способ получения алюмоникелевого пигмента

Классы МПК:C09C1/00 Обработка специальных неорганических материалов иных, чем волокнистые наполнители
C09C1/40 соединения алюминия 
C03C1/04 глушители стекла, например фториды и фосфаты; пигменты 
C01G53/00 Соединения никеля
Автор(ы):, , ,
Патентообладатель(и):Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" (RU)
Приоритеты:
подача заявки:
2012-01-10
публикация патента:

Изобретение может быть использовано в производстве термостойких пигментов для декорирования различных изделий из фарфора, фаянса, стекла, пластмасс. Способ получения алюмоникелевого пигмента включает приготовление исходных реакционных водных растворов, содержащих соль алюминия (III) и соль никеля (II), осаждение из раствора продукта-прекурсора, отделение от раствора, промывку водой, сушку и обжиг. В качестве реагента-осадителя используют сильноосновный гелевый анионит АВ-17-8 в гидроксидной форме. Обжиг проводят при температуре 750°С. Изобретение позволяет получить пигмент голубого цвета на основе шпинелей без использования агрессивных сред, высоких температур и давлений. 4 ил., 2 пр.

способ получения алюмоникелевого пигмента, патент № 2482143 способ получения алюмоникелевого пигмента, патент № 2482143 способ получения алюмоникелевого пигмента, патент № 2482143 способ получения алюмоникелевого пигмента, патент № 2482143

Формула изобретения

Способ получения алюмоникелевого пигмента, включающий приготовление исходных реакционных водных растворов, содержащих соль алюминия (III), осаждение из раствора продукта-прекурсора, отделение от раствора, промывку водой, сушку и обжиг, отличающийся тем, что вводят соль никеля (II), а в качестве реагента-осадителя используют сильноосновный гелевый анионит АВ-17-8 в гидроксидной форме и обжиг проводят при температуре 750°С.

Описание изобретения к патенту

Изобретение относится к керамической промышленности, в частности к производству термостойких алюмоникелевых пигментов для декорирования различных изделий из фарфора, фаянса, стекла, пластмасс.

Известен способ получения пигментов на основе алюмоаммиачных квасцов [патент РФ № 2270176, С03С 1/04, С09С 1/00, опубл. 20.02.2006 г.], который включает в себя совместное прокаливание алюмоаммиачных квасцов (источник Al2O3) и соли никеля в отношении 10:1 из расчета на оксиды алюминия и никеля при температуре 200°С - 120 мин, при 800°С - 60 мин. Окончательный обжиг проводят при температуре 1250°С в течение 60 мин. После охлаждения печи выгружают готовый пигмент.

Недостатками способа являются многостадийность и длительность процесса получения пигментов, наличие промывных вод и отходящих газов (SO2), загрязняющих окружающую среду.

Известен способ получения никелевого пигмента, использующий метод самораспространяющегося высокотемпературного синтеза в режиме объемного горения [Н.И Радищевская, А.Ю.Чапская, Н.Г.Касацкий, O.K.Лепакова и др. Синтез никельсодержащих пигментов шпинельного типа в режиме горения // Стекло и керамика, 2009, № 1]. Шихта для получения пигмента состоит из оксида алюминия Al2O3, оксида никеля, порошкообразного алюминия, порошкообразного магния. Шихту подогревают до температуры 800°С. Инициирование горения осуществляют от нихромовой спирали. Синтез проводят в режиме постоянного давления.

Недостатком данного способа является большое газовыделение в процессе синтеза пигмента, приводящее к распуханию (увеличению объема) шихты, а иногда к ее разбросу. Это приводит к снижению полноты реагирования компонентов.

Известен способ получения никелевого пигмента золь-гель методом [Cui, Н.М.Zayat, D.Levy и др. A sol-gel route using propylene oxide as a gelation agent to synthesize spherical NiAl2O4 nanoparticles // Journal of Non-Crystalline Solids. - 2005. № 351, P.2102-2106]. К смеси спиртовых растворов нитрата алюминия и никеля добавляют пропилен оксид, полученный гель выдерживают в закрытом сосуде в течение 3 часов при температуре 50°С, высушивают при 100°С - 12 часов, обжигают при температуре 800-900°С - 1 час.

Недостатком данного способа является длительность проведения синтеза, так как в основе происходящих процессов лежит переход от коллоидного раствора (золя) к коллоидному осадку (гелю). Данный переход осуществляется в большом интервале времени.

Наиболее близким техническим результатом, выбранным в качестве прототипа, является способ получения кобальтового пигмента - «синий кобальт» [Беленький Е.Ф., Рискин И.В. Химия и технология пигментов. - Л.: Химия, Госхимиздат, 1960, с.553-557].

Способ включает следующие операции: растворение сырья, обработка раствора содой, промывка осадка, его фильтрация и сушка, прокаливание полученной шихты. Сырье для получения пигмента состоит из сернокислого кобальта (18,6 вес.ч.), алюмокалиевых квасцов (100 вес.ч.), сернокислого цинка (1,2 вес.ч) и фосфорнокислого натрия (4,2 вес.ч). В реактор, заполненный примерно наполовину горячей водой (80-90°С), загружают сырье. Раствор нагревают и размешивают до полного растворения солей, а затем медленно, во избежание вспенивания, добавляют соду в виде 20-25% раствора, нагретого до 70-80°С. После добавки соды массу разбавляют водой и кипятят, в результате чего осадок свертывается и быстро осаждается. Общее количество воды должно быть примерно 5-кратным по отношению к весу всех загруженных солей, включая соду. Полученный осадок после осаждения содержит примеси сернокислых солей. Для удаления этих солей (особенно водорастворимых) осадок необходимо промыть горячей водой. После промывки осадок фильтруют, сушат и прокаливают при температуре 1200-1300°С.

К недостаткам способа можно отнести значительный расход воды на промывку продукта от катионов натрия, которые мешают образованию пигмента, а также расход электроэнергии.

Технический результат заявляемого изобретения состоит в разработке ионообменного способа получения пигментов на основе шпинелей, являющегося достаточно простым, не предполагающего применения агрессивных сред, высоких температур и давлений.

Технический результат достигается тем, что в способе получения алюмоникелевого пигмента, включающем приготовление исходных реакционных водных растворов, содержащих соль алюминия (III), осаждение из раствора продукта-прекурсора, отделение от раствора, промывку водой, сушку и обжиг, новым является то, что вместо соли кобальта (II) вводят соль никеля (II), в качестве реагента-осадителя используют сильноосновный гелевый анионит АВ-17-8 в гидроксидной форме и обжиг проводят при температуре 750°С.

Изобретение поясняется чертежами. На фиг.1 представлен ИК-спектр образца, полученного с использованием анионита АВ-17-8 в ОН-форме. На фиг.2 показаны рентгеновские спектры прекурсора, полученного с помощью анионита АВ-17-8 из нитратных растворов никеля (II) и алюминия (III), при различных температурах прокаливания. На фиг.3 представлена микрофотография продукта, полученного при температуре прокаливания 750°С. На фиг.4 представлен спектр диффузного отражения пигмента.

Сопоставительный анализ с прототипом показал, что заявляемый способ отличается тем, что вместо соли кобальта (II) вводят соль никеля (II) и в качестве реагента-осадителя используют анионит в гидроксидной форме, и, в связи с этим, полученный продукт не загрязняется катионами осадителя (натрия).

Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемый способ от прототипа, не выявлены в других технических решениях при изучении данной и смежных областей химии и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательный уровень».

Наибольшую практическую ценность имеют пигменты на основе шпинелей, которые, благодаря особенностям кристаллической структуры (плотная упаковка атомов), отличаются устойчивостью к действию высоких температур и химических реагентов. Необходимость создания настоящего изобретения обусловлена тем, что образование шпинелей из гидроксидов никеля и алюминия (совместное их осаждение) протекает гораздо легче и при более низкой температуре, чем при использовании в качестве прекурсоров оксидных систем. Это объясняется более значительной степенью смешения исходных фаз при совместном осаждение катионов, чем при механическом перемешивании исходных веществ. Важной задачей является также обеспечение нужной чистоты прекурсоров.

При создании заявленного изобретения были использованы гелевые и пористые, слабоосновные и сильноосновные аниониты в ОН-форме. Полученные данные свидетельствуют, что использование пористых (слабоосновных и сильноосновных), а также гелевых слабоосновных анионитов нецелесообразно, так как значительная доля осадка (более 50%) удерживается анионитом вследствие его осаждения в виде гидроксида никеля (II) в порах сорбента или комплексообразования ионов никеля (II) с азотом функциональных групп. Поэтому выбор сильноосновного анионита АВ-17-8, содержащего в качестве функциональных групп остатки четвертичных аммониевых оснований, является предпочтительным.

Способ получения алюмоникелевого пигмента осуществляют следующим образом.

Переводят анионит АВ-17-8 (сильноосновной анионит с полистирольной матрицей, содержащий остатки четвертичных аммониевых оснований - N+(CH3)3 (ГОСТ 20301-74)) в ОН-форму. Осуществляют контакт анионита с раствором солей никеля (II) и алюминия (III), отделение и промывку осадка, прокаливание и регенерацию анионита.

Перевод анионита в ОН-форму проводят, заливая исходный АВ-17-8 в хлоридной форме 1М раствором NaOH (т:ж=1:3), затем 2 М раствором NaOH 5-6 раз, выдерживая каждую порцию в течение часа (последнюю порцию в течение суток). После чего анионит промывают дистиллированной водой до отрицательной реакции на хлорид-ион. Полученный анионит высушивают при температуре около 60°С.

Массу анионита, необходимую для синтеза, рассчитывают по формуле

способ получения алюмоникелевого пигмента, патент № 2482143

где CNiAn, CAlAn - концентрация исходных растворов никеля и алюминия, М; V NiAn, VAlAn - объем раствора никеля и алюминия, мл; СО - статическая обменная емкость анионита в ОН-форме, ммоль-экв.·г -1.

Рассчитанное количество анионита приводят в контакт с раствором, содержащим смесь солей 0,3 М никеля (II) и 0,3 М алюминия (III), при комнатной температуре и перемешивают на шейкере (120 мин-1) в течение 3 часов. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка используют центрифугирование. Осадок после промывания водой сушат при температуре 110°С (прекурсор).

Полученный прекурсор был рентгеноаморфен. На фиг.1 представлен типичный ИК-спектр прекурсора. Наблюдаемые пики при 500-650 см-1 говорят о наличии в полученном продукте октаэдрически координированного алюминия [AlO6]. Такие линии характерны для шпинелей NiAl2O4. В ИК-спектре образца, полученного из нитратных растворов, отсутствует полоса поглощения при 1385 см-1, характерная для NO 3-группы. Это свидетельствует об отсутствии в полученном образце примесных анионов.

Прекурсор подвергали температурной обработке при 250, 400, 600, 750 и 900°С.

На фиг.2 представлены рентгеновские спектры полученных продуктов при различных температурах прокаливания. Линии шпинели NiAl2O4 появились только после прокаливания при температурах 750°С и 900°С (дифракционные пики <2,41>, <2>, <1,407>). При обжиге при 750°С окраска продукта становится голубой и не изменяется при повышении температуры прокаливания до 900°С.

Из анализа рентгенограмм можно сделать вывод о том, что в продуктах, полученных с использованием анионита в качестве реагента-осадителя, образование алюмошпинелей никеля происходит при более низких температурах, чем описано в прототипе (1200-1300°С).

Цветовые характеристики пигмента были рассчитаны по специальной программе из спектра диффузного отражения, приведенного на фиг.4, в системе CIE LAB (источник D65 с цветовой температурой 6500 К, стандарт CIE 1965 г., ГОСТ 7721-89).

Пример 1. Получение пигментов на основе шпинелей из нитратных растворов никеля и алюминия. К смеси 0,3 М растворов Ni(NO3)2 (17 мл) и 0,3 М Al(NO3)3 (34 мл) добавляют 24 г анионита АВ-17-8 в ОН-форме. Систему перемешивают в течение 3 ч на шейкере при температуре (20±0,2)°С, затем фазы разделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка используют центрифугирование. Осадок, после промывания водой, сушат при температуре 110°С и обжигают при температуре 750°С. Цвет полученного пигмента - голубой.

Из данных электронной микрофотографии полученного пигмента следует, что частицы агломерированы в агрегаты округлой формы размером 0,3-0,5 мкм.

Координаты цветового пространства полученного пигмента: L*=52,48; а*=-7, 37; b*=-16,18.

Пример 2. Получение пигментов на основе шпинелей из сульфатных растворов никеля и алюминия. К смеси 0,3 М растворов NiSO4 (17 мл) и 0,3 М Al2SO4 (34 мл) добавляют 24 г анионита АВ-17-8 в ОН-форме. Систему перемешивают в течение 3 ч на шейкере при температуре (20±0,2)°С, затем фазы разделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка используют центрифугирование. Осадок, после промывания водой, сушат при температуре 110°С и обжигают при температуре 750°С. Цвет полученного пигмента - голубой.

Из данных электронной микрофотографии полученного пигмента следует, что частицы игольчатой формы объединены в агрегаты округлой формы размером около 370-400 нм.

Координаты цветового пространства полученного пигмента: L*=72,123; а*=-19,528; b*=-8,969.

Преимущества предлагаемого способа заключаются в том, что он достаточно прост, не предполагает применения агрессивных сред, высоких температур и давлений. Используя данное техническое решение, можно добиться получения продукта, не содержащего катионов (натрия), что освобождает в дальнейшем от необходимости длительной промывки полученного осадка, а также снижения температуры при его обжиге. Кроме того, предложенный анионообменный метод синтеза пигмента приводит к образованию высокодисперсного продукта, что улучшает его качество.

Класс C09C1/00 Обработка специальных неорганических материалов иных, чем волокнистые наполнители

композиция покрытия, включающая субмикронный карбонат кальция -  патент 2529464 (27.09.2014)
способ функционализации углеродных наноматериалов -  патент 2529217 (27.09.2014)
новый желтый неорганический пигмент из самария и соединений молибдена и способ его получения -  патент 2528668 (20.09.2014)
способ получения уплотненного материала с обработанной поверхностью, пригодного для обработки на одношнековом оборудовании обработки пластмасс -  патент 2528255 (10.09.2014)
пигмент на основе модифицированного порошка диоксида титана -  патент 2527262 (27.08.2014)
способ улучшения непрозрачности -  патент 2527219 (27.08.2014)
способ получения тонкодисперсного аморфного микрокремнезема -  патент 2526454 (20.08.2014)
способ получения магнетита -  патент 2524609 (27.07.2014)
чешуйка для применений в скрытой защите -  патент 2523474 (20.07.2014)
способ получения содержащих двуокись кремния полиольных дисперсий и их применение для получения полиуретановых материалов -  патент 2522593 (20.07.2014)

Класс C09C1/40 соединения алюминия 

способ получения противокоррозионного пигмента -  патент 2505571 (27.01.2014)
способ получения керамического алюмокобальтоксидного пигмента на основе наноразмерного мезопористого синтетического ксонотлита -  патент 2493185 (20.09.2013)
способ получения синего алюмокобальтового пигмента -  патент 2484025 (10.06.2013)
способ получения синего кобальт-алюминиевого пигмента -  патент 2471834 (10.01.2013)
карбонат-гидроксодиалюминаты кальция с габитусом кристаллов в виде гексагональных пластинок -  патент 2448047 (20.04.2012)
пигменты и полимерные композиционные материалы, содержащие их -  патент 2397189 (20.08.2010)
пигментная композиция в форме водной суспензии -  патент 2392223 (20.06.2010)
частицы основной соли алюминия, содержащей анион органической кислоты, способ их получения и их применение -  патент 2360900 (10.07.2009)
антикоррозионный пигмент -  патент 2287544 (20.11.2006)
способ получения пигмента для изготовления бумаги и картона -  патент 2283393 (10.09.2006)

Класс C03C1/04 глушители стекла, например фториды и фосфаты; пигменты 

Класс C01G53/00 Соединения никеля

способ получения миллерита с использованием сульфатредуцирующих бактерий -  патент 2528777 (20.09.2014)
лакунарный гетерополианион структуры кеггина на основе вольфрама для гидрокрекинга -  патент 2509729 (20.03.2014)
способ получения ультрамикродисперсного порошка оксида никеля на переменном токе -  патент 2503748 (10.01.2014)
сложный ванадат марганца и никеля и способ его получения -  патент 2471712 (10.01.2013)
однородные наночастицы никеля, покрытые оболочкой, и способ их получения -  патент 2466098 (10.11.2012)
способ получения гидроксида никеля (ii) -  патент 2463254 (10.10.2012)
способ получения гетероядерных ацетатов палладия с цветными металлами -  патент 2458039 (10.08.2012)
способ получения нанодисперсного титаната никеля -  патент 2457182 (27.07.2012)
способ получения композиционного niо/c материала -  патент 2449426 (27.04.2012)
устройство и способ получения соединений путем осаждения -  патент 2437700 (27.12.2011)
Наверх