литой композиционный материал на основе алюминия и способ его получения

Классы МПК:C22C1/10 сплавы с неметаллическими составляющими
C22C49/06 алюминий
C22C49/14 характеризуемые волокнами или нитями
C22C101/22 бориды
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" (RU)
Приоритеты:
подача заявки:
2013-02-26
публикация патента:

Изобретение относится к области металлургии, а именно к получению литого композиционного материала (ЛКМ) на основе алюминия для изготовления отливок и деформируемых изделий электротехнического назначения. ЛКМ содержит в качестве матричного компонента алюминий технической чистоты, а в качестве армирующего компонента - дискретные керамические частицы углеродсодержащей боридной фазы C2 Al3B48 в количестве 0,1-0,6 мас.%, синтезированные в расплаве. Способ получения ЛКМ включает введение в расплав технического алюминия лигатуры Al-В, перемешивание в течение 5-10 мин, введение в расплав при температуре 980-1000°C алмазографитового наноразмерного порошка и выдерживание в течение 10-15 мин для протекания синтеза керамических дискретных частиц и их распределения в объеме расплава, проведение модифицирования расплава лигатурой Al-Sr, перемешивание и разливку при температуре 740-750°C. Техническим результатом является создание ЛКМ на основе алюминия, обладающего повышенной электропроводностью, прочностью и пластичностью, позволяющей подвергать композиционный материал холодной деформации и достигать высокой степени обжатия без промежуточных отжигов, и способа получения ЛКМ, отличающегося экологической безопасностью, снижением трудоемкости и повышением качества композиционного материала. 2 н.п. ф-лы, 1 пр., 1 табл., 1 ил.

литой композиционный материал на основе алюминия и способ его   получения, патент № 2516679

Формула изобретения

1. Литой композиционный материал на основе алюминия, содержащий матричный компонент из технического алюминия и армирующие дискретные керамические частицы, отличающийся тем, что в качестве армирующих дискретных керамических частиц он содержит углеродсодержащий борид алюминия с размером частиц менее 1-2 мкм в количестве 0,1-0,6 мас.%, а в качестве матричного компонента - технический алюминий, предварительно рафинированный от примесей Ti, V и модифицированный стронцием в количестве 0,01-0,03 мас.%.

2. Способ получения литого композиционного материала на основе алюминия, содержащего матричный компонент из технического алюминия и армирующие дискретные частицы, включающий плавление алюминия под слоем флюса и ввод в расплав реакционной смеси, отличающийся тем, что предварительно в расплав технического алюминия вводят лигатуру Аl-В, перемешивают в течение 5-10 мин до полного растворения и вывода из раствора примесей Ti, V и образования в необходимом количестве первичной интерметаллидной фазы AlB12, затем в расплав при температуре 980-1000°C вводят реакционную смесь в виде алмазографитового наноразмерного порошка и выдерживают в течение 10-15 мин для протекания синтеза с получением дискретных частиц углеродосодержащего борида алюминия и их распределения в объеме расплава, после чего проводят модифицирование расплава лигатурой Al-Sr, перемешивание и разливку при температуре 740-750°C.

Описание изобретения к патенту

Изобретение относится к области металлургии, а именно к получению литого композиционного материала (ЛКМ) на основе алюминия для изготовления отливок и деформируемых заготовок электротехнического назначения с повышенными эксплуатационными свойствами.

Известен способ получения литого композиционного материала на основе алюминиевого сплава (пат. РФ № 2353475 от 27.04.2009), заключающийся в смешивании в размольно-смесительном устройстве порошков матричного компонента из алюминиевого сплава Al+3%Mg и армирующих дискретных керамических частиц карбида кремния зернистостью 30-50 мкм в количестве 3-5 мас.% или 9-15 мас.%, брикетирование смеси под давлением 28-35 МПа, введение брикетов в расплав сплава Al+3%Mg, перемешивание расплава и разливка.

Недостатком предложенного изобретения является большой размер упрочняющих частиц SiC, что не позволяет проводить обработку давлением композиционного материала, необходимость применения специализированного оборудования и сложность равномерного распределения армирующих частиц в объеме заготовки.

Известен также способ получения композиционного материала алюминий-карбид кремния (пат. РФ № 2348719 от 10.03.2009), согласно которому карбидные включения SiC более мелких размеров (1-10 мкм) синтезируют в расплаве алюминиево-кремниевого сплава при обработке его углекислым газом. В результате модифицирующего эффекта измельчаются структурные составляющие сплава и полученный композиционный материал может обрабатываться давлением. Однако в результате обработки расплава углекислым газом он окисляется, и образовавшиеся оксидные включения снижают качество композиционного материала.

Кроме того, в приведенных аналогах упрочняющими частицами является карбид кремния, который является полупроводником и резко снижает электропроводность композиционного материала.

В качестве прототипа был выбран способ получения литейного композиционного сплава алюминий-карбид титана (пат. РФ № 2448178 от 18.08.2009), включающий плавление алюминия и последующий порционный ввод в расплав экзотермической СВС-смеси, состоящей из порошков титана, углерода и флюса криолита в стехиометрическом соотношении, позволяющем синтезировать в расплаве включения карбида титана размером 1-2 мкм с общим его содержанием не более 10 мас.%. В зоне экзотермической реакции температура достигает 1500°C, что ускоряет процесс образования TiC и улучшает смачивание частиц и их равномерное распределение в объеме расплава. Однако высокий локальный перегрев расплава над ликвидусом сопровождается бурным газовыделением и возможным образованием карбида алюминия, который располагается на границе матрица - TiC в виде охрупченного слоя. Карбид алюминия восприимчив к воздействию влаги с образованием гидроокиси алюминия и вызывает коррозию материала на межфазной границе. В результате композиционный материал может быть значительно ослаблен.

Задача, на решение которой направленно заявленное изобретение, заключается в разработке состава и способа производства ЛКМ на основе алюминия и дискретных тугоплавких керамических частиц, позволяющего исключить применение высокотемпературного СВС-процесса для синтеза нано- и микроразмерных частиц углеродсодержащих фаз - упрочнителей алюминиевой матрицы, добиться их диспергирования и равномерного распределения в матрице.

Техническим результатом является создание ЛКМ на основе алюминия, обладающего повышенной электропроводностью, прочностью и пластичностью, позволяющей подвергать композиционный материал холодной деформации и достигать высокой степени обжатия без промежуточных отжигов, и способа получения ЛКМ, отличающегося экологической безопасностью, снижением трудоемкости и повышением качества композиционного материала.

Технический результат достигается тем, что в предложенном литом композиционном материале на основе алюминия, состоящем из технического алюминия и дискретных керамических частиц, новым является то, что в качестве армирующих дискретных керамических частиц он содержит углеродсодержащий борид алюминия с размером частиц менее 1-2 мкм в количестве 0,1-0,6 мас.%, а в качестве матричного компонента технический алюминий, предварительно рафинированный от примесей Ti, V и модифицированный стронцием в количестве 0,01-0,03 мас.%.

Предлагаемый способ получения литого композиционного материала на основе алюминия состоит в плавлении алюминия под слоем флюса и введении в расплав реакционной смеси, и отличается тем, что предварительно в расплав технического алюминия вводят лигатуру Аl-В, перемешивают в течение 5-10 мин до полного растворения и вывода из раствора примесей Ti, V и получения в необходимом количестве первичной интерметаллидной фазы AlB12, затем вводят в расплав при температуре 980-1000°C алмазографитовый наноразмерный порошок и выдерживают в течение 10-15 мин для протекания синтеза керамических дискретных частиц и их распределения в объеме расплава, после чего проводят модифицирование лигатурой Al-Sr, перемешивание и разливку при температуре 740-750°C.

Изобретение поясняется иллюстрациями. На фиг1 показаны микроструктуры образцов ЛКМ: а) количество дискретных керамических частиц C 2Al3B48 - 0,3 мас.%; б) количество дискретных керамических частиц C2Al3B 48 - 0,6 мас.%.

Известно, что в техническом алюминии, применяемом в качестве матричного компонента, содержатся примеси Ti и V, которые существенно уменьшают электропроводность композиционного материала. Введение бора в расплав алюминия, в количествах, равных половине весового содержания титана и ванадия, способствует образованию мелкодисперсных соединений TiB2 и VB2, которые нерастворимы в жидком и твердом алюминии и в меньшей степени оказывают влияние на электропроводность [Алюминий: Свойства и физическое металловедение: Справ. Изд. Пер. с англ. / Под ред. Хэтча Дж. Е. - М.; Металлургия, 1989. 422 с.]. Добавление бора в большем количестве, чем необходимо для вывода V и Ti, не рекомендуется из-за образования грубых интерметаллидов AlB 2, что отрицательно сказывается на прочности и пластичности материала.

В расплав системы Al-В при температуре 980-1000°C под слой флюса (Na3AlF6 ) вводят алмазографитовый нанопорошок (НП-АГ) в количестве, необходимом для получения заданной концентрации армирующих дискретных керамических частиц, образовавшихся в результате взаимодействия литой композиционный материал на основе алюминия и способ его   получения, патент № 2516679 -AlB12 и алмазографитового нанопорошка НП-АГ по реакции

4AlB12+2С=C2Al 3B48+Аl,

с образованием «алмазо-подобного бора» (C2Al3B48). Образование в системе - Аl-С-В углеродсодержащего борида доказано многими исследователями [Самсонов Г.В. и др. Бориды, М:: Атомиздат, 1975 - 376 с.]. Смесь выдерживают в течение 10-15 мин для протекания синтеза керамических дискретных частиц и их равномерного распределения в объеме расплава. НП-АГ получен методом детонационного синтеза из углерода, содержащегося во взрывчатых веществах, его частицы имеют размер в пределах 2-12 нм, удельная поверхность 200-420 м /г и обладают высокой реакционной способностью.

Далее в расплав вводят порошок лигатуры Al-Sr в количестве, необходимом для получения в расплаве 0,01-0,03 мас.% стронция. За счет модифицирования расплава матрицы стронцием снижается межфазная энергия на границе металл-керамической фазы, и как следствие, измельчаются первично кристаллизующиеся интерметаллиды TiB2 и VB2 , образующиеся в результате взаимодействия примесей Ti и V с бором, и происходит дополнительное упрочнение алюминиевой матрицы.

После расплав перемешивают и осуществляют разливку при температуре 740-750°С в металлические формы.

Пример получения ЛКМ на основе алюминия.

Получен ЛКМ вышеизложенным способом, с матрицей из технического алюминия марки А5Е (1060) (в мас.%: Fe-0,26%; Si-0,09%; Cu-0,004%; Mn-0,003%; Mg-0,001%; Cr-0,01%; Ni-0,002%; Zn-0,006%; Ti-0,001%; V-0,002%; Pb-0,001%, всего примесей<0,4%, Al-остальное), армированный дискретными керамическими частицами углеродсодержащей боридной фазы C2Al3B48 (в мас.%: 12,02 Аl; 84,08 B; 3,5 C) в количестве 0,1%, 0,3% и 0,6%. Содержание углерода в порошке составляет 85 мас.%, наноалмазного - не более 15 мас.%, остальные примеси металлов и адсорбированные газы.

Из полученных литых КМ вырезали образцы для исследования электропроводности, механических свойств и микроструктуры. На фиг.1 (а, б) показано равномерное распределение упрочняющих керамических частиц в объеме матрицы. Армирующие частицы имеют размер литой композиционный материал на основе алюминия и способ его   получения, патент № 2516679 1-2 мкм, однако в предлагаемом варианте включения керамических фаз более диспергированы в объеме расплава, преобладающий размер частиц менее 1 мкм и, в отличие от прототипа, полностью отсутствуют включения игольчатой морфологии. Высокая степень диспергирования углеродсодержащей боридной фазы C2Al3B 48 связана с межфазной и кристаллографической совместимостью со сплавом матрицы, а также применением стронция в качестве модификатора.

Механические свойства и электропроводность полученных КМ в литом состоянии и после прокатки (суммарная деформация 60%) приведены в таблице 1 в сравнении с прототипом.

Видно, что с увеличением содержания керамических частиц в ЛКМ до 0,6 мас.% предел прочности на разрыв (литой композиционный материал на основе алюминия и способ его   получения, патент № 2516679 в) увеличивается более чем на 30%, а после прокатки образцов более чем на 20% по сравнению с деформированным техническим алюминием. В соответствии с прототипом аналогичная прочность может быть достигнута при получении в ЛКМ 15 мас.% карбидной фазы, т.е. керамических частиц нужно вводить в ЛКМ в 25 раз больше, чем в предлагаемом решении. Это объясняется более высокой адгезионной связью частиц C2Al3B48 с матрицей, чем частицы TiC. Дополнительный прирост прочности ЛКМ обусловлен упрочнением матрицы дискретными частицами боридов титана, ванадия и других примесей, образовавшихся в результате их взаимодействия с бором.

Таблица 1
Характеристики ЛКМ
Содержание упрочняющей фазы Предел прочности ств, кгс/мм2 Отностительное удлинение, литой композиционный материал на основе алюминия и способ его   получения, патент № 2516679 , %Удельное электросопротивление, Ом·мм2
В литом состоянииПосле прокатки В литом состоянииПосле прокатки В литом состоянииПосле прокатки
Прототип литой композиционный материал на основе алюминия и способ его   получения, патент № 2516679 литой композиционный материал на основе алюминия и способ его   получения, патент № 2516679 литой композиционный материал на основе алюминия и способ его   получения, патент № 2516679 литой композиционный материал на основе алюминия и способ его   получения, патент № 2516679 литой композиционный материал на основе алюминия и способ его   получения, патент № 2516679 литой композиционный материал на основе алюминия и способ его   получения, патент № 2516679
0,1% TiC 5,0-39 ---
15,0% TiC9,0 литой композиционный материал на основе алюминия и способ его   получения, патент № 2516679 10литой композиционный материал на основе алюминия и способ его   получения, патент № 2516679 литой композиционный материал на основе алюминия и способ его   получения, патент № 2516679 литой композиционный материал на основе алюминия и способ его   получения, патент № 2516679
Исходный алюминий 6,914,0 39,612,00,0301 -
0,1%С 2Аl3 В488,2 -25,0 -0,02850,0290
0,3% С2Аl3 В488,8 17,220,47,0 0,02900,0293
0,6% С2Аl3 В 489,017,9 20,06,1 0,02940,0299

Следует отметить, что даже после высокой степени обжатия (более 60%) ЛКМ сохранил достаточную пластичность (6-7%). При содержании дискретных частиц в матрице менее 0,1% прочность ЛКМ недостаточна, а при их содержании более 0,6% повышение прочности ЛКМ незначительно.

Существенным отличием от всех рассмотренных аналогов и прототипа разработанного ЛКМ наряду с повышенной прочностью является высокая электропроводность, соответствующая стандартам для проводников электрического тока. При обработке расплава технического алюминия бором электропроводность повысилась на 7% и осталась достаточно высокой при упрочнении матрицы дискретными керамическими частицами углеродсодержащей боридной фазы C2Al 3B48. Известно, что карбид бора является полупроводником, однако высокая электропроводность в системе С-Аl-В связана с декомпенсацией ковалентных связей между атомами бора и углерода из-за наличия атомов алюминия и появлением дополнительных зон проводимости.

Из всего вышесказанного можно сделать вывод, что предложенный ЛКМ обладает высокой эксплуатационной надежностью, а способ его получения отличается экологической безопасностью и простотой исполнения.

Класс C22C1/10 сплавы с неметаллическими составляющими

композиционный электроконтактный материал на основе меди и способ его получения -  патент 2525882 (20.08.2014)
способ модифицирования чугуна -  патент 2515158 (10.05.2014)
способ модифицирования чугуна с шаровидным графитом -  патент 2500824 (10.12.2013)
способ получения композиционного материала на основе сплава алюминий-магний с содержанием нанодисперсного оксида циркония -  патент 2499849 (27.11.2013)
литой композиционный сплав и способ его получения -  патент 2492261 (10.09.2013)
способ упрочнения легких сплавов -  патент 2487186 (10.07.2013)
способ изготовления изделий из гранулируемых жаропрочных никелевых сплавов -  патент 2477670 (20.03.2013)
композиционный материал для электротехнических изделий -  патент 2466204 (10.11.2012)
способ получения порошковой композиции на основе карбосилицида титана для ионно-плазменных покрытий -  патент 2458168 (10.08.2012)
способ получения порошковой композиции на основе карбосилицида титана для плазменных покрытий -  патент 2458167 (10.08.2012)

Класс C22C49/06 алюминий

Класс C22C49/14 характеризуемые волокнами или нитями

Класс C22C101/22 бориды

Наверх