хладостойкая сталь высокой прочности

Классы МПК:C22C38/48 с ниобием или танталом
Автор(ы):, , , , , , , , ,
Патентообладатель(и):Открытое акционерное общество "Магнитогорский металлургический комбинат" (RU),
Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" (RU)
Приоритеты:
подача заявки:
2011-03-28
публикация патента:

Изобретение относится к области металлургии и может быть использовано при производстве толстолистового проката из стали высокой прочности и улучшенной свариваемости для применения в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении, мостостроении и других отраслях промышленности. Хладостойкая сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,08-0,11, кремний 0,15-0,40, марганец 0,30-0,60, хром 0,30-0,70, никель 1,80-2,20, медь 0,40-0,70, молибден 0,25-0,35, ниобий 0,02-0,05, алюминий 0,01-0,05, кальций 0,005-0,050, сера 0,001-0,010, фосфор 0,001-0,015, железо - остальное. Величина коэффициента трещиностойкости при сварке Рcm не превышает 0,26%. Сталь обладает высокой прочностью с гарантированной величиной предела текучести от 590 до 715 МПа и высокой хладостойкостью при температурах до минус 60°С. 3 табл., 1 пр.

Формула изобретения

Хладостойкая сталь высокой прочности, содержащая углерод, кремний, марганец, хром, никель, медь, ниобий, молибден, алюминий, кальций, серу и железо, отличающаяся тем, что она дополнительно содержит фосфор при следующем соотношении компонентов, мас.%:

углерод0,08-0,11
кремний 0,15-0,40
марганец0,30-0,60
хром 0,30-0,70
никель1,80-2,20
медь 0,40-0,70
молибден0,25-0,35
ниобий 0,02-0,05
алюминий0,01-0,05
кальций 0,005-0,050
сера0,001-0,010
фосфор 0,001-0,015
железоостальное


причем величина коэффициента трещиностойкости при сварке Рcm не должна быть выше 0,26%.

Описание изобретения к патенту

Изобретение относится к металлургии и может быть использовано при производстве толстолистового проката из стали высокой прочности улучшенной свариваемости для применения в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении, мостостроении и других отраслях промышленности.

Для изготовления ответственных сварных конструкций используется низкоуглеродистая хромоникельмолибденовая сталь, содержащая компоненты в следующем соотношении, мас.%: углерод 0,07-0,11; кремний 0,17-0,37; марганец 0,30-0,60; хром 0,30-0,70; никель 1,80-2,30; медь 0,40-0,70; молибден 0,25-0,35; ванадий 0,02-0,05; алюминий 0,005-0,04; элемент из группы, содержащей кальций, барий, 0,005-0,05; сера 0,003-0,015; фосфор 0,003-0,015; железо - до 100, при условии, что сумма (никель+медь) не менее 2 мас.%; сумма (сера+фосфор) не более 0,025 мас.% [1]. В листовом прокате толщиной до 30 мм сталь обеспечивает высокую прочность при сохранении высокой пластичности, ударной вязкости при +20 и -40°С, сопротивляемости хрупким и коррозионно-механическим разрушениям, хорошей свариваемости, изотропности свойств и сопротивления слоистому разрыву.

Известна сталь, принятая за прототип, следующего химического состава, мас.% [2]:

Углерод0,08-0,12
Кремний 0,2-0,4
Марганец 0,45-0,75
Хром 1,05-1,30
Медь0,35-0,65
Никель 1,05-2,20
Молибден0,10-0,18
Алюминий 0,01-0,06
Ванадий 0,04-0,06
Ниобий0,02-0,05
Кальций 0,005-0,050
Сера0,001-0,005
Железо Остальное,

причем величина коэффициента трещиностойкости при сварке Рcm , рассчитываемого по формуле

хладостойкая сталь высокой прочности, патент № 2458176

не должна быть выше 0,28%.

Известная сталь обеспечивает высокие требования по хладостойкости до минус 80°С, улучшенную свариваемость (по величине коэффициента трещиностойкости), высокую трещиностойкость по критерию CTOD в зоне термического влияния сварного шва. Основным недостатком указанной стали является недостаточный уровень прочности - не обеспечивается гарантированная величина предела текучести не менее 590 МПа.

Техническим результатом изобретения является разработка конструкционной стали высокой прочности с гарантированной величиной предела текучести от 590 до 715 МПа, обладающей высокой хладостойкостью при температурах до минус 60°С.

Технический результат достигается тем, что хладостойкая сталь высокой прочности, содержащая углерод, кремний, марганец, хром, никель, медь, ниобий, молибден, алюминий, кальций, серу и железо, дополнительно содержит фосфор при следующем соотношении компонентов, мас.%:

Углерод0,08-0,11
Кремний 0,15-0,40
Марганец0,30-0,60
Хром 0,30-0,70
Никель1,80-2,20
Медь 0,40-0,70
Молибден0,25-0,35
Ниобий 0,02-0,05
Алюминий0,01-0,05
Кальций 0,005-0,050
Сера0,001-0,010
Фосфор 0,001-0,015
ЖелезоОстальное,

причем величина коэффициента трещиностойкости при сварке Рcm, рассчитываемого по формуле

хладостойкая сталь высокой прочности, патент № 2458176

(п.4.2.2 части XII «Правил классификации, постройки и оборудования ПБУ И МСП», Российский морской регистр судоходства, 2006), не должна быть выше 0,26%.

Содержание углерода в указанных пределах способствует обеспечению высокой прочности стали. Превышение указанных пределов нецелесообразно вследствие существенного снижения пластичности, вязкости, хладостойкости, а также повышения закаливаемости и увеличения склонности стали к образованию горячих и холодных трещин при сварке.

Пределы содержания марганца, хрома, меди и никеля обеспечивают необходимую прочность стали и ее вязкость при отрицательных температурах посредством твердорастворного упрочнения, а также прокаливаемость за счет повышения стабильности аустенита в ферритной области при хладостойкая сталь высокой прочности, патент № 2458176 -хладостойкая сталь высокой прочности, патент № 2458176 превращении и образования преимущественно бейнитно-мартенситных структур при закалке проката в толщинах до 30 мм.

Молибден значительно повышает прочность стали, а также предотвращает формирование феррита и развитие отпускной хрупкости стали. При содержании свыше 0,4% молибден понижает вязкость стали.

Фосфор обуславливает повышенную склонность к хрупким разрушениям при понижении температуры испытаний и отпускной хрупкости за счет обогащения межзеренных границ. Ограничение содержания фосфора в указанных пределах способствует обеспечению высокой хладостойкости стали при температурах до минус 60°С при повышении предела текучести, а в сочетании с введением молибдена в указанных пределах позволяет исключить отпускную хрупкость.

Пример: Сталь была выплавлена в кислородном конвертере и после внепечного рафинирования и вакуумирования разлита в непрерывнолитые слябы. Химический состав приведен в таблице 1.

Слябы нагревали до температуры 1200±20°С в методической печи и прокатывали на стане «5000» на листы толщиной 8-30 мм, которые подвергали термическому улучшению (закалка в воду от температуры 920±10°С с отпуском в интервале температур 620÷680°С).

Механические свойства определяли на образцах, вырезанных поперек направления прокатки. Испытание на растяжение выполняли по ГОСТ 1497 на плоских образцах типа I № 18 (для листов толщиной 8 мм), цилиндрических образцах типа III № 6 (для листов толщиной 18 мм), цилиндрических образцах типа III № 3 (для листов толщиной 30 мм). Испытания на ударный изгиб выполняли по ГОСТ 9454 на образцах с V-образным надрезом типа 12 (для листов толщиной 8 мм) и типа 11 (для листов толщиной 18 и 30 мм) при температурах минус 40°С и минус 60°С.

Результаты механических испытаний (средние значения по результатам двух испытаний на растяжение и трех на ударный изгиб) приведены в таблице 2.

Свариваемость оценивали по результатам испытаний на растяжение образцов полной толщины с расчетной длиной хладостойкая сталь высокой прочности, патент № 2458176 , ударных образцов типа 11 по ГОСТ 9459 с надрезом, выполненным по линии сплавления и на расстоянии 2, 5 и 20 мм от нее, а также по изменению твердости по Виккерсу на различных участках сварного соединения (таблица 3). Трещиностойкость зоны термического влияния (ЗТВ) сварки оценивали по британскому стандарту BS 7448 (часть 2) на сварных соединениях, выполненных с К-образной разделкой кромок автоматической сваркой под флюсом с погонной энергией ~ 1,0 кДж/мм. Для испытаний использовали призматические образцы с шевронным надрезом, выполненным по ЗТВ. Испытания проводили при температуре минус 40°С.

Литературные источники

1. Патент Российской Федерации № 1676276, МПК С22С 38/46, 1996 г.

2. Патент Российской Федерации № 2269588, МПК С22С 38/48, 2004 г.

Хладостойкая сталь повышенной прочности

хладостойкая сталь высокой прочности, патент № 2458176

хладостойкая сталь высокой прочности, патент № 2458176

хладостойкая сталь высокой прочности, патент № 2458176

Класс C22C38/48 с ниобием или танталом

сталь повышенной коррозионной стойкости и электросварные трубы, выполненные из нее -  патент 2520170 (20.06.2014)
стали со структурой пакетного мартенсита -  патент 2507297 (20.02.2014)
хладостойкая arc-сталь высокой прочности -  патент 2507296 (20.02.2014)
высокопрочная хладостойкая arc-сталь -  патент 2507295 (20.02.2014)
ролик для поддерживания и транспортирования горячего материала, имеющий наплавленный посредством сварки материал, присадочный сварочный материал, а также сварочная проволока для проведения наплавки сваркой -  патент 2499654 (27.11.2013)
способ производства листового проката -  патент 2490337 (20.08.2013)
трубная заготовка из легированной стали -  патент 2479663 (20.04.2013)
стальной лист для производства магистральной трубы с превосходной прочностью и пластичностью и способ изготовления стального листа -  патент 2478133 (27.03.2013)
способ производства толстолистового низколегированного проката -  патент 2477323 (10.03.2013)
нефтегазопромысловая бесшовная труба из мартенситной нержавеющей стали и способ ее изготовления -  патент 2468112 (27.11.2012)
Наверх