способ индукции торможения опухолевого роста в эксперименте

Классы МПК:A61K33/44 элементарный углерод, например древесный уголь, сажу
B82B1/00 Наноструктуры
A61P35/00 Противоопухолевые средства
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное бюджетное учреждение "Ростовский научно-исследовательский онкологический институт" Министерства здравоохранения и социального развития Российской Федерации (RU)
Приоритеты:
подача заявки:
2012-07-17
публикация патента:

Изобретение относится к медицине и может быть использовано для индукции торможения опухолевого роста в эксперименте. Для этого крысам подкожно перевивают 1 мл опухолевых клеток ЛСА Плисса в концентрации 20×106/мл, проинкубированных в течение 30 мин при 37°С с 100 мкл взвеси одностенных углеродных нанотрубок длиной 100-200 нм, функционализированных NH2 -группами, в концентрации 10 мкг/мл. Устанавливают торможение роста опухоли на 97% в течение 20 дней и повышение продолжительности жизни животных в 1,68 раза по сравнению с контрольными животными-опухоленосителями. Изобретение вызывает торможение роста опухоли и повышает продолжительность жизни экспериментальных животных, за счет совместного инкубирования клеток опухоли с одностенными углеродными нанотрубками. 3 табл.

Формула изобретения

Способ индукции торможения опухолевого роста в эксперименте, включающий перевивку опухолевых клеток после инкубации in vitro с углеродными одностенными нанотрубками, отличающийся тем, что опытным крысам подкожно превивают 1 мл опухолевых клеток ЛСА Плисса в концентрации 20·106/мл, проинкубированных в течение 30 мин при 37°С с 100 мкл взвеси одностенных углеродных нанотрубок длиной 100-200 нм, функционализированных NH2 -группами, в концентрации 10 мкг/мл, устанавливают торможение роста опухоли на 97% в течение 20 дней и повышение продолжительности жизни животных в 1,68 раза по сравнению с контрольными животными-опухоленосителями.

Описание изобретения к патенту

Изобретение относится к медицине, а именно к экспериментальным исследованиям в онкологии, и может быть использовано для оценки противоопухолевого действия улгеродных нанотрубок (НТ).

Углерод лежит в основе биологических макромолекул, что побудило исследователей разрабатывать новые биосовместимые материалы углеродной природы (фуллерены, графены, нанотрубки). Функционализация их различными химическими группами позволяет им вступать в реакции in vivo и проявлять разнообразные виды биологической активности в зависимости от их свойств.

Известно цитотоксическое действие наноразмерных частиц различной природы (патент RU № 2392668, опубл. 20.06.2010 г., Бюл. № 17), в частности, одностенных углеродных НТ на культуры опухолевых клеток (Е.Mooney, P.Drockery, U.Greiser, M.Murphy, V.Barren. Carbon nanotubes and mesenchimal stem cells: biocompatibility, proliferation and differentiation // Nanoletters, 2008. V.8. № 8. 2137-2143). Другие авторы сообщают об отсутствии такого действия (И.И.Бобринецкий, Р.А.Морозов, А.С.Селезнев, Р.Я.Подчерняева, О.А.Лопатина. Исследования пролиферативной активности и жизнеспособности клеток фибробластов и глиобластомы на различных типах углеродных нанотрубок // Бюлл. эксперим. биол. и мед. 2012. Т.153. № 2. С.227-231). Известен эффект разрушения опухолевых клеток при совместном действии углеродных нанооболочек, покрытых золотом, и различных физических факторов (С.Loo, A.Lowery, N.Halas, J.West, R.Drezek. Immunotargeted nanoshells for integrated cancer imaging and therapy // Nanoletters, 2005. V.5. № 4, 709-710). Есть сведения об избирательном поглощении различных наноразмерных частиц опухолевыми клетками (А.К.Iyer, G.Khaled, J.Fang, H.Maeda Exploiting the enhanced permeability and retention effect for tumor targeting // Drug Discov. Today, 2006. № 11, 812-818). Однозначного ответа, обладают ли одностенные углеродные НТ цитотоксическим или антипролиферативным действием, литература не дает; возможно, это зависит от длины, функционализации и других характеристик нанотрубок. Проводится разработка и экспериментальные исследования эффекта конъюгатов НТ с лекарственными препаратами для их адресной доставки в опухоль (Jinjun Shi, A.R.Votruba, O.C.Farokhzad, R.Langer. Nanotechnology in drug delivery and tissue engineering: from discovery to application // Nanoletters, 2010. 10. 3223-3230).

В приведенных работах не рассматривается возможность торможения опухолевого роста in vivo под действием коротких одностеннных углеродных НТ, функционализированных группами, позволяющими им реагировать с белковыми молекулами (NH2 и СООН).

В качестве прототипа нами была использована работа (Ashwin A. Bhride, Vyomesh Patel, Julie Gavard, et al. Targeted killing of cancer cells in vivo and in virto with EGF-directed carbon nanotube-based drug delivery // ACS NANO. 2009. V.3. № 2. 307-316), в которой изучалось действие одностенных углеродных НТ длиной 50-300 (110±50) нм и диаметром около 10 нм, функционализированных цисплатином и EGF, на опухолевый рост in vivo. Авторами получено 10-дневное торможение роста перевиваемой опухоли HN12, оверэкспрессирующей EGF, после предобработки функционализированными нанотрубками и внутривенной перевивки бестимусным мышам. Однако этот метод требует сложной конструкции наноконъюгатов и имеет специфическую направленность против EGF-экспрессирующих опухолей. Кроме того, сложность самой модели состоит в использовании опухоли, перевивающейся на бестимусных мышах, что, если иметь в виду дальнейшие этапы исследования эффектов НТ в клинических условиях, им не соответствует.

Целью изобретения является индукция торможения роста перевиваемых опухолей в эксперименте с помощью функционализированных NH2 группами углеродных нанотрубок.

Поставленная цель достигается тем, что белым беспородным крысам массой 200-250 г, содержащихся в стандартных условиях вивария, под кожу спины перевивают по 1 мл взвеси опухолевых клеток лимфосаркомы (ЛСА) Плисса, содержащей 20×106 клеток в 1 мл, инкубированных при 37°С в течение 30 мин с 100 мкл взвеси НТ NH2 или НТ СООН, концентрация 10 мкг/мл в 4% проксаноле, препятствующем их агрегации, таким образом, на каждую опухолевую клетку приходится 5×10-5 нг НТ. Контрольным крысам выполняют аналогичную перевивку ЛСА, инкубированной при 37°С в течение 30 мин с 100 мкл 4% водного раствора проксанола-268, - неионогенного поверхностно-активного вещества, являющегося компонентом коммерческого продукта перфторана. Оценивают динамику роста опухоли и продолжительность жизни животных-опухоленосителей. У животных исследованных групп получены статистически достоверные различия по этим показателям: перевивка опухоли, преинкубированной с НТ NH2, способствует торможению ее роста и повышению продолжительности жизни животных-опухоленосителей по сравнению как с контрольной группой животных, так и с крысами, которым перевивали опухолевые клетки, проинкубированные с НТ СООН.

Таким образом, цель, а именно индукция торможения роста перевиваемой опухоли (ЛСА Плисса) с помощью углеродных НТ, функционализированных NH2 группами, представляется достигнутой.

Изобретение «Способ индукции торможения опухолевого роста в эксперименте» является новым, так как оно неизвестно в медицине, а именно в онкологии, при проведении экспериментальных исследований для оценки противоопухолевого действия углеродных НТ.

Новизна изобретения заключается в том, что крысам опытных групп подкожно в область спины перевивают по 1 мл взвеси опухолевых клеток ЛСА Плисса, содержащей 20×10 6 клеток в 1 мл, инкубированных при 37°С в течение 30 мин с 100 мкл взвеси НТ, функционализированных NH2 или СООН, концентрация НТ составляет 10 мкг/мл; определяют влияние введения НТ на динамику роста ЛСА Плисса, продолжительность жизни крыс и выявляют, что в контрольной группе, где перевивной материал инкубировали с проксанолом, происходит постепенное увеличение объема опухолей с последующей некротизацией, распадом и гибелью животных-опухоленосителей через 22 дня после перевивки; в опытной группе, где перевивку проводили после преинкубации с НТ СООН, отличий от контроля не наблюдалось, а в опытной группе, где перевивку проводили после преинкубации с НТ NH2, наступает торможение роста опухолей, гибель животных происходит позже (через 38 дней после перевивки).

Таким образом, в эксперименте показано, что под действием НТ NH2 происходит торможение выхода перевиваемой опухоли, а НТ СООН такой активности не проявляют.

Изобретение является промышленно применимым, так как может быть использовано в медико-биологических исследованиях при проведении экспериментов в области онкологии.

Способ индукции торможения опухолевого роста в эксперименте выполняется следующим образом: НТ, функционализированные NH2 или СООН-группами, перед постановкой опыта разводили 4% проксанолом до концентрации 1 мкг/мл, и для предотвращения агрегации обрабатывали ультразвуком в течение 1 мин, частота 44 кГц, амплитуда 30-50 мкм; крысам-самцам (масса 200-250 г) опытных групп подкожно в область спины перевивали по 1 мл взвеси опухолевых клеток ЛСА Плисса, содержащей 20×106 клеток в 1 мл, инкубированных при 37°С в течение 30 мин с 100 мкл взвеси НТ; контрольным животным вводили перевивной материал после инкубации с проксанолом; концентрация НТ составляет 10 мкг/мл, т.е. на каждую опухолевую клетку приходится 5×10-5 нг НТ. Оценивают динамику роста ЛСА Плисса и выявляют, что у контрольных крыс и у животных, которым опухоль перевивали после преинкубации с НТ СООН, происходит постепенное увеличение объема опухолей с последующей некротизацией, распадом и гибелью животных-опухоленосителей через 22-23 дня после перевивки, а у животных, которым перевивной материал вводили после преинкубации с НТ NH2, происходит торможение роста опухолей, гибель животных наступает в более поздние сроки (через 38 дней после перевивки). Как видно из данных, представленных в таблице 1, индекс торможения (ИТ) опухолевого роста у животных опытной группы при перевивке ЛСА Плисса, инкубированной с НТ NN2, составляет 88,9% через 10 дней, 97,6% через 13 дней и 97% через 20 дней, а при перевивке ЛСА Плисса, инкубированной с НТ СООН, торможение отмечается только через 10 дней после перевивки, причем оно менее значительно (44%), а затем опухоль растет так же, как в контрольной группе.

Таблица 1
Динамика опухолевого роста у крыс после перевивки опухолевых клеток, инкубированных с НТ NH2 в течение 30 мин 37°С
Группы крыс Дни после перевивки, объем опухоли (см3)
способ индукции торможения опухолевого роста в эксперименте, патент № 2499602 10-й13-й 20-й27-й 33-й
Контроль (проксанол) 0,09±0,019822,97±2,8 49,55±4,95способ индукции торможения опухолевого роста в эксперименте, патент № 2499602 способ индукции торможения опухолевого роста в эксперименте, патент № 2499602
Опытная (НТ NH2 )0,01±0,0022* 0,55±0,26*1,42±0,62* 4,44±2,0*22,3±3,38
% торможения =(Vк-Vоп/Vк)×100% 88,997,697 --
HT=Vк/Vоп 941,8 34,0--
Опытная (НТ СООН)0,05±0,009 19,23±2,354,83±5,5 --
% торможения =(Vк-Vоп/Vк)×100%44 16-10 --
ИТ=Vк/Vоп 1,81,19 0,9--
Примечание. * - статистически достоверные отличия от контроля (Р<0,05)

Как видно из данных, представленных в таблице 2, опухоль медленнее, чем в контроле, образуется у крыс опытной группы после перевивки клеток, инкубированных с НТ NH2 , при этом гибель крыс этой группы происходит в более поздние сроки. В контрольной группе опухоль образовалась у всех 5 крыс через 10 дней после перевивки, их гибель началась на 20-й и закончилась на 27-й день. В опытной группе после перевивки опухолевых клеток, инкубированных с НТ NH2, через 10 дней опухоль вышла у 3-х крыс из 5, потом - еще у 1, а у 1 - так и не вышла; гибель 4-х крыс наступила с 33-х до 40-х суток, 1 животное прожило без опухоли 6 мес и погибло по другой причине. После перевивки опухолевых клеток, инкубированных с НТ СООН, ЛСА Плисса развивается аналогично контролю.

Таблица 2
Влияние введения опухолевых клеток, инкубированных с НТ NH 2 в течение 30 мин при 37°С, на гибель крыс-опухоленосителей
Группы крыс Количество крыс с опухолью/количество живых крыс
10-й13-й 20-й27-й33-й 40-й
Контроль (проксанол)5/55/5 4/40 00
Опытная (НТ NH2)3/5 4/54/54/5 4/50/1
Опытная (НТ СООН)5/55/5 4/42/2 00

Как видно из данных, представленных в таблице 3, продолжительность жизни опухоленосителей максимальна в опытной группе после перевивки клеток, инкубированных с НТ NH2, и статистически достоверно выше, чем в контрольной группе и чем у животных после перевивки опухолевых клеток, инкубированных с НТ СООН.

Таблица 3
Продолжительность жизни крыс после перевивки ЛСА Плисса, инкубированных с опухолевыми клетками 30 мин 37°С
Группы крысПродолжительность жизни (дни)
Контроль (проксанол) 22,6±1,54
Опытная (НТ NH 2)38±1,0*
Опытная (НТ СООН)23,3±1,85
Примечание. * - статистически достоверные отличия от контроля (Р<0,05)

Таким образом, преинкубация опухолевых клеток с НТ ML вызывает торможение роста ЛСА Плисса на 97% в течение 20 дней и повышение продолжительности жизни животных-опухоленосителей в 1,68 раз; НТ СООН не проявляют такого эффекта.

Технико-экономическая эффективность «Способа индукции торможения опухолевого роста в эксперименте» заключается в том, что преинкубирование НТ NH2 с перевиваемыми клетками опухоли вызывает торможение ее роста и повышение продолжительности жизни животных-опухоленосителей.

Класс A61K33/44 элементарный углерод, например древесный уголь, сажу

применение аминных производных фуллеренов с60 и с70 и композиций на их основе в качестве противомикробных средств -  патент 2522012 (10.07.2014)
формованный сорбент внииту-1, способ его изготовления и способ профилактики гнойно-септических осложнений в акушерстве -  патент 2516878 (20.05.2014)
плазмосорбент селективный по отношению к свободному гемоглобину и способ его получения -  патент 2509564 (20.03.2014)
способ коррекции нарушений микроциркуляции при хроническом катаральном гингивите у человека -  патент 2500365 (10.12.2013)
пористый углеродный материал, способ его получения, адсорбенты, маски, впитывающие листы и носители -  патент 2488556 (27.07.2013)
пористый углеродный материал, способ его получения, адсорбенты, маски, впитывающие листы и носители -  патент 2488555 (27.07.2013)
композиция, содержащая полиненасыщенные жирные кислоты и активированный уголь -  патент 2485940 (27.06.2013)
углеродный сорбент с антибактериальными свойствами и способ его получения -  патент 2481848 (20.05.2013)
иммуностимулирующее средство -  патент 2480223 (27.04.2013)
адсорбент, моющее средство, лекарственное средство при почечной недостаточности и функциональное питание -  патент 2478393 (10.04.2013)

Класс B82B1/00 Наноструктуры

многослойный нетканый материал с полиамидными нановолокнами -  патент 2529829 (27.09.2014)
материал заменителя костной ткани -  патент 2529802 (27.09.2014)
нанокомпозитный материал с сегнетоэлектрическими характеристиками -  патент 2529682 (27.09.2014)
катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
способ определения направления перемещения движущихся объектов от взаимодействия поверхностно-активного вещества со слоем жидкости над дисперсным материалом -  патент 2529657 (27.09.2014)
способ формирования наноразмерных структур -  патент 2529458 (27.09.2014)
способ бесконтактного определения усиления локального электростатического поля и работы выхода в нано или микроструктурных эмиттерах -  патент 2529452 (27.09.2014)
способ изготовления стекловидной композиции -  патент 2529443 (27.09.2014)
комбинированный регенеративный теплообменник -  патент 2529285 (27.09.2014)
способ изготовления тонкопленочного органического покрытия -  патент 2529216 (27.09.2014)

Класс A61P35/00 Противоопухолевые средства

способ лечения рака толстой кишки -  патент 2529831 (27.09.2014)
способ оценки эффекта электромагнитных волн миллиметрового диапазона (квч) в эксперименте -  патент 2529694 (27.09.2014)
новые (поли)аминоалкиламиноалкиламидные, алкил-мочевинные или алкил-сульфонамидные производные эпиподофиллотоксина, способ их получения и их применение в терапии в качестве противораковых средств -  патент 2529676 (27.09.2014)
производные 1, 2-дигидроциклобутендиона в качестве ингибиторов фосфорибозилтрансферазы никотинамида -  патент 2529468 (27.09.2014)
фармацевтическое средство, содержащее эпитопные пептиды hig2 и urlc10, для лечения рака, способы и средства для индукции антигенпрезентирующей клетки и цитотоксического т-лимфоцита (цтл), антигенпрезентирующая клетка и цтл, полученные таким способом, способ и средство индукции иммунного противоопухолевого ответа -  патент 2529373 (27.09.2014)
модульный молекулярный конъюгат для направленной доставки генетических конструкций и способ его получения -  патент 2529034 (27.09.2014)
модулирующие jak киназу хиназолиновые производные и способы их применения -  патент 2529019 (27.09.2014)
лечение опухолей с помощью антитела к vegf -  патент 2528884 (20.09.2014)
способ лечения местнораспространенного неоперабельного рака поджелудочной железы -  патент 2528881 (20.09.2014)
новые бензолсульфонамидные соединения, способ их получения и применение в терапии и косметике -  патент 2528826 (20.09.2014)
Наверх