способ переработки фосфогипса с извлечением редкоземельных элементов и фосфора

Классы МПК:C22B59/00 Получение редкоземельных металлов
C22B3/18 с добавлением микроорганизмов или ферментов, например бактерий или морских водорослей
C22B7/00 Переработка сырья, кроме руды, например скрапа, с целью получения цветных металлов или их соединений
Автор(ы):, , ,
Патентообладатель(и):Башлыкова Татьяна Викторовна (RU),
Живаева Алла Борисовна (RU),
Аширбаева Евгения Александровна (RU),
Данильченко Людмила Михайловна (RU)
Приоритеты:
подача заявки:
2010-10-26
публикация патента:

Изобретение относится к способу переработки фосфогипса с извлечением редкоземельных элементов и фосфора. Способ включает выщелачивание из фосфогипса редкоземельных элементов и фосфора. Выщелачивание ведут с использованием бактериального комплекса, состоящего из нескольких видов ацидофильных тионовых бактерий в активной фазе роста, адаптированных для активного перевода в жидкую фазу фосфора и редкоземельных элементов. При этом выщелачивание проводят в чановом режиме при численности бактерий 107 клеток/мл, отношении Т:Ж=1:5-1:9, активной или умеренной аэрации, температуре 15-45°C в течение от 3 до 30 суток. Техническим результатом является повышение эффективности процесса утилизации фосфогипса с использованием низкозатратного и экологически безопасного способа. 2 пр.

Формула изобретения

Способ переработки фосфогипса с извлечением редкоземельных элементов и фосфора, включающий их выщелачивание, отличающийся тем, что выщелачивание ведут с использованием бактериального комплекса, состоящего из нескольких видов ацидофильных тионовых бактерий в активной фазе роста, адаптированных для активного перевода в жидкую фазу фосфора и редкоземельных элементов, в чановом режиме при численности бактерий 107 клеток/мл, отношении Т:Ж=1:5-1:9, активной или умеренной аэрации, температуре 15-45°C в течение от 3 до 30 суток.

Описание изобретения к патенту

Изобретение относится к способам гидрометаллургической переработки минерального сырья, а именно к способам глубокой переработки техногенных отходов и, в частности, к способам микробиологического выщелачивания фосфогипса.

Фосфогипс представляет собой крупнотоннажные побочные продукты (отходы) переработки апатитовых и фосфоритовых руд. Так, при сернокислотном вскрытии Кольского апатита на каждую тонну исходного сырья расходуется 1,35 тонн серной кислоты и образуется 1,6 тонн фосфогипса, содержащего фосфор, кальций, редкоземельные элементы (церий, лантан, неодим, европий и иттрий и др.), фтор и другие компоненты и складируемого в отвалы. Накопленные запасы фосфогипса в России превышают 200 млн. т при ежегодном приросте порядка 2 млн. т. Только на предприятии «Балаковские минеральные удобрения» на 01.01.2010 г. скопилось более 40 млн. тонн фосфогипса. После извлечения фосфора, фтора и редких земель твердые остатки вторичной переработки могут быть утилизированы в стройиндустрии. Экологическая целесообразность и актуальность утилизации фосфогипса очевидны, но решение проблемы осложняется отсутствием низкозатратного способа комплексной переработки фосфогипса.

Известен способ извлечения редкоземельных элементов из фосфогипса, включающий обработку фосфогипса раствором серной кислоты с концентрацией 22-30% мас. при Ж:Т=1,8-2,2 с извлечением РЗЭ и натрия в раствор, отделение нерастворимого остатка, повышение степени пересыщения раствора по РЗЭ путем создания концентрации натрия в растворе 0,4-1,2 г/л посредством введения сульфата или карбоната натрия, кристаллизацию концентрата редкоземельных элементов, отделение концентрата от маточного раствора [RU 2293781 C1, МПК C22B 59/00, C22B 3/08, 20.02.2007].

Недостатками способа являются низкая комплексность процесса вследствие извлечения по сернокислотной схеме только РЗЭ и образования многотоннажных вторичных отходов, создающих новые отвалы.

Известен способ переработки фосфогипса, содержащего соединения фосфора и лантаноиды, включающий выщелачивание фосфогипса 22-30% раствором серной кислоты в течение 20-25 минут с переводом фосфора и лантаноидов в пересыщенный по лантаноидам раствор и получением осадка гипса, идущего на центрифугирование и обработку гидроксидным соединением кальция до pH более 5. Из раствора кристаллизацией получают концентрат лантаноидов. Маточный раствор перед возвращением в процесс очищают путем введения в раствор соединения титана с отделением образовавшегося осадка гидратированного фосфата титанила [RU 2337879 C1, МПК C01F 11/46, 10.11.2008].

Недостатком способа является использование концентрированных сернокислотных растворов при высоких расходах для выщелачивания всей массы фосфогипса.

Наиболее близким по техническому решению и достигаемому результату является способ извлечения лантаноидов из фосфогипса, включающий порционное стадиальное сернокислотное выщелачивание фосфогипса с увеличением концентрации серной кислоты от стадии к стадии в зависимости от приращения концентрации пентаоксида фосфора в растворе при выщелачивании предыдущей порции фосфогипса, отделение кека выщелачивания, его промывку. Среднее извлечение лантаноидов за 4-5 стадий выщелачивания составляет 32,65-38,68% [RU 2167105 C1, МПК C01F 17/00, C22B 3/08, 20.05.2001].

Недостатком способа является сложность стадиального регулирования концентрации сернокислотного раствора на каждой стадии выщелачивания и низкое извлечение редкоземельных элементов в конечный продуктовый раствор.

Цель настоящего изобретения - повышение эффективности использования минерального сырья за счет повышения глубины утилизации отходов переработки апатитовых и фосфоритовых руд.

Предлагаемое решение направлено на решение задач вторичной переработки фосфогипса по упрощенной, низкозатратной технологии, отвечающей высоким экологическим требованиям

Техническим результатом является глубокая переработка фосфогипса с максимально возможным переводом в раствор редкоземельных элементов и вредных компонентов, в том числе фосфора, фтора и др., при низких технологических и экономических затратах и упрощение дальнейшей переработки продуктов выщелачивания.

Согласно способу биохимического извлечения редкоземельных элементов и фосфора из фосфогипса технический результат достигается тем, что фосфогипс направляют на микробиологическое выщелачивание с использованием бактериальных комплексов, состоящих из нескольких видов ацидофильных тионовых бактерий, адаптированных к фосфогипсу для активного перевода в жидкую фазу фосфора, РЗЭ и других составляющих. Микроорганизмы культивируют на питательных средах, накапливают и подают на выщелачивание в чановом режиме. В процессе участвуют бактерии в активной фазе роста. В результате биовыщелачивания в раствор переводится 50-70% редкоземельных элементов и до 94% фосфора при расходах серной кислоты, значительно более низких, чем при известных способах. Полученный раствор направляют на дальнейшую переработку по известным технологиям, обесфосфоренный кек биовыщелачивания с низким (до 0,08%) содержанием P2O5 также направляют на переработку по известным технологиям для доизвлечения остаточных количеств РЗЭ, получения сульфата калия, смеси карбонатов кальция и стронция и использования остатков в стройиндустрии.

Внедрение предлагаемого способа переработки фосфогипса будет способствовать снижению времени и повышению экономичности процесса утилизации фосфогипса с использованием экологически безопасного способа, обесфосфориванию твердой составляющей фосфогипса с повышением эффективности переработки минерального сырья за счет упрощения технологии переработки фосфогипса с пятикратным снижением расхода серной кислоты.

Положительный эффект способа биохимического извлечения редкоземельных элементов и фосфора из фосфогипса заключается в переработке фосфогипса по низкозатратной и экологически безопасной технологии с получением растворов, содержащих редкоземельные элементы, а также выделенные в жидкую фазу вредные компоненты, что значительно упрощает, ускоряет и удешевляет дальнейшие стадии получения товарной продукции из продуктивных растворов и обезвреженных кеков биовыщелачивания.

Пример 1

Фосфогипс, содержащий (%): CaO (MgO) - 37,7-41,4; SO3 - 55,1-55,5; MgO - 0,10-0,20; P2O5 - 1,20-1,50; Fe2O3 - 0,12-0,20; суммы РЗЭ - 0,20-0,60; F - 0,35; SiO2 - 1,10, - направляют на микробиологическое выщелачивание с использованием бактериального комплекса ацидофильных тионовых бактерий ВУР-9 из авторской Коллекции живых культур, адаптированного для активного перевода в жидкую фазу фосфора, РЗЭ и других составляющих. Выщелачивание ведут в чановом варианте при численности бактерий 107 клеток/мл, культивированных на модифицированной среде 9К при отношении Т:Ж=1:5, в интервале температур 15-45°C и активной аэрации. Исходный Eh - 697,1 мВ, pH поддерживается на уровне 1,5-1,8 путем подкисления раствором серной кислоты с концентрацией 0,6 мл/л; продолжительность выщелачивания - от 3 до 30 суток.

В результате биовыщелачивания с активной аэрацией значение Eh увеличивается в среднем на 45-47 мВ, железо(II) полностью окисляется до железа(III). Гипсование материала не происходит. Извлечение фосфора в раствор составляет 93,3-94,7% редкоземельных элементов - 55-70% в зависимости от продолжительности процесса. Расход серной кислоты на весь цикл составляет 0,25-0,26 т/т фосфогипса, что в 5,5 раз ниже, чем при известном способе вскрытии фосфогипса. Остаточное содержание P2O5 в кеке - 0,08%, т.е. являющийся вредной примесью фосфор практически весь переводится в продуктивный раствор, который перерабатывают по известной технологии. Кек биовыщелачивания направляют на доизвлечение редких земель, получение сульфата калия и смеси карбонатов кальция и стронция известным способом, после чего остатки утилизируются в стройиндустрии.

Пример 2

Фосфогипс направляют на микробиологическое выщелачивание с использованием бактериального комплекса тионовых бактерий из авторской Коллекции живых культур, адаптированного для перевода в жидкую фазу фосфора, РЗЭ и других составляющих и обладающего способностью естественного подкисления раствора в процессе выщелачивания. Условия биовыщелачивания: процесс ведут в чановом варианте; численность культивированных на среде Бейеринке бактерий - 107 клеток/мл; отношение Т:Ж=1:9; температура 15-45°C; исходные Eh 468,0 мВ, pH 5,4-6,7: умеренная аэрация; продолжительность выщелачивания - 3-30 суток. В результате биовыщелачивания значение Eh увеличивается в среднем на 140 мВ, pH снижается до 2,5 без подкисления среды. Извлечение в раствор фосфора составляет 60,8-68,7%, редкоземельных элементов - 48-55%. Дополнительные преимущества способа заключаются в проведении выщелачивания без подачи серной кислоты и при весьма умеренной аэрации пульпы. Получаемые продуктивный раствор и кек выщелачивания перерабатываются по более простым и низкозатратным известным технологиям.

Класс C22B59/00 Получение редкоземельных металлов

способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты при переработке хибинских апатитовых концентратов -  патент 2528692 (20.09.2014)
способ извлечения редкоземельных металлов и получения строительного гипса из фосфогипса полугидрата -  патент 2528576 (20.09.2014)
способ извлечения редкоземельных металлов и получения строительного гипса из фосфогипса полугидрата -  патент 2528573 (20.09.2014)
способ извлечения редкоземельных металлов из фосфогипса -  патент 2526907 (27.08.2014)
способ переработки лопаритового концентрата -  патент 2525951 (20.08.2014)
способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты -  патент 2525947 (20.08.2014)
способ переработки фосфогипса -  патент 2525877 (20.08.2014)
способ вскрытия перовскитовых концентратов -  патент 2525025 (10.08.2014)
способ извлечения редкоземельных элементов из гидратно-фосфатных осадков переработки апатита -  патент 2524966 (10.08.2014)
способ очистки фосфатно-фторидного концентрата рзэ -  патент 2523319 (20.07.2014)

Класс C22B3/18 с добавлением микроорганизмов или ферментов, например бактерий или морских водорослей

способ получения миллерита с использованием сульфатредуцирующих бактерий -  патент 2528777 (20.09.2014)
способ переработки смешанных медьсодержащих руд с предварительным гравитационным концентрированием и биовыщелачиванием цветных металлов -  патент 2501869 (20.12.2013)
способ извлечения металлов из силикатных никелевых руд -  патент 2478127 (27.03.2013)
способ извлечения меди из сульфидсодержащей руды -  патент 2471006 (27.12.2012)
способ извлечения металлов из сульфидного минерального сырья -  патент 2468098 (27.11.2012)
колонна для регенерации железоокисляющими микроорганизмами растворов выщелачивания минерального сырья -  патент 2467081 (20.11.2012)
способ переработки сульфидных золотосодержащих флотоконцентратов -  патент 2458161 (10.08.2012)
способ переработки фосфогипса -  патент 2456358 (20.07.2012)
способ извлечения скандия из пироксенитового сырья -  патент 2448176 (20.04.2012)
извлечение молибдена из содержащих молибден сульфидных материалов с помощью биологического выщелачивания в присутствии железа -  патент 2439178 (10.01.2012)

Класс C22B7/00 Переработка сырья, кроме руды, например скрапа, с целью получения цветных металлов или их соединений

отражательная печь для переплава алюминиевого лома -  патент 2529348 (27.09.2014)
способ извлечения молибдена из техногенных минеральных образований -  патент 2529142 (27.09.2014)
способ комплексной переработки красных шламов -  патент 2528918 (20.09.2014)
способ переработки медно-ванадиевых отходов процесса очистки тетрахлорида титана -  патент 2528610 (20.09.2014)
способ извлечения металлов из потока, обогащенного углеводородами и углеродистыми остатками -  патент 2528290 (10.09.2014)
способ извлечения рения и платиновых металлов из отработанных катализаторов на носителях из оксида алюминия -  патент 2525022 (10.08.2014)
способ переработки твердых бытовых и промышленных отходов и установка для его осуществления -  патент 2523202 (20.07.2014)
способ переработки титановых шлаков -  патент 2522876 (20.07.2014)
способ утилизации твердых ртутьсодержащих отходов и устройство для его осуществления -  патент 2522676 (20.07.2014)
двух ванная отражательная печь с копильником для переплава алюминиевого лома -  патент 2522283 (10.07.2014)
Наверх