композиция для производства водостойкого пористого заполнителя
Классы МПК: | C04B14/24 пористого, например вспененного стекла |
Автор(ы): | Абдрахимов Владимир Закирович (RU), Семёнычев Валерий Константинович (RU), Абдрахимова Елена Сергеевна (RU), Вдовина Елена Васильевна (RU) |
Патентообладатель(и): | Автономное муниципальное образовательное учреждение высшего профессионального образования "Самарская академия государственного и муниципального управления" (АМОУ ВПО "САГМУ") (RU) |
Приоритеты: |
подача заявки:
2011-06-29 публикация патента:
10.05.2013 |
Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Технический результат заключается в повышении прочности при сжатии за счет повышения коэффициента размягчения пористого заполнителя. Указанный технический результат достигается тем, что в композицию для получения водостойкого пористого заполнителя, включающую натриевое жидкое стекло плотностью 1,41 г/см3 и хлористого натрия, размолотого до размера менее 0,3 мм, дополнительно вводят горелые породы, содержащие мас.%: SiO2 - 38-40, Al2O3 - 16-18, Fe2O3 - 7-8, CaO - 11-13, SO 3 - 3-5, R2O - 0,5-1, п.п.п. - 16-20 при следующем соотношении компонентов, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 - 50-70, хлорид натрия, размолотый до размера менее 0,3 мм - 1-3, горелые породы - 22-49. 3 табл.
Формула изобретения
Композиция для получения водостойкого пористого заполнителя, включающая натриевое жидкое стекло плотностью 1,41 г/см3 и хлорид натрия, размолотый до размера менее 0,3 мм, отличающаяся тем, что она дополнительно содержит горелые породы с содержанием, мас.%: SiO2 38-40, Al2O3 16-18, Fe2O3 7-8, CaO 11-13, SO3 3-5, R2O 0,5-1, п.п.п. 16-20 при следующем соотношении компонентов, мас.%:
натриевое жидкое стекло плотностью 1,41 г/см3 | 50-70 |
хлорид натрия, размолотый до размера менее 0,3 мм | 1-3 |
горелые породы с содержанием глинистой составляющей | |
не менее 50% и потери при прокаливании не менее 16% | 22-49 |
Описание изобретения к патенту
Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок.
Известна композиция для получения керамзита (пористого заполнителя) состава, мас.%: отходы флотации углеобогащения - 60, модифицированное жидкое стекло - 40 /Денисов Д.Ю. Использование отходов флотации углеобогащения в производстве керамзита / Д.Ю.Денисов, И.В.Ковков, В.З.Абдрахимов // Башкирский химический журнал. - 2008. - Том 15. - № 2. - С.107-109/.
Недостатком указанного состава керамической массы являются относительно низкая прочность 1,7-1,9 МПа.
Известна композиция для получения водостойкого пористого заполнителя состава, мас.%: натриевого жидкого стекла плотностью 1,41 г/см3 - 50-75, хлорида натрия, размолотого до размера менее 0,3 мм - 1-3, отхода от углеобогащения методом флотации с содержанием глинистой составляющей не менее 71% - 22-49 /Патент № 24067008 Российская Федерация, МПК C04B 14/24. Способ получения водостойкого пористого заполнителя. /Мизюряев С.А., Иванова Н.В., Жигулина А.Ю., Мамонов А.Н.; заявитель и патентообладатель Самарский государственный архитектурно-строительный университет; заявлено 20.01.2009; опубл. 20.12.2010, БИ № 21/.
Недостатком указанного состава является относительно низкие прочность при сжатии (0,14-0,26) и коэффициент размягчения (55-92%).
Данное техническое решение принято за прототип.
Техническим результатом является повышение прочности при сжатии и коэффициента размягчения пористого заполнителя.
Указанный технический результат достигается тем, что в композицию для получения водостойкого пористого заполнителя, включающую натриевое жидкое стекло плотностью 1,41 г/см3 и хлористого натрия, размолотого до размера менее 0,3 мм, дополнительно вводят горелые породы с содержанием, мас.%: SiO2 - 38-40, Al2O3 - 16-18, Fe2O 3 - 7-8, CaO - 11-13, SO3 - 3-5, R2 O - 0,5-1, п.п.п. - 16-20 при следующем соотношении компонентов, мас.%:
натриевое жидкое стекла плотностью 1,41 г/см3 | 50-70 |
хлорид натрия, размолотый до размера менее 0,3 мм | 1-3 |
горелые породы с содержанием глинистой составляющей | |
не менее 50% и потери при прокаливании не менее 16% | 22-49 |
Горелые породы, образовавшиеся после самовозгорания горючих сланцев, использовались в качестве тонкомолотого наполнителя для получения водостойкого пористого заполнителя. Образуются горелые породы в местах добычи сланцев. Сланец, который не удалось в процессе добычи отделить от пустой породы, направляется в отвал. В терриконах при совместном хранении пустых пород и сланцев за счет повышенного количества в смешанных отвальных массах органических соединений происходит самовозгорание, которое приводит к образованию большого количество отхода - горелых пород. Горелые породы представляют собой продукт низкотемпературного обжига при самовозгорании породы (смесь глины и сланцев) в терриконах в окислительной среде. Количество горелых пород в терриконах составляет от 75 до 90% от объема отвала. Химический состав горелых пород, образовавшихся после самовозгорания горючих сланцев представлен в таблице 1.
Таблица 1 | ||||||
Химический состав горелых пород, образовавшихся после самовозгорания горючих сланцев | ||||||
SiO2 | Al2O3 | Fe2O3 | CaO | SO3 | R2O | П.п.п. |
38-40 | 16-18 | 7-8 | 11-13 | 3-5 | 0,5-1 | 16-20 |
Горелые породы, в отличие от глинистых компонентов, хотя и содержат более 50% глинистых минералов, но не обладают пластичностью и связующей способностью.
Известно, что основным условием, обеспечивающим вспучивание композиции при ее нагревании, является совмещение во времени пиропластического состояния композиции с интенсивным газовыделением внутри обжигаемого материала. Пиропластическое состояние композиции обеспечат жидкое стекло и содержание в горелых породах глинистой составляющей (не менее 50%), а газовыделение - содержание в горелых породах - органики (п.п.п., таблица 1).
Для приготовления сырьевой смеси использовались следующие компоненты:
1) товарное натриевое жидкое стекло плотностью 1,41 г/см3 (см. ГОСТ 13075-81);
2) хлористый натрий (ГОСТ 13830-97, производства ОАО «Бассоль»), размолотый до размера менее 0,3 мм;
3) в качестве тонкомолотого глиносодержащего компонента - горелые породы, содержащие 50% глинистых минералов, более 16% п.п.п. и размолотые до прохода через сито 0,14 мм.
Сведения, подтверждающие возможность осуществления изобретения. Композиции (таблица 2) для производства пористого заполнителя готовили путем тщательного перемешивания всех компонентов, аналогично технологии, представленной в прототипе. Получение смеси производилось в мешалке принудительного действия в следующем порядке. Сначала в мешалку загружались тонкомолотый глиносодержащий компонент и хлорид натрия, которые тщательно перемешивались, затем в готовую сухую смесь при включенной мешалке заливалось натриевое жидкое стекло тонкой струйкой. Перемешивание производилось до получения однородной массы, но менее 5 минут.
Таблица 2 | ||||
Составы композиции для производства пористого заполнителя | ||||
Компоненты | Содержание компонентов, мас.% | Прототип | ||
1 | 2 | 3 | ||
Натриевое жидкое стекло | 75 | 60 | 50 | 50-75 |
Хлорид натрия | 3 | 2 | 1 | 1-3 |
Тонкомолотый глиносодержащий компонент - отход от углеобогащения | - | - | - | 22-49 |
Тонкомолотый глиносодержащий компонент - горелые породы | 22 | 38 | 49 | - |
Полученная смесь системой ножей разрезалась на отдельные гранулы, которые термообрабатывались при 250-300°C в печном грануляторе, вспучиваясь при этом и образуя шарообразные высокопористые гранулы. Полученные гранулы помещались в электрическую печь, разогретую до температуры 790°C, и выдерживались там 10 минут. После изотермической выдержки гранулы охлаждались при скорости охлаждения 40°C/мин. Физико-механические показатели пористого заполнителя представлены в таблице 3.
Таблица 3 | ||||
Физико-механические показатели пористого заполнителя | ||||
Показатель | Состав | Прототип | ||
1 | 2 | 3 | ||
Прочность на сжатие, МПа | 2,00 | 2,05 | 2,12 | 0,14-0,26 |
Насыпная плотность, кг/м3 | 120 | 150 | 195 | 85-170 |
Потери при 5-минутном кипячении, % | 0,11 | 0,1 | 0,09 | 0,12-0,7 |
Коэффициент размягчения, % | 93 | 93,5 | 94 | 55-92 |
Как видно из таблицы 3, пористые заполнители из предложенных составов имеют более высокие прочность на сжатие и коэффициент размягчения, чем прототип.
Техническое решение при использовании предложенных составов позволяет повысить прочность на сжатие и коэффициент размягчения пористого заполнителя.
Использование техногенного сырья при получении пористого заполнителя способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для керамических материалов.
Класс C04B14/24 пористого, например вспененного стекла