способ приготовления гетерогенного фталоцианинового катализатора для окисления серосодержащих соединений
Классы МПК: | B01J37/34 облучение или применение электрической, магнитной или волновой энергии или применение этих видов энергии, например ультразвуковых колебаний B01J23/75 кобальт B01J35/06 ткани или волокна B01J31/18 содержащие азот, фосфор, мышьяк или сурьму C10G27/10 в присутствии металлсодержащих органических комплексных соединений, например хелатов или катионообменных смол |
Автор(ы): | Вашурин Артур Сергеевич (RU), Голубчиков Олег Александрович (RU), Майзлиш Владимир Ефимович (RU), Пуховская Светлана Геннадьевна (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный химико-технологический университет" (ИГХТУ) (RU) |
Приоритеты: |
подача заявки:
2013-03-12 публикация патента:
20.07.2014 |
Изобретение относится к производству катализаторов для жидкофазного окисления серосодержащих соединений. Заявлен способ приготовления гетерогенного фталоцианинового катализатора для окисления серосодержащих соединений путем активации нетканого лавсана микроволновым излучением с частотой 2450 МГц мощностью 500-2000 Вт в течение 3-15 минут, обработки активированного материала в растворе тетра-4-[(4'-карбокси)фенилсульфанил]фталоцианина кобальта при концентрации 0,2-0,6 г/л в течение 2-4 часов и последующей выдержки материала в растворе гидроксида натрия при pH 8,0-8,5 в течение 40-80 минут. Техническим результатом изобретения является повышение каталитической активности целевого продукта и упрощение способа его приготовления. 1 табл.
Формула изобретения
Способ приготовления гетерогенного фталоцианинового катализатора для окисления серосодержащих соединений путем активации нетканого синтетического волокнистого материала, обработки его в водном растворе замещенного фталоцианина кобальта и последующей выдержки его в растворе гидроксида натрия, отличающийся тем, что для активации на нетканый синтетический волокнистый материал воздействуют микроволновым излучением с частотой 2450 МГц и мощностью 500-2000 Вт в течение 3-15 мин, в качестве замещенного фталоцианина кобальта используют тетра-4-[(4'-карбокси)фенилсульфанил]фталоцианин кобальта при его концентрации в водном растворе 0,2-0,6 г/л, активированный материал обрабатывают в этом растворе в течение 2-4 часов, выдержку в растворе гидроксида натрия проводят при pH 8,0-8,5 в течение 40-80 минут, а в качестве нетканого синтетического волокнистого материала используют нетканый лавсан.
Описание изобретения к патенту
Область техники
Изобретение относится к химической промышленности, а именно к производству гетерогенных фталоцианиновых катализаторов, которые используются в тонком органическом синтезе, нефтеперерабатывающей, нефтехимической, газовой, химической, кожевенной и целлюлозно-бумажной отраслях промышленности для жидкофазного окисления серосодержащих соединений.
Уровень техники
Известны различные способы приготовления гетерогенных фталоцианиновых катализаторов для окисления серосодержащих соединений.
Так, известен [Авторское свидетельство СССР № 1041142, 1980] способ приготовления гетерогенного катализатора. Он осуществляется путем смешения термопластичного полимера с водонерастворимым фталоцианиновым комплексом, в качестве которого используют фталоцианин кобальта или его тетрахлор- или тетрахлорметилпроизводное, последующего нагревания, перемешивания и формования.
Известен также [Авторское свидетельство СССР № 978913, 1982] способ приготовления гетерогенного катализатора для окисления серосодержащих соединений. Его осуществляют путем смешения термопластичного полимера, используемого в виде его раствора в органическом растворителе - бензоле или его хлорпроизводном при температуре раствора 80-160°C и концентрации 137-310 г/л, с фталоцианином кобальта или его тетрахлор- или тетрахлорметилпроизводным, выдержки при перемешивании в течение 30-40 мин и последующего формования при одновременной отгонке растворителя.
Однако общим недостатком этих способов является недостаточно высокая активность получаемых катализаторов. Так, степень окисления меркаптидной серы в присутствии катализаторов, получаемых по этим способам, составляет 55-86%.
Известен (патент США № 3396123, кл. 208-244, опубл. 1971 г.) способ приготовления гетерогенного катализатора для окисления серосодержащих соединений, который заключается в следующем. Сначала осуществляют подготовку носителя - активированного угля - путем вплавления его в полиэтилен высокого давления и измельчения. Затем подготовленный носитель обрабатывают в водном растворе сульфопроизводного фталоцианина кобальта, в качестве которого используют дисульфофталоцианин кобальта. Обработанный таким образом носитель подвергают заключительной обработке путем сушки.
Однако этот способ имеет существенный недостаток - сложность и большая энергоемкость технологии, обусловленная необходимостью использования специального энергоемкого оборудования для операции предварительного вплавления активированного угля в полиэтилен высокого давления и операции измельчения.
Наиболее близким к изобретению по совокупности существенных признаков является способ приготовления катализатора по патенту РФ № 2313393, БИ № 36 от 27.12.07. Он заключается в том, что сначала осуществляют предварительную активацию носителя, в качестве которого используют нетканый синтетический волокнистый материал, а именно нетканый полипропиленовый материал. Активацию осуществляют путем его обработки в течение 2 часов кипящим щелочным раствором пероксокарбоната натрия. Затем активированный материал обрабатывают водным раствором дисульфокислоты фталоцианина кобальта с концентрацией 3,2-4,6 г/л в течение 12 часов. Затем обработанный носитель выдерживают в растворе гидроксида натрия при его концентрации 0,1-0,5 г/л, pH=12-13, в течение 2 часов.
Однако этот способ имеет следующие недостатки:
- недостаточно высокую активность катализатора;
- сложность технологической реализации способа, обусловленную необходимостью 2-х часовой обработки материала кипящим щелочным раствором пероксокарбоната натрия.
Таким образом, неизвестен способ приготовления гетерогенного фталоцианинового катализатора для окисления серосодержащих соединений, позволяющий повысить каталитическую активность катализатора и упростить способ его приготовления.
Сущность изобретения
Изобретательская задача состояла в поиске способа приготовления гетерогенного фталоцианинового катализатора для окисления серосодержащих соединений, путем активации нетканого синтетического волокнистого материала, обработки его в водном растворе замещенного фталоцианина кобальта и последующей выдержки в растворе гидроксида натрия, который позволил бы повысить каталитическую активность целевого продукта и упростить способ его приготовления.
Поставленная задача решена способом приготовления гетерогенного фталоцианинового катализатора для окисления серосодержащих соединений путем активации нетканого синтетического волокнистого материала, обработки его в водном растворе замещенного фталоцианина кобальта и последующей выдержки его в растворе гидроксида натрия, в котором для активации на нетканый синтетический волокнистый материал воздействуют микроволновым излучением с частотой 2450 МГц и мощностью 500-2000 Вт в течение 3-15 мин, в качестве замещенного фталоцианина кобальта используют тетра-4-[(4'-карбокси)фенил-сульфанил]фталоцианин кобальта при его концентрации в водном растворе 0,2-0,6 г/л, активированный материал обрабатывают в этом растворе в течение 2-4 часов, выдержку в растворе гидроксида натрия проводят при pH 8,0-8,5 в течение 40-80 минут, а в качестве нетканого синтетического волокнистого материала используют нетканый лавсан.
Изобретение позволяет:
- повысить каталитическую активность целевого продукта в 7,5-18 раз;
- упростить способ приготовления катализатора за счет исключения операции двухчасовой обработки нетканого материала кипящим щелочным раствором пероксокарбоната натрия, сокращения продолжительности обработки активированного материала в водном растворе фталоцианина кобальта в 3-6 раз, сокращения продолжительности выдержки материала в водном растворе щелочи в 1,5-3 раза и снижения величины pH щелочной обработки на 4-5.
Сведения, подтверждающие возможность воспроизведения изобретения
В качестве нетканого лавсана можно использовать любой нетканый лавсан с плотностью не более 600 г/м2 (ТУ РБ 00204079.123-97).
Используют гидроксид натрия (ГОСТ 130109) и тетра-4-[(4'-карбокси)фенилсульфанил]фталоцианин кобальта, который получают следующим образом.
Тщательно растертую смесь (0,25 ммоль) 4-[(4'-карбокси)фенилсульфанил]фталонитрила, (0,07 ммоль) ацетата кобальта и (1 ммоль) мочевины помещают в кварцевую пробирку, нагревают до температуры 180-190°C и выдерживают при этой температуре в течение полутора часов. Плав тщательно растирают, промывают 10%-ным раствором соляной кислоты, водой до нейтральной среды и сушат. Очистку кобальтового комплекса тетра-4-[(4'-карбокси)фенилсульфанил]фталоцианина осуществляют промывкой ледяной уксусной кислотой, водой до нейтральной среды и ацетоном. Кроме того, его переосаждают из концентрированной серной кислоты.
Выход: 85%. Найдено, %: C 60,34, H 3,45, N 8,97, S 10,28. C60H32CoN 8O8S4. Вычислено, %: С 61,07, Н 2,73, N 9,49, S 10,87.
В качестве источника микроволнового излучения можно использовать микроволновую печь LG-MS-1924x, работающую на частоте 2450 МГц.
Способ реализуют следующим образом.
Образец нетканого лавсана размером 10×10 см в течение 3-15 минут подвергают действию микроволнового излучения с частотой 2450 МГц и мощностью 500-2000 Вт. Далее образец помещают в водный раствор кобальтового комплекса тетра-4-[(4'-карбокси)фенилсульфанил]фталоцианина с концентрацией 0,2-0,6 г/л на 2-4 часа при комнатной температуре. Заключительную обработку образца проводят, выдерживая его в 100 мл водного раствора NaOH при pH 8,0-8,5 в течение 40-80 минут.
Каталитическую активность катализаторов, полученных по изобретению и способу-прототипу, оценивали одинаково по величине эффективной константы скорости окисления диэтилдитиокарбамата натрия (ДТК) кислородом воздуха при pH 7,6 и 298,15 К (k эф 298). Окисление ведут при нормальном давлении в металлическом реакторе периодического действия объемом 650 мл, снабженном термометром, обратным холодильником, отводом для отбора проб и барботером для подачи воздуха со скоростью - 2 л/мин, обеспечивающей протекание процесса в кинетическом режиме. Для определения текущей концентрации диэтилдитиокарбамата натрия пробу объемом 2 мл переносят в колбу на 25 мл и добавляют 4 мл 0,02 н. CuSO4 (примерно двукратный избыток); сразу образуется густой, темно-коричневый осадок медного комплекса. Смесь перемешивают минуту. Затем к полученному раствору добавляют 5 мл хлороформа, 2-3 капли 50% уксусной кислоты и взбалтывают 1,5 минуты. Медный комплекс диэтилдитиокарбамата экстрагируют в слой хлороформа. Органический слой переносят в мерную колбу на 25 мл, а из оставшегося водного раствора комплекс экстрагируют повторно для повышения точности анализа. Собранный раствор медного комплекса доводят до метки хлороформом. Из этой колбы отбирают 2 мл раствора, переносят в другую мерную колбу на 25 мл и снова доводят до метки хлороформом. На спектрофотометре при длине волны 436 нм определяют оптическую плотность раствора и рассчитывают концентрацию ДТК на основании калибровочной прямой.
Эффективные константы скорости окисления диэтилдитиокарбамата натрия (kэф 298) на образцах гетерогенных катализаторов, полученных при различных условиях заявленного способа и по способу-прототипу, приведены в таблице.
Способ-прототип осуществляли при концентрации пероксокарбоната натрия 35 г/л, концентрации дисульфокислоты фталоцианина кобальта 4,0 г/л, при заключительной обработке раствором гидроксида натрия pH=12,5 в течение 120 мин.
Как с очевидностью следует из представленных данных, заявленный способ позволяет получать высокоактивный гетерогенный катализатор окисления серосодержащих соединений.
Таблица | |||||||
Каталитическая активность образцов, приготовленных при различных условиях | |||||||
№ | Время микроволновой обработки, мин | Мощность, Вт | Концентрация р-ра кобальтового комплекса фталоцианина, г/л | Время обработки активированного материала, час | pH р-ра NaOH при выдержке | Время выдержки, мин | kэф 298·105, с-1 |
1 | 3 | 2000 | 0,4 | 4 | 8,0 | 80 | 53±4 |
2 | 5 | 1000 | 0,4 | 4 | 8,2 | 80 | 64±4 |
3 | 8 | 500 | 0,5 | 2 | 8,4 | 40 | 91±5 |
4 | 12 | 500 | 0,2 | 2 | 8,5 | 40 | 122±5 |
5 | 12 | 1500 | 0,4 | 3 | 8,5 | 60 | 128±6 |
6 | 12 | 500 | 0,6 | 4 | 8,5 | 40 | 120±6 |
7 | 13 | 500 | 0,4 | 4 | 8,5 | 40 | 105±5 |
8 | 15 | 500 | 0,6 | 4 | 8,5 | 40 | 61±4 |
прототип | - | - | - | - | - | - | 7,0±0,5 |
Класс B01J37/34 облучение или применение электрической, магнитной или волновой энергии или применение этих видов энергии, например ультразвуковых колебаний
Класс B01J35/06 ткани или волокна
Класс B01J31/18 содержащие азот, фосфор, мышьяк или сурьму
Класс C10G27/10 в присутствии металлсодержащих органических комплексных соединений, например хелатов или катионообменных смол