катализатор для получения молекулярного водорода

Классы МПК:B01J31/00 Катализаторы, содержащие гидриды, координационные комплексы или органические соединения
C01B3/16 с использованием катализаторов
C25B1/44 с помощью катализаторов
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Мордовский государственный университет им. Н.П. Огарёва" (RU)
Приоритеты:
подача заявки:
2011-10-11
публикация патента:

Изобретение относится к катализаторам получения молекулярного водорода. Описано применение органических стабильных электронно-избыточных радикалов в качестве катализатора для электрохимического получения молекулярного водорода. Технический результат - удешевление производства электрохимического получения молекулярного водорода с использованием доступных и экологически безвредных катализаторов. 2 пр.

Формула изобретения

Применение органических стабильных электронно-избыточных радикалов в качестве катализатора для электрохимического получения молекулярного водорода.

Описание изобретения к патенту

Изобретение относится к области электрохимических производств и может быть использовано для получения молекулярного водорода из кислот.

В настоящее время для получения молекулярного водорода из кислот создано большое количество каталитических систем - комплексов переходных металлов, в частности макроциклических комплексов [J.A.Turner, Science, 2004, 305, 972-974].

Тетраазамакроциклические соединения катализируют процесс образования водорода из ацетонитрильного раствора, содержащего воду, однако этот процесс происходит только в присутствии CO2: в инертной атмосфере аргона или азота выделение водорода не наблюдается. Поскольку для продуцирования молекулярного водорода необходим источник протонов, например вода, было установлено, что этот процесс включает в качестве интермедиата гидрид кобальта [R.F.Service, Science, 2004, 305, 958-961]. Тетрадентантные полипиридиновые комплексы и порфирины кобальта также являются электрокатализаторами восстановления протонов из воды с использованием в качестве источников протонов трифторуксусной кислоты (ТФА). В случае порфиринов кобальта процесс восстановления воды является pH-зависимым: с уменьшением pH скорость продуцирования молекулярного водорода возрастает [N.S.Lewis, D.G.Nocera, Proc. Natl. Acad. Sci.USA, 2006, 103, 15729-15735].

Известные механизмы выделения молекулярного водорода могут быть описаны двумя способами. Первый способ включает в себя атаку протона на частицу гидрида кобальта(III) с последующим восстановлением кобальта(III) на электроде или кобальтом(I): Со(III)-H-+H+катализатор для получения молекулярного водорода, патент № 2480283 Н2+Co(III) (гетеролитический процесс). Второй путь основан на реакции диспропорционирования гидрида кобальта: Co(III)-H-катализатор для получения молекулярного водорода, патент № 2480283 1/2Н2+Co(II) (гомолитический процесс). Было показано, что основным механизмом протекания процесса выделения молекулярного водорода при использовании кобальтсодержащих электрокатализаторов в случае порфириновых комплексов является гомолитический путь.

Фталоцианиновые комплексы кобальта, помещенные в 4-винилпиридин-стиреновую полимерную матрицу с соотношением 4-винилпиридин/стирен 9:1, также выступают катализаторами электрохимического продуцирования молекулярного водорода. Из-за внедрения катализатора в полимерную пленку процесс переноса заряда через эту матрицу играет значительную роль. Перенос электрона в этой системе может осуществляться посредством физической диффузии и/или скачка электрона. В случае сильных физических взаимодействий или химического связывания фталоцианинов вклад физической диффузии пренебрежимо мал в сравнении со вкладом механизма скачка электрона. В других случаях первый процесс доминирует. Кроме того, для фталоцианинов кобальта при использовании электрода, модифицированного полимерной матрицей, были получены высокие показатели TOF (скорость оборота катализатора), что определяет высокий практический потенциал такого способа продуцирования молекулярного водорода [I.P.Georgakaki, L.M.Thonson, E.J.Lyon, M.B.Hall, M.Y.Darensbourg, Coord. Chem. Rev., 2003, 238-239, 255-266].

Глиоксиматы кобальта являются также объектами для изучения их в качестве потенциальных электрокатализаторов не только из-за легкости их получения, но также из-за возможности изменения их свойств путем замены аксиальных лигандов. Свойства этого класса соединений были изучены при использовании слабой кислоты Et3NH+ в качестве источника протонов в ДМФА или 1,2-дихлорэтане [A.J.Esswein, D.G.Nocera, Chem. Rev., 2007, 107, 4022-4047]. Механистические исследования показали, что в данных растворителях процесс выделения молекулярного водорода осуществляется через гетеролитический процесс. Было установлено, что по сравнению с введением BF2-группы вместо BH 2, обуславливающим жесткость лиганда, природа заместителей аксиальных или реберных оказывает меньшее влияние на каталитическую активность комплекса [X.Liu, S.K.Ibrahim, C.Tard, C.J.Pickett, Coord. Chem. Rev., 2005, 249, 1641-1652].

Макробициклические клеточные комплексы с инкапсулированным ионом металла являются относительно новым классом веществ и обладают необычными химическими, физическими и физико-химическими свойствами, обусловленными полным инкапсулированием иона металла трехмерной полостью макрополициклического лиганда, что изолирует его от влияния внешних факторов [U.Koelle, New J. Chem., 1992, 16, 157-169]. Электрокаталитические свойства клеточных комплексов кобальта были исследованы на примере комплекса [Co(sepulchrate)]3+ и похожих производных. Однако в этих случаях каталитическая активность оказалась недостаточно высокой [Y.Z.Voloshin, N.A.Kostromina, R.Krämer, Clathrochelates: synthesis, siructure and properties, Elsevier, Amsterdam, 2002].

Однако из всего многообразия представленных катализаторов ни один не может претендовать на роль промышленных. Поскольку имеется ряд существенных недостатков: сложность получения, дороговизна катализаторов, ограниченная растворимость в апротонных и протонных растворителях, устойчивость в узком интервале pH, высокие потенциалы электрокаталитического процесса.

Технический результат заключается в создании селективных, высокоактивных, дешевых, доступных, экологически безвредных катализаторов для электрохимического получения молекулярного водорода из кислот.

Сущность изобретения заключается в применении органического стабильного электронно-избыточного радикала в качестве катализатора для получения молекулярного водорода.

Данный класс органических стабильных электронно-избыточных радикалов (пиранильных, ксантильных, тиоксантильных пиридинильных, феназинильных, акридинильных и др.) [Б.С.Танасейчук. Начала химии свободных стабильных радикалов. Саранск, Изд-во Мордовского госуниверситета, 2011, с.8-12] способен к очень легкому окислению с образованием устойчивых при стандартных условиях положительных ионов.

Пример 1. В электрохимическую ячейку объемом 10 мл, содержащую апротонный растворитель (ацетонитрил, хлористый метилен и др.), помещают катализатор - органический стабильный электронно-избыточный радикал, в частности акридинильный, и фоновый электролит. Рабочий электрод - стеклоуглерод, вспомогательный - стеклоуглерод, электрод сравнения-Ag/AgCl/KClaq. В ячейку добавляют источник протонов (Н+) и накладывается потенциал, при котором происходит электрокаталитический процесс. В процессе электролиза образуется молекулярный водород. Газохроматографический анализ газовой смеси показал образование только молекулярного водорода.

Пример 2. В электрохимическую ячейку объемом 10 мл, содержащую ацетонитрил, помещают катализатор, соль стабильного электронно-избыточного радикала, в частности галогенид, перхорат алкильной соли пиридинилия. Рабочий электрод - стеклоуглерод, вспомогательный - стеклоуглерод, электрод сравнения - Ag/AgCl/Kclaq. Потенциал, при котором реализуется электрокаталитический процесс, устанавливается в области от -0,5 В до -1 В в зависимости от вида катализатора. При меньших значениях потенциала каталитический процесс не протекает. Использование потенциалов выше 1 В экономически неоправданно. Таким образом, оптимальные значения потенциала находятся в вышеприведенном интервале. В ходе протекания процесса электролиза образуется молекулярный водород

Органические стабильные электронно-избыточные катализаторы, необходимые для получения молекулярного водорода, имеют несомненное преимущество по сравнению с известными:

1. Представители ряда таких катализаторов очень просты, дешевы, кроме того, их очень легко утилизировать или перерабатывать.

2. Используемые катализаторы устойчивы при значениях pH 0-10, работающие без потери каталитической активности. Ни один из известных катализаторов на основе металлов не обладает подобной стабильностью.

Класс B01J31/00 Катализаторы, содержащие гидриды, координационные комплексы или органические соединения

катализатор для окисления сернистых соединений -  патент 2529500 (27.09.2014)
способ получения тонкодисперсной жидкой формы фталоцианинового катализатора демеркаптанизации нефти и газоконденсата -  патент 2529492 (27.09.2014)
катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
каталитическая композиция и способ олигомеризации этилена -  патент 2525917 (20.08.2014)
способ получения вторичных амидов путем карбонилирования соответствующих третичных аминов -  патент 2525400 (10.08.2014)
способ получения катализатора полимеризации лактонов или поликонденсации альфа-оксикислот -  патент 2525235 (10.08.2014)
каталитическая система процесса тримеризации этилена в альфа-олефины -  патент 2525118 (10.08.2014)
способ приготовления гетерогенного фталоцианинового катализатора для окисления серосодержащих соединений -  патент 2523459 (20.07.2014)
способ получения катализатора полимеризации эпсилон-капролактама -  патент 2522540 (20.07.2014)
катализатор для гидрирования ненасыщенных соединений -  патент 2522429 (10.07.2014)

Класс C01B3/16 с использованием катализаторов

способ эксплуатации реактора для высокотемпературной конверсии -  патент 2516546 (20.05.2014)
способ получения богатой водородом газовой смеси -  патент 2515967 (20.05.2014)
катализатор для применения в высокотемпературной реакции сдвига и способ обогащения смеси синтез-газа водородом или монооксидом углерода -  патент 2498851 (20.11.2013)
катализатор конверсии водяного газа низкой температуры -  патент 2491119 (27.08.2013)
способ приготовления катализатора для низкотемпературной конверсии оксида углерода водяным паром -  патент 2457028 (27.07.2012)
технологический режим для pt-re биметаллических катализаторов конверсии водяного газа, катализаторы -  патент 2450968 (20.05.2012)
способ приготовления катализатора среднетемпературной конверсии оксида углерода водяным паром -  патент 2445160 (20.03.2012)
способ получения синтез-газа и продуктов органического синтеза из диоксида углерода и воды -  патент 2396204 (10.08.2010)
реакционный сосуд -  патент 2381057 (10.02.2010)
получение cu/zn/al-катализаторов формиатным способом -  патент 2372987 (20.11.2009)

Класс C25B1/44 с помощью катализаторов

Наверх