способ получения композиционного материала на основе сплава алюминий-магний с содержанием нанодисперсного оксида циркония

Классы МПК:C22C1/10 сплавы с неметаллическими составляющими
C22C21/06 с магнием в качестве следующего основного компонента
B82Y30/00 Нано-технология материалов или поверхностных эффектов, например нано-композиты
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" (RU)
Приоритеты:
подача заявки:
2012-06-04
публикация патента:

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов, упрочненных нанодисперсными частицами. Упрочняющие нанодисперсные частицы оксида циркония вводят в расплав на основе сплава алюминий-магний. Расплав кристаллизуют в поле центрифуги с коэффициентом гравитации 150-200 g и времени жизни расплава 8-10 сек/кг. Обеспечивается получение градиентного материала с пространственно неоднородной структурой и высокими свойствами. 2 з.п. ф-лы, 1 табл., 1 пр.

Формула изобретения

1. Способ получения композиционного материала на основе сплава алюминий-магний, включающий введение упрочняющих нанодисперсных частиц, отличающийся тем, что в качестве упрочняющих частиц вводят оксид циркония, а процесс ведут путем кристаллизации расплава в поле центрифуги с коэффициентом гравитации, равным 150-200 g, и временем жизни расплава, равном 8-10 с/кг.

2. Способ по п.1, отличающийся тем, что оксид циркония вводят в расплав в виде таблеток, спрессованных из предварительно смешанных порошков алюминия и оксида циркония, которые упрочняют полученный композиционный материал.

3. Способ по п.2, отличающийся тем, что скорость охлаждения расплава составляет 450°C/с.

Описание изобретения к патенту

Изобретение относится к производству композиционных материалов, в частности к их упрочнению нанодисперсными частицами.

Известен способ получения конструкционного материала из сплава на основе алюминия с содержанием Mg [Патент 2380453 Российская Федерация, МПК C22F 1/047 (2006.01); C22C 21/06 (2006.01). Способ получения конструкционного материала из сплава на основе алюминия с содержанием Mg 10% /, Анисимов О.В, Костиков В.И. и др.; заявитель НИТУ МИСиС, патентообладатель Анисимов О.В. - № 2008114166/02; заявл. 15.04.2008; опубл. 27.01.2010]. В основу данного изобретения положена задача создания способа производства конструкционного материала из сплава на основе алюминия с содержанием магния до 15,5%, включающего получение слитка, термообработку, прокат, который обеспечил бы повышение прочности, пластичности проката и повысил бы технологичность получения листового материала. Достигаемый при этом технический результат заключается в повышении физических характеристик материала на основе алюминия с содержанием магния около 15% за счет перевода литейного сплава в конструкционный и получение материала с прочностью выше, чем у материала с содержанием магния до 10%. Кристаллизацию слабо перегретого расплава производят во вращающемся кристаллизаторе при коэффициенте гравитации, равном 180-250, времени жизни расплава, равном 12-15 с/кг, и скорости охлаждения не выше 5°C/с. Величина перегрева расплава вместе со скоростью охлаждения должна обеспечить завершение процессов кристаллизации в силовом поле центрифуги до начала кристаллизации расплава в обычных условиях.

Данное изобретение имеет несколько отличий и недостатков:

1. Кристаллизацию расплава проводят во вращающемся кристаллизаторе при коэффициенте гравитации, равном 180-250;

2. Время жизни расплава составляет 12-15 с/кг;

3. Скорость охлаждения не выше 5°C/с;

4. Слиток подвергают термообработке и прокатке.

Однако данный способ по совокупности сходных признаков: использование сплава алюминий-магний, силовых полей центрифуги, близкие значения коэффициента гравитации, принят за прототип.

Целью предлагаемого изобретения является равномерное распределение нанодисперсных частиц ZrO2 по сечению композиционного материала на основе сплава Al-Mg. В связи с этим был использован метод центробежного литья. В результате центрифугирования композиционного расплава получаются градиентные композиционные материалы. Такие композиты отличаются наличием пространственно неоднородных структур, благодаря которым приобретают новые свойства. Поверхностные слои с повышенной концентрацией армирующей фазы различной природы и состава организуются за счет направленного перемещения дисперсных частиц в жидкометаллической суспензии. Твердые дисперсные частицы, имеющие плотность большую, чем матричный алюминиевый сплав, перемещаются к наружной стенке изложницы, а менее плотные - к оси вращения, во внутреннюю часть отливки.

Матричный сплав - АМг6 - получен сплавлением в открытом индукторе в керамическом тигле чистых алюминия и магния при соотношениях, вес.%: алюминий 94, магний 6. Температура расплава составила 700°C.

В качестве упрочняющих добавок использовали нанодисперсный порошок ZrO2 (2% Y 2O3, ост. - ZrO2, размер частиц 10-20 нм).

Кристаллизацию расплава проводят в поле центрифуги, при коэффициенте гравитации, равном 150-200 g, при времени жизни расплава, равном 8-10 сек/кг, и скорости охлаждения 450°Cсек. Кристаллизующийся материал при вращении испытывает переменные в радиальном направлении нагрузки в зависимости от складывающегося коэффициента гравитации. Обороты ротора задавались такими, что при радиусе 75 мм давали значения коэффициента гравитации, равным 200, 175, 150 g.

Испытания установки проводились в диапазоне скоростей вращения от 1300 до 1600 об/мин.

Коэффициент гравитации рассчитывается по следующей формуле:

способ получения композиционного материала на основе сплава алюминий-магний   с содержанием нанодисперсного оксида циркония, патент № 2499849

где µ - плотность расплава, г/см 3;

V - объем материала, см3, способ получения композиционного материала на основе сплава алюминий-магний   с содержанием нанодисперсного оксида циркония, патент № 2499849 - угловая скорость, рад/с2;

R - радиус, м;

g - ускорение свободного падения, g=9,8 м/с2.

Уравнение, связывающее коэффициент гравитации и давление, имеет следующий вид:

способ получения композиционного материала на основе сплава алюминий-магний   с содержанием нанодисперсного оксида циркония, патент № 2499849

где µ - плотность расплава, г/см 3;

h - глубина, м;

R(t), R(t0) - радиус внешний и внутренний, м;

n - число оборотов, об/мин.

В таблице представлены значения используемых коэффициентов гравитации и соответствующие им давления. Максимальный коэффициент гравитации соответствует скорости вращения ротора в 1500 об/мин.

Значения коэффициентов гравитации
Коэффициент гравитации Давление в расплаве
способ получения композиционного материала на основе сплава алюминий-магний   с содержанием нанодисперсного оксида циркония, патент № 2499849 атмМПа
К150 150-20020
К175175-253 25,3
К200 30330

Введение порошка-наполнителя в расплав можно осуществлять, используя различные методы, в том числе метод порошковой металлургии.

Пример

Был выбран метод введения частиц в алюминиевый расплав в виде предварительно подготовленной порошковой лигатуры (алюминиевая пудра ГОСТ 5494-95 и оксид циркония в соотношениях, вес.%: 1:3 соответственно), что исключает риск попадания в расплав вредных примесей, возможный при введении легирующих добавок в виде механической смеси порошков. Таким образом, за счет исключения воздействия примесей повышаются физические и технологические свойства готовых изделий. Оптимальная масса брикетов составила 1-2 г. Приготовление брикетов осуществляется прессованием механической смеси порошков в стальной пресс-форме. Оптимальное давление прессования составляет 1,5-2 т/см2.

Для обеспечения полного растворения брикетов их вводили в расплав АМг6, перегретый на 40-50°C выше температуры плавления, и выдерживали 10-15 минут перед заливкой в ротор с изложницей, закрепленной в центрифуге для равномерного распределения упрочняющих добавок.

Затем расплав заливали в крутящийся ротор с изложницей. Испытания установки проводились в диапазоне скоростей вращения от 1300 до 1600 об/мин. Время центрифугирования составляло 2 минуту. После полной остановки ротора отливку извлекали и охлаждали в воде со скоростью охлаждения 450°Cсек до комнатной температуры.

Класс C22C1/10 сплавы с неметаллическими составляющими

композиционный электроконтактный материал на основе меди и способ его получения -  патент 2525882 (20.08.2014)
литой композиционный материал на основе алюминия и способ его получения -  патент 2516679 (20.05.2014)
способ модифицирования чугуна -  патент 2515158 (10.05.2014)
способ модифицирования чугуна с шаровидным графитом -  патент 2500824 (10.12.2013)
литой композиционный сплав и способ его получения -  патент 2492261 (10.09.2013)
способ упрочнения легких сплавов -  патент 2487186 (10.07.2013)
способ изготовления изделий из гранулируемых жаропрочных никелевых сплавов -  патент 2477670 (20.03.2013)
композиционный материал для электротехнических изделий -  патент 2466204 (10.11.2012)
способ получения порошковой композиции на основе карбосилицида титана для ионно-плазменных покрытий -  патент 2458168 (10.08.2012)
способ получения порошковой композиции на основе карбосилицида титана для плазменных покрытий -  патент 2458167 (10.08.2012)

Класс C22C21/06 с магнием в качестве следующего основного компонента

способ изготовления листов и плит из алюминиевых сплавов -  патент 2525953 (20.08.2014)
алюминиевый сплав для прецизионного точения серии аа 6ххх -  патент 2522413 (10.07.2014)
высокопрочный деформируемый сплав на основе алюминия системы al-zn-mg-cu пониженной плотности и изделие, выполненное из него -  патент 2514748 (10.05.2014)
деформируемый термически неупрочняемый сплав на основе алюминия -  патент 2513492 (20.04.2014)
сверхпрочный сплав на основе алюминия и изделие из него -  патент 2503734 (10.01.2014)
способ приготовления алюминиевого сплава -  патент 2497965 (10.11.2013)
сверхпластичный сплав на основе алюминия -  патент 2491365 (27.08.2013)
термостойкий литейный алюминиевый сплав -  патент 2478131 (27.03.2013)
высокопрочный деформируемый сплав на основе алюминия с пониженной плотностью и способ его обработки -  патент 2468107 (27.11.2012)
сплав на основе алюминия -  патент 2468106 (27.11.2012)

Класс B82Y30/00 Нано-технология материалов или поверхностных эффектов, например нано-композиты

способ получения железного порошка -  патент 2529129 (27.09.2014)
способ получения композиционных материалов на основе диоксида кремния -  патент 2528667 (20.09.2014)
режущая пластина -  патент 2528288 (10.09.2014)
способ получения термоэлектрического материала -  патент 2528280 (10.09.2014)
ветошь для чистки ствола огнестрельного оружия -  патент 2527577 (10.09.2014)
способ упрочнения металлических изделий с получением наноструктурированных поверхностных слоев -  патент 2527511 (10.09.2014)
способ получения наноматериала на основе рекомбинантных жгутиков археи halobacterium salinarum -  патент 2526514 (20.08.2014)
керамический композиционный материал на основе алюмокислородной керамики, структурированной наноструктурами tin -  патент 2526453 (20.08.2014)
нанокомпозит на основе никель-хром-молибден -  патент 2525878 (20.08.2014)
износостойкий композиционный керамический наноструктурированный материал и способ его получения -  патент 2525538 (20.08.2014)
Наверх