функционализованные диеновые каучуки с высоким содержанием виниловых групп
Классы МПК: | C08L19/00 Композиции каучуков, не отнесенные к группам 7/00 C08L13/00 Композиции каучуков, содержащих карбоксильные группы C08K3/00 Использование неорганических компонентов |
Автор(ы): | ШТАЙНХАУЗЕР Норберт (DE), ГРОСС Томас (DE), ЛУКАССЕН Алекс (DE) |
Патентообладатель(и): | ЛЕНКCЕСС Дойчланд ГмбХ (DE) |
Приоритеты: |
подача заявки:
2008-09-04 публикация патента:
27.08.2013 |
Изобретение относится к резиновым смесям для изготовления высоконаполненных формованных изделий, предпочтительно шин. Резиновая смесь содержит, по меньшей мере, один каучук и от 10 до 500 масс.ч. наполнителя в пересчете на 100 масс.ч. каучука. Каучук получен полимеризацией одного или нескольких диенов в растворе с последующим введением функциональных групп, таких как карбоксильные или гидроксильные группы или их соли, в присутствии радикальных инициаторов, и содержит от 0,02 до 3 мас.% присоединенных карбоксильных или гидроксильных групп, или их солей. Содержание присоединенных в 1,2-положении диенов, то есть содержание виниловых групп, составляет от >70 до 95 мас.% в пересчете на используемый растворный каучук. Описан также способ получения резиновой смеси. Резиновая смесь может быть использована для изготовления шин и других формованных изделий. Технический результат - высокая эластичность по отскоку при 70°С, низкое значение тангенса угла динамических потерь при температурах 60 и 80°С и низкое значение максимума tan в диапазоне амплитуд вулканизатов из таких резиновых смесей. 5 н. и 3 з.п. ф-лы, 2 табл., 5 пр.
Формула изобретения
1. Резиновая смесь для изготовления высоконаполненных формованных изделий, предпочтительно шин, содержащая по меньшей мере один каучук и от 10 до 500 мас.ч. наполнителя в пересчете на 100 мас.ч. каучука, причем каучук получен полимеризацией одного или нескольких диенов в растворе и последующим введением функциональных групп, таких как карбоксильные или гидроксильные группы, или их соли, в присутствии радикальных инициаторов, и содержит от 0,02 до 3 мас.% присоединенных карбоксильных или гидроксильных групп или их солей, и, причем, содержание присоединенных в 1,2-положении диенов (содержание виниловых групп) составляет от >70 до 95 мас.% в пересчете на используемый растворный каучук.
2. Резиновая смесь по п.1, отличающаяся тем, что она содержит дополнительные добавки к каучукам.
3. Резиновая смесь по п.2, отличающаяся тем, что диеном является 1,3-бутадиен.
4. Резиновая смесь по п.1 или 2, отличающаяся тем, что она содержит несколько разных наполнителей.
5. Способ получения резиновой смеси по п.1, отличающийся тем, что полимеризацию диенов в каучук осуществляют в растворе, затем в присутствии радикальных инициаторов вводят в полученный растворный каучук функциональные карбоксильные, или гидроксильные группы, или их соли, удаляют растворитель посредством горячей воды и/или водяного пара при температуре от 50 до 200°С, при необходимости, под вакуумом и далее добавляют наполнитель и, при необходимости, технологическое масло.
6. Применение резиновой смеси по пп.1-4 для изготовления высоконаполненных резиновых формованных изделий, прежде всего шин.
7. Резиновые формованные изделия, получаемые из резиновой смеси по п.1.
8. Шины, получаемые из резиновой смеси по п.1.
Описание изобретения к патенту
Настоящее изобретение относится к резиновым смесям, содержащим функционализованные диеновые каучуки с высоким содержанием виниловых групп, получению указанных резиновых смесей и их применению для изготовления резин, прежде всего предназначенных для изготовления высоконаполненных резиновых формованных изделий, особенно предпочтительно шин, которые обладают особенно низким сопротивлением качению, особенно высоким показателем устойчивости при движении по мокрой дороге и высоким сопротивлением истиранию.
Одной из важных характеристик, которыми должны обладать шины, является повышенное сцепление с сухим и мокрым дорожным покрытием. Однако повышение показателя устойчивости шин против заноса без одновременного повышения их сопротивления качению и сопротивления истиранию представляет собой весьма сложную задачу. Низкое сопротивление шин качению способствует снижению расхода топлива, в то время как высокое сопротивление истиранию является решающим фактором для увеличения долговечности шин.
Показатель устойчивости шин при движении по мокрой дороге, а также их сопротивление качению и сопротивление истиранию в значительной степени определяются динамико-механическими характеристиками используемых для их изготовления каучуков. С целью снижения сопротивления качению для изготовления протекторов используют каучуки, характеризующиеся высокой эластичностью по отскоку. В то же время для повышения показателя устойчивости при движении по мокрой дороге предпочтительным является использование каучуков с высоким коэффициентом демпфирования. С целью обеспечения баланса между указанными противоречащими друг другу динамико-механическими параметрами для изготовления протекторов обычно используют смеси, состоящие из разных каучуков. Подобные смеси обычно содержат один или несколько каучуков с относительно высокой температурой стеклования, таких как бутадиен-стирольный каучук, и один или несколько каучуков с относительно низкой температурой стеклования, таких как полибутадиен с низким содержанием виниловых групп.
Для изготовления протекторов с низким сопротивлением качению более предпочтительным является использование содержащих двойные связи каучуков, которые получают анионной полимеризацией в растворе, таких как соответствующие бутадиеновые и бутадиен-стирольные каучуки, нежели использование аналогичных эмульсионных каучуков. К преимуществам получаемых полимеризацией в растворе каучуков (в дальнейшем называемых растворными каучуками) относится, в частности, возможность регулирования количества присутствующих в них виниловых групп, а, следовательно, их температуры стеклования и степени разветвления. Следствием этого являются особые преимущества, которыми обладают изготавливаемые из растворных каучуков шины в отношении устойчивости против заноса при движении по мокрой дороге и сопротивления качения. Так, например, в патенте США US-PS 5227425 описано изготовление протекторов из растворного бутадиен-стирольного каучука и кремниевой кислоты. С целью дополнительной оптимизации свойств каучуков было разработано множество методов их модифицирования путем введения концевых групп, в частности, модифицирования диметиламинопропилакри-ламидом (европейская заявка на патент ЕР-А 334042) или силиловыми эфирами (европейская заявка на патент ЕР-А 447066). Однако вследствие высокой молекулярной массы каучуков концевые группы присутствуют в них в низкой концентрации, а, следовательно, могут оказывать лишь незначительное влияние на взаимодействие между наполнителем и макромолекулами каучука. Из европейской заявки на патент ЕР-А 1000971 известны содержащие карбоксильные группы сополимеры винилароматических мономеров с диенами, которые обладают высокой степенью функционализации и содержат до 60% присоединенного в положение 1,2-диена (виниловых групп). Сополимеры диена с функционализованными/винилароматическими мономерами описаны в патенте США US 2005/0256284 А1. К недостаткам подобных сополимеров относится трудоемкость синтеза исходных функционализованных винилароматических мономеров, а также ограниченная возможность выбора функциональных групп, поскольку пригодными являются лишь те из них, которые в процессе анионной полимеризации не вступают во взаимодействие с инициатором. При этом прежде всего отсутствует возможность использования функциональных групп, которые содержат атомы водорода, а, следовательно, могут образовывать водородные связи и благодаря этому способствовать особенно предпочтительным взаимодействиям с кремнекислотным наполнителем резиновой смеси.
Способ получения содержащих гидроксильные и карбоксильные группы растворных диеновых каучуков, содержание присоединенного в 1,2-положении бутадиена (содержание виниловых групп) в которых составляет от 30 до 60%, описан в немецкой заявке на патент DE-OS 2653144. Резиновые смеси, состоящие из содержащих гидроксильные и карбоксильные группы диеновых каучуков с температурой стеклования в интервале от -110 до -50°С, описаны в немецких патентах DE 19920894 А1 и DE 19920788 А1. Однако в указанных документах отсутствуют сведения об использовании диеновых каучуков с высоким содержанием виниловых групп, соответственно с температурой стеклования выше -50°С.
Об использовании нефункционализованных диеновых каучуков с высоким содержанием виниловых групп ( 65%) для производства шин сообщается, в частности, в патенте США US 5534592, а также в европейских заявках на патент ЕР 796893 А1 и ЕР 903373 А1. Так, например, предлагаемая в ЕР 796893 А1 замена растворного бутадиен-стирольного каучука диеновым каучуком с высоким содержанием виниловых групп при неизменном сопротивлении качению и повышении сопротивления истиранию приводит к улучшению устойчивости против заноса при движении по мокрой дороге.
Исходя из вышеизложенного в основу настоящего изобретения была положена задача предложить резиновые смеси, которые не обладают присущими уровню техники недостатками.
Было обнаружено, что использование функционализованных с помощью гидроксильных и карбоксильных групп диеновых каучуков с высоким содержанием виниловых групп (свыше 70%) позволяет изготавливать шины, которые характеризуются пониженным сопротивлением качению, повышенным сопротивлением истиранию и повышенным показателем устойчивости против заноса при движении по мокрой дороге.
Таким образом, объектом настоящего изобретение являются резиновые смеси, содержащие по меньшей мере один каучук и от 10 до 500 масс.ч. наполнителя в пересчете на 100 масс.ч. каучука, причем каучук получен полимеризацией одного или нескольких диенов в растворе и последующим введением функциональных групп, и содержит от 0,02 до 3% масс., предпочтительно от 0,05 до 2% масс. присоединенных функциональных групп или их солей, и причем содержание присоединенных в 1,2-положении диенов (виниловых групп) составляет от 70 до 95% масс., предпочтительно от 70 до 85% масс., соответственно в пересчете на используемый растворный каучук.
Температуре стеклования предлагаемых в изобретении каучуков предпочтительно соответствует область выше -50°С.
Согласно изобретению в качестве диенов для полимеризации используют 1,3-бутадиен, изопрен, 1,3-пентадиен, 2,3-диметилбутадиен, 1-фенил-1,3-бутадиен и/или 1,3-гексадиен. Особенно предпочтительно используют 1,3-бутадиен и/или изопрен, еще более предпочтительно 1,3-бутадиен.
Согласно изобретению среднечисленная молекулярная масса подлежащих использованию в резиновых смесях каучуков на основе диенов, содержащих от 0,02 до 3% масс.присоединенных функциональных групп, преимущественно составляет от 50000 до 2000000 г/моль, предпочтительно от 100000 до 1000000 г/моль, их температура стеклования находится в интервале от -50 до -5°С, предпочтительно от -45 до -10°С, и вязкость по Муни ML 1+4 (100°С) в интервале от 10 до 200, предпочтительно от 30 до 150.
В качестве функциональных групп и/или их солей предлагаемые в изобретении каучуки содержат карбоксильные группы, гидроксильные группы, аминогруппы, группы сложных эфиров карбоновой кислоты, группы амидов карбоновой кислоты или сульфокислотные группы. Предпочтительными являются карбоксильные или гидроксильные функциональные группы. Предпочтительными солями являются карбоксилаты щелочных металлов, карбоксилаты щелочноземельных металлов, карбоксилаты цинка и карбоксилаты аммония, а также сульфонаты щелочных металлов, сульфонаты щелочноземельных металлов, сульфонаты цинка и сульфонаты аммония.
При этом предлагаемые в изобретении каучуки предпочтительно получают полимеризацией диенов в растворе и последующим введением функциональных групп.
Объектом настоящего изобретение является также способ получения предлагаемых в изобретении каучуков, в соответствии с которым осуществляют полимеризацию диенов в растворе, введение в полученный растворный каучук функциональных групп или их солей, удаление растворителя посредством горячей воды и/или водяного пара при температуре от 50 до 200°С при необходимости под вакуумом и последующее добавление наполнителя и при необходимости технологического масла.
В другом варианте осуществления предлагаемого в изобретении способа диены полимеризуют в растворе, в полученный растворный каучук вводят функциональные группы или их соли, и содержащий растворитель каучук смешивают с технологическим маслом, причем в процессе смешивания или по его завершении посредством горячей воды и/или водяного пара при температуре от 50 до 200°С при необходимости под вакуумом удаляют растворитель и после этого добавляют наполнитель.
В другом варианте осуществления предлагаемого в изобретении способа наполнитель и технологическое масло добавляют после введения в каучук функциональных групп.
Предлагаемые в изобретении каучуки, предназначенные для изготовления предлагаемых в изобретении резиновых смесей, предпочтительно получают путем анионной полимеризации в растворе или полимеризации в присутствии координационных катализаторов. Под соответствующими координационными катализаторами подразумевают катализаторы Циглера-Натта или монометаллические каталитические системы. К предпочтительным координационным катализаторам относятся катализаторы на основе Ni, Co, Ti, Nd, V, Cr или Fe.
Согласно изобретению инициаторами растворной анионной полимеризации являются соединения на основе щелочных или щелочноземельных металлов, например, такие как н-бутиллитий. Дополнительно можно использовать также известные агенты для регулирования микроструктуры полимерных цепей, например, такие как трет-бутоксиэтоксиэтан. Методы подобной растворной полимеризации известны и описаны, например, в I. Franta Elastomers and Rubber Compounding Materials, издательство Elsevier, 1989, cc.113-131, Houben-Weyl, Methoden der Organischen Chemie, издетельство Thieme, Штуттгарт, 1961, том XIV/1, cc.645-673, том E 20 (1987), cc.114-134 и 134-153, а также в Comprehensive Polymer Science, том 4, часть II (издательство Pergamon Press Ltd., Оксфорд, 1989), cc.53-108.
При этом в качестве растворителя предпочтительно используют инертные апротонные растворители, например, такие как парафиновые углеводороды, в частности изомеры пентана, гексана, гептана, октана или декана, циклопентан, циклогексан, метилциклогексан, этилциклогексан или 1,4-диметилциклогексан, а также ароматические углеводороды, такие как бензол, толуол, этилбензол, ксилол, диэтилбензол или пропилбензол. Указанные растворители можно использовать по отдельности или в виде смесей. Предпочтительными растворителями являются циклогексан и н-гексан. Указанные предпочтительные растворители можно смешивать также с полярными растворителями.
Количество растворителя, используемого для осуществления предлагаемого в изобретении способа, обычно составляет от 1000 до 100 г, предпочтительно от 700 до 200 г в пересчете на 100 г общего количества используемых мономеров. Однако используемые мономеры можно также подвергать полимеризации в отсутствие растворителей.
Температуру полимеризации можно варьировать в широких пределах, причем в общем случае она находится в интервале от 0 до 200°С, предпочтительно от 40 до 130°С. Время полимеризации также варьируют в широких пределах (от нескольких минут до нескольких часов). Полимеризацию обычно осуществляют в течение промежутка времени, составляющего примерно от 30 минут до 8 часов, предпочтительно от 1 до 4 часов. Полимеризацию можно осуществлять как при нормальном, так и при повышенном давлении (от 1 до 10 бар).
Согласно изобретению функциональные группы вводят известными из уровня техники одноступенчатыми или многоступенчатыми методами, предусматривающими присоединение соответствующих функционали-зующих реагентов к двойным связям каучука или отщепление аллильных атомов водорода и последующее взаимодействие с функционализующими реагентами.
Карбоксильные группы можно вводить в каучук разными методами. Так, например, карбоксильные группы могут быть введены путем добавления к металлированным растворным каучукам карбоксилирующих соединений, например, таких как диоксид углерода, путем известного из уровня техники гидрокарбоксилирования, катализируемого переходными металлами, или путем обработки каучука содержащими карбоксильные группы соединениями, например, содержащими карбоксильные группы меркаптанами.
Содержание карбоксильных групп определяют известными методами, например, такими как титрование свободной кислоты, спектроскопия или элементарный анализ.
Введение карбоксильных групп в каучук предпочтительно осуществляют по завершении полимеризации исходных мономеров путем взаимодействия продуктов полимеризации в растворе при необходимости в присутствии радикальных инициаторов с карбоксилмеркаптанами формулы:
HS-R1-COOX, или соответственно (HS-R1-COO) 2X,
в которой
R1 означает неразветвленную, разветвленную или циклическую алкиленовую или алкениленовую группу с 1-36 атомами углерода, которая при необходимости может содержать в качестве заместителей до трех других карбоксильных групп или может быть прервана атомами азота, кислорода или серы, или означает арильную группу, и
Х означает водород, ион металла, например, такого как литий, натрий, калий, магний, цинк или кальций, или ион аммония, при необходимости замещенный алкильной, алкенильной, циклоалкильной или арильной группой с 1-36 атомами углерода.
К предпочтительным карбоксилмеркаптанам относятся тиогликолевая кислота, 2-меркаптопропионовая кислота (тиомолочная кислота), 3-меркаптопропионовая кислота, 4-меркаптомасляная кислота, меркаптогексановая кислота, меркаптооктановая кислота, меркаптодекановая кислота, меркаптоундекановая кислота, меркаптододекановая кислота, меркаптооктадекановая кислота и 2-меркаптоянтарная кислота, а также соли указанных кислот со щелочными металлами, щелочноземельными металлами, цинком или аммонием. Особенно предпочтительно используют 2-меркаптопропионовую кислоту, 3-меркаптопропионовую кислоту, меркаптомасляную кислоту и 2-меркаптоянтарную кислоту, а также соответствующие соли лития, натрия, калия, магния, кальция, цинка или аммония. Еще более предпочтительно используют 3-меркаптопропионовую кислоту, а также соответствующие соли лития, натрия, калия, магния, кальция, цинка, аммония, этиламмония, диэтиламмония, триэтиламмония, стеариламмония или циклогексиламмония.
Взаимодействие карбоксилмеркаптанов с полученным растворной полимеризацией каучуком в общем случае осуществляют в растворителе, например, в углеводородах, таких как пентан, гексан, циклогексан, бензол и/или толуол, при температуре от 40 до 150°С в присутствии радикальных инициаторов, например, пероксидов, прежде всего ацилпероксидов, таких как дилаурилпероксид и дибензоилпероксид, или кетальпероксидов, таких как 1,1-бис(трет-бутилперокси)-3,3,5-триметилциклогексан, а также азо-инициаторов, таких как азобисизобутиронитрил, бензпинаколсилильных эфиров или фотоинициаторов с одновременным облучением видимым светом или ультрафиолетом.
Количество подлежащих использованию карбоксилмеркаптанов зависит от заданного содержания присоединенных карбоксильных групп или их солей в подлежащем использованию в резиновых смесях растворном каучуке.
Группы карбоновой кислоты, находящиеся в солевой форме, могут быть получены также путем нейтрализации уже введенных в каучук групп карбоновой кислоты.
Гидроксильные группы можно вводить в каучук, например, путем последовательного осуществления следующих операций: эпоксидирование растворного каучука, раскрытие цикла эпоксидных групп, гидрофобизация растворного каучука и его смешивание со щелочным раствором пероксида водорода, или путем обработки каучука содержащими гидроксильные группы соединениями, например, содержащими гидроксильные группы меркаптанами.
Введение гидроксильных групп в каучук предпочтительно осуществляют по завершении полимеризации исходных мономеров путем взаимодействия продуктов полимеризации в растворе при необходимости в присутствии радикальных инициаторов с гидроксилмеркаптанами формулы:
HS-R2-OH,
в которой
R2 означает неразветвленную, разветвленную или циклическую алкиленовую или алкениленовую группу с 1-36 атомами углерода, которая при необходимости может содержать в качестве заместителей до трех других гидроксильных групп, может быть прервана атомами азота, кислорода или серы или может содержать арильные заместители, или означает арильную группу.
К предпочтительным гидроксилмеркаптанам относятся тиоэтанол, 2-меркаптопропанол, 3-меркаптопропанол, 4-меркаптобутанол, 6-меркапто-гексанол, меркаптооктанол, меркаптодеканол, меркаптододеканол, меркаптогексадеканол и меркаптооктадеканол. Особенно предпочтительными гидроксилмеркаптанами являются меркаптоэтанол, 2-меркаптопропанол, 3-меркаптопропанол и меркаптобутанол.
Взаимодействие гидроксилмеркаптанов с растворным каучуком в растворителе в общем случае осуществляют аналогично указанному выше взаимодействию растворного каучука с карбоксилмеркаптанами.
Аналогичным образом в каучук могут быть введены группы сложных эфиров карбоновой кислоты и аминогруппы, причем в качестве реагентов используют сложные эфиры меркаптокарбоновой кислоты, соответственно меркаптоамины общих формул:
HS-R 3-COOR4, или соответственно HS-R3 -NR5R6,
в которых
R3 означает неразветвленную, разветвленную или циклическую алкиленовую или алкениленовую группу с 1-36 атомами углерода, которая при необходимости может содержать в качестве заместителей до трех других групп сложных эфиров карбоновой кислоты или аминогрупп или может быть прервана атомами азота, кислорода или серы, или означает арильную группу,
R4 означает неразветвленную, разветвленную или циклическую алкильную или алкенильную группу с 1-36 атомами углерода, которая при необходимости может быть прервана атомами азота, кислорода или серы, или означает фенильную группу, которая может содержать до пяти алкильных или ароматических заместителей,
R5, R 6 соответственно означают водород или неразветвленную, разветвленную или циклическую алкильную или алкенильную группу с 1-36 атомами углерода, которая при необходимости может быть прервана атомами азота, кислорода или серы, или соответственно означают фенильную группу, которая может содержать до пяти алкильных или ароматических заместителей.
В качестве наполнителей в предлагаемые в изобретении резиновые смеси можно вводить любые используемые в производстве каучуков наполнители. Речь при этом идет как об активных, так и о неактивных наполнителях.
Пригодными являются, например, следующие наполнители.
- Высокодисперсные кремниевые кислоты, получаемые, например, путем осаждения из растворов силикатов или гидролиза галогенидов кремния в пламени и обладающие удельной поверхностью от 5 до 1000 м2/г, предпочтительно от 20 до 400 м2 /г (определение методом БЭТ), и размером первичных частиц, находящимся в интервале от 10 до 400 нм. Кремниевые кислоты при необходимости могут находиться также в виде смешанных оксидов с другими оксидами металлов, такими как оксид алюминия, оксид магния, оксид кальция, оксид бария, оксид цинка, оксид циркония или оксид титана.
- Синтетические силикаты, такие как силикат алюминия или силикат щелочноземельного металла, например, силикат магния или силикат кальция, удельная поверхность которых, определенная методом БЭТ, находится в интервале от 20 до 400 м2 /г и диаметр первичных частиц составляет от 10 до 400 нм.
- Природные силикаты, такие как каолин или другие природные кремниевые кислоты.
- Стеклянные волокна и изделия из стеклянных волокон (холсты, жгуты) или стеклянные микросферы.
- Оксиды металлов, такие как оксид цинка, оксид кальция, оксид магния или оксид алюминия.
- Карбонаты металлов, такие как карбонат магния, карбонат кальция или карбонат цинка.
- Гидроксиды металлов, например, такие как гидроксид алюминия или гидроксид магния.
- Сажи, в качестве которых пригодны ламповая сажа, канальная сажа, печная сажа, газовая сажа, термическая сажа или получаемая электродуговым методом ацетиленовая сажа, которые обладают измеряемой методом БЭТ удельной поверхностью в интервале от 9 до 200 м2/г, например, сажи марок SAF, ISAF-LS, ISAF-HM, ISAF-LM, ISAF-HS, CF, SCF, HAF-LS, HAF, HAF-HS, FF-HS, SRF, XCF, FEF-LS, FEF, FEF-HS, GPF-HS, GPF, APF, SRF-LS, SRF-LM, SRF-HS, SRF-HM и МТ, соответственно сажи N110, N219, N220, N231, N234, N242, N294, N326, N327, N330, N332, N339, N347, N351, N356, N358, N375, N472, N539, N550, N568, N650, N660, N754, N762, N765, N774, N787 и N 990 согласно стандарту ASTM.
- Гели каучуков, прежде всего гели на основе полибутадиена, сополимеров бутадиена со стиролом, сополимеров бутадиена с акрилонитрилом или полихлоропрена.
В качестве наполнителей предпочтительно используют высокодисперсные кремниевые кислоты и/или сажи.
Указанные наполнители можно использовать по отдельности или в виде смеси. В особенно предпочтительном варианте осуществления изобретения резиновые смеси в качестве наполнителя содержат смесь светлых наполнителей, таких как высокодисперсные кремниевые кислоты, с сажами, причем отношение светлых наполнителей к сажам в подобной смеси составляет от 0,05:1 до 20:1, предпочтительно от 0,1:1 до 15:1.
Наполнители используют в количестве от 10 до 500 масс.ч. в пересчете на 100 масс.ч. каучука. Предпочтительное количество используемых наполнителей составляет от 20 до 200 масс.ч.
Помимо указанных выше функционализованных растворных каучуков предлагаемые в изобретении резиновые смеси могут содержать также другие каучуки, такие как натуральный каучук или синтетические каучуки иного типа. Количество других каучуков в пересчете на общее количество содержащихся в резиновой смеси каучуков обычно составляет от 0,5 до 85% масс., предпочтительно от 10 до 70% масс. Количество дополнительно используемых каучуков зависит от назначения предлагаемых в изобретении резиновых смесей.
К дополнительным каучукам относятся, например, натуральный каучук, а также синтетический каучук.
Ниже приведены примеры некоторых известных из литературы пригодных дополнительных синтетических каучуков:
BR - полибутадиен,
ABR - сополимеры бутадиена со сложными алкиловыми эфирами акриловой кислоты с 1-4 атомами углерода в алкиле,
CR - полихлоропрен,
IR - полиизопрен,
SBR - сополимеры стирола с бутадиеном, содержащие от 1 до 60% масс., предпочтительно от 20 до 50% масс. мономерных звеньев стирола,
IIR - сополимеры изобутилена с изопреном,
NBR - сополимеры бутадиена с акрилонитрилом, содержащие от 5 до 60% масс., предпочтительно от 10 до 40% масс. мономерных звеньев акрилонитрила,
HNBR - частично или полностью гидрированный бутадиеннитрильный каучук,
EPDM - тройные сополимеры на основе этилена, пропилена и диена,
а также смеси указанных каучуков. Для производства автомобильных шин в первую очередь представляет интерес натуральный каучук, эмульсионный бутадиен-стирольный каучук, растворный бутадиен-стирольный каучук с температурой стеклования выше -50°С, бутадиеновый каучук с высоким содержанием цис-звеньев (более 90%), полученный в присутствии катализаторов на основе Mi, Co, Ti или Nd, бутадиеновый каучук с содержание виниловых групп до 80%, а также смеси указанных каучуков.
Предлагаемые в изобретении резиновые смеси, очевидно, могут содержать также другие добавки к каучукам, например, добавки, используемые для сшивания резиновых смесей, а также добавки, предназначенные для улучшения физико-механических свойств изготавливаемых из предлагаемых в изобретении резиновых смесей вулканизатов особого назначения.
В качестве сшивающих агентов, прежде всего, используют серу или высвобождающие серу соединения. Как указано выше, предлагаемые в изобретении резиновые смеси содержат также другие добавки, в частности, известные катализаторы, антиоксиданты, термостабилизаторы, светостабилизаторы, антиозонанты, технологические добавки, пластификаторы, усилители клейкости, порообразователи, красители, пигменты, воска, разбавители, органические кислоты, замедлители вулканизации, оксиды металлов и активаторы.
Как указано выше, предлагаемые в изобретении резиновые смеси помимо функционализованного каучука могут содержать также дополнительные каучуки. Количество дополнительно добавляемых каучуков обычно составляет от 0,5 до 85% масс., предпочтительно от 10 до 70% масс. в пересчете на общее количество содержащихся в резиновой смеси каучуков. Количество дополнительно добавляемых каучуков зависит от последующего применения предлагаемых в изобретении резиновых смесей.
Предлагаемые в изобретении резиновые смеси можно изготавливать, например, путем смешивания функционализованных каучуков с наполнителем и другими компонентами резиновых смесей в соответствующей смесительной аппаратуре, такой как смесители, вальцы или экструдеры.
В другом варианте предлагаемые в изобретении резиновые смеси можно изготавливать путем последовательного осуществления следующих технологических операций: полимеризации указанных выше мономеров в растворе, введения в растворный каучук функциональных групп, смешивания растворного каучука с соответствующими количествами антиоксидантов и при необходимости технологического масла, наполнителя, других каучуков и других добавок к каучукам, реализуемого в соответствующем растворителе по завершении полимеризации и введения функциональных групп, и удаления растворителя посредством горячей воды и/или водяного пара, реализуемого в процессе смешивания или по его завершении при температуре от 50 до 200°С при необходимости под вакуумом.
Другим объектом настоящего изобретение является применение предлагаемых в изобретении резиновых смесей для изготовления вулканизатов, которые, в свою очередь, предназначены для изготовления высоконаполненных резиновых формованных изделий на основе каучуков, прежде всего для изготовления шин.
Приведенные ниже примеры служат для пояснения настоящего изобретения и не ограничивают его объема.
Примеры
Пример 1
Синтез полибутадиена с высоким содержанием виниловых групп
В заполненный инертным газом реактор объемом 20 литров загружали 8,5 кг гексана, 171 ммоль трет-бутоксиэтоксиэтана, 8 ммоль бутиллития, а также 1,5 кг (27,73 моль) 1,3-бутадиена, и указанные ингредиенты нагревали до 80°С. Полимеризацию осуществляли в течение одного часа при температуре 80°С и перемешивании. Раствор каучука сливали, стабилизировали добавлением 3 г продукта Irganox® 1520 (2,4-бис(октилтиометил)-6-метилфенола фирмы Ciba), и растворитель удаляли отгонкой с водяным паром при температуре от 50 до 200°С. Каучуковую крошку сушили при 65°С в вакууме.
Вязкость полученного каучука по Муни (ML 1+4, 100°С) составляла 80, содержание виниловых групп (ИК-спектроскопия) 82%, температура стеклования, определенная методом дифференциальной сканирующей калориметрии (ДСК), -25°С.
Примеры 2-4. Синтез функционализованного карбоксильными группами полибутадиена с высоким содержанием виниловых групп
Пример 2
В заполненный инертным газом реактор объемом 20 литров загружали 8,5 кг гексана, 171 ммоль mpem-бутоксиэтоксиэтана, 10 ммоль бутиллития, а также 1,5 кг (27,73 моль) 1,3-бутадиена, и указанные ингредиенты нагревали до 80°С.Полимеризацию осуществляли в течение одного часа при температуре 80°С и перемешивании. После этого добавляли 21 г (0,2 моль) 3-меркаптопропионовой кислоты, а также 0,75 гдилаурилпероксида, и содержимое реактора в течение 90 минут нагревали при 90°С. Раствор каучука сливали, стабилизировали добавлением 3 г продукта Irganox® 1520, и растворитель удаляли отгонкой с водяным паром при температуре от 50 до 200°С. Каучуковую крошку сушили при 65°С в вакууме.
Вязкость полученного каучука по Муни (ML 1+4, 100°С) составляла 76, содержание виниловых групп (ИК-спектроскопия) 81%, температура стеклования, определенная методом ДСК, -24°С.
Пример 3
Полимеризацию осуществляли аналогично примеру 2.
Вязкость полученного каучука по Муни (ML 1+4, 100°С) составляла 85, содержание виниловых групп (ИК-спектроскопия) 81%, температура стеклования, определенная методом ДСК, -25°С.
Пример 4
Полимеризацию осуществляли аналогично примеру 2, однако использовали 9,5 ммоль бутиллития.
Вязкость полученного каучука по Муни (ML 1+4, 100°С) составляла 111, содержание виниловых групп (ИК-спектроскопия) 81%, температура стеклования, определенная методом ДСК -22°С.
Пример 5
Свойства резиновых смесей и вулканизатов
Изготавливали резиновые смеси на основе полученных согласно примерам 2-4 функционализованных полибутадиенов с высоким содержанием виниловых групп, а также (для сравнения) на основе нефункционализованного полибутадиена с высоким содержанием виниловых групп из примера 1 и коммерческого бутадиен-стирольного каучука марки VSL 5025-0 НМ (фирма Lanxess) с содержанием виниловых групп 50%, содержанием мономерных звеньев стирола 25%, вязкостью по Муни 65 и температурй стеклования -22°С (ДСК). Состав резиновых смесей приведен в таблице 1. Перемешивание компонентов смесей (кроме серы и ускорителя) осуществляли в 1,5-литровом смесителе. Серу и ускоритель добавляли при последующем перемешивании резиновых смесей на вальцах при 40°С.
Таблица 1. | |||||
Компоненты резиновых смесей (в масс.ч.) | |||||
Сравнительный пример 5А | Сравнительный пример 5В | Пример 5С (согласно изобретению) | Пример 5D (согласно изобретению) | Пример 5Е (согласно изобретению) | |
Бутадиен-стирольный каучук (VSL 5025-0 НМ, фирма Lanxess) | 36,85 | 0 | 0 | 0 | 0 |
Полибутадиен с высоким содержанием виниловых групп из примера 1 | 0 | 36,85 | 0 | 0 | 0 |
Функционализованный полибутадиен с высоким содержанием виниловых групп из примера 2 | 0 | 0 | 36,85 | 0 | 0 |
Функционализованный полибутадиен с высоким содержанием виниловых групп из примера 3 | 0 | 0 | 0 | 36,85 | 0 |
Функционализованный полибутадиен с высоким содержанием виниловых групп из примера 4 | 0 | 0 | 0 | 0 | 36,85 |
Натуральный каучук (TSR 5, Defo 100) | 21,05 | 21,05 | 21,05 | 21,05 | 21,05 |
Полибутадиен с высоким содержанием цис-звеньев (Buna CB 25, фирма Lanxess) | 42,1 | 42,1 | 42,1 | 42,1 | 42,1 |
Сажа (Corax N 234) | 6,3 | 6,3 | 6,3 | 6,3 | 6,3 |
Кремнекислота (Ultrasil 7000 GR) | 84,2 | 84,2 | 84,2 | 84,2 | 84,2 |
Стабилизатор 6PPD (Vulkanox 4020) | 1,6 | 1,6 | 1,6 | 1,6 | 1,6 |
Стабилизатор TMQ (Vulkanox HS) | 1,6 | 1,6 | 1,6 | 1,6 | 1,6 |
Стеариновая кислота (Edenor С 18 98-100) | 2,1 | 2,1 | 2,1 | 2,1 | 2,1 |
Цинковое мыло (Aktiplast ST) | 2,1 | 2,1 | 2,1 | 2,1 | 2,1 |
Масло TDAE (Vivatec 500) | 39,5 | 39,5 | 39,5 | 39,5 | 39,5 |
Дифенилгуанидин (вулкацит D/C) | 2,1 | 2,1 | 2,1 | 2,1 | 2,1 |
Сульфенамид (вулкацит CZ/C) | 1,9 | 1,9 | 1,9 | 1,9 | 1,9 |
Сера | 1,6 | 1,6 | 1,6 | 1,6 | 1,6 |
Силан (Si 69) | 6,7 | 6,7 | 6,7 | 6,7 | 6,7 |
Оксид цинка | 3,7 | 3,7 | 3,7 | 3,7 | 3,7 |
Резиновые смеси из таблицы 1 вулканизовали в течение 20 минут при 160°С. Свойства соответствующих вулканизатов приведены в таблице 2.
Таблица 2. | |||||
Свойства вулканизатов | |||||
Сравнительный пример 5А | Сравнительный пример 5В | Пример 5С (согласно изобретению) | Пример 5D (согласно изобретению) | Пример 5Е (согласно изобретению) | |
Эластичность по отскоку при 23°С [%] | 40 | 43 | 46 | 45,5 | 47 |
Эластичность по отскоку при 70°С [%] | 54 | 57 | 63 | 63,5 | 65 |
Максимум тангенса угла динамических потерь (tan в диапазоне MTS-амплитуд при 10 Гц) при 23°С | 0,277 | 0,238 | 0,207 | 0,203 | 0,203 |
tan при -20°С (динамический гистерезис при 10 Гц) | 0,278 | 0,436 | 0,507 | 0,501 | 0,507 |
tan при 0°С (динамический гистерезис при 10 Гц) | 0,189 | 0,178 | 0,268 | 0,290 | 0,267 |
tan при 60°С (динамический гистерезис при 10 Гц) | 0,119 | 0,102 | 0,083 | 0,078 | 0,077 |
tan при 80°С (динамический гистерезис при 10 Гц) | 0,114 | 0,097 | 0,079 | 0,076 | 0,074 |
Истирание (DIN 53516) [мм3 ] | 82 | 71 | 56 | 54 | 58 |
Шины обладают необходимым низким сопротивлением качению в том случае, если соответствующие вулканизаты характеризуются высоким значением показателя эластичности по отскоку при 70°С, а также низким значением тангенса угла динамических потерь (tan ) при высоких температурах (60 и 80°С) и низким значением максимума tan 5 в диапазоне амплитуд. Как следует из приведенных в таблице 2 данных, вулканизаты из выполненных согласно изобретению примеров обладают высокой эластичностью по отскоку при 70°С, низкими значениями тангенса угла динамических потерь при высоких температурах (60 и 80°С) и низкими значениями максимума tan в диапазоне амплитуд.
Кроме того, шины обладают требуемым высоким показателем устойчивости при движении по мокрой дороге в том случае, если соответствующие вулканизаты характеризуются высоким значением тангенса угла динамических потерь при низких температурах (-20 и 0°С). Как следует из приведенных в таблице 2 данных, вулканизаты из выполненных согласно изобретению примеров обладают высоким значением tan при -20 и 0°С.
Наряду с этим шины должны обладать высоким сопротивлением истиранию. Как следует из приведенных в таблице 2 данных, вулканизаты из выполненных согласно изобретению примеров отличаются низким показателем истирания согласно DIN 53516.
Кроме того, неожиданно было установлено, что при получении заявленных функционализированных резиновых смесей в одном реакционном сосуде, т.е. когда после полимеризации одного или нескольких диенов, без выделения промежуточного продукта, сразу проводят его функционализацию гидроксильными или карбоксильными группами в присутствии радикальных инициаторов, наряду с упрощением технологии получения заявленных резиновых смесей с гидроксильными и карбоксильными группами и высоким содержанием виниловых групп (>70%), также получают резиновую смесь, которая может быть применима для дальнейших синтезов или, соответственно, обработки.
Класс C08L19/00 Композиции каучуков, не отнесенные к группам 7/00
Класс C08L13/00 Композиции каучуков, содержащих карбоксильные группы
Класс C08K3/00 Использование неорганических компонентов