом (железнодорожным, автомобильным, речным или морским) в резервуарах под избыточным давлением 10 кг/см2 является более безопасным, по сравнению с ныне применяемыми.
Класс F17D1/065 устройства для перемещения газов или паров
Класс F17D1/04 для распределения газа
Класс F17D1/16 облегчение перемещения жидкостей или воздействие на перемещение вязких продуктов изменением их вязкости
Класс C10L3/10 обработка природного или синтетического природного газа
Класс C07C9/02 с числом атомов углерода от одного до четырех