композиция и способ извлечения углеводородных флюидов из подземного месторождения

Классы МПК:C09K8/508 высокомолекулярные соединения
C09K8/512 содержащие сшивающие агенты
C09K8/588 характеризующиеся использованием особых полимеров
Автор(ы):,
Патентообладатель(и):Налко Компани (US)
Приоритеты:
подача заявки:
2009-04-21
публикация патента:

Изобретение относится к композициям и способам извлечения углеводородных флюидов из подземного месторождения. Предложена композиция расширяемых полимерных микрочастиц для изменения коэффициента проницаемости воды в подземном пласте, содержащая взаимопроникающую полимерную сетку (ВПС), включающую один или более акриламидных сополимеров. ВПС ограничивает микрочастицу до среднего размера неувеличенного объема от примерно 0,05 до примерно 5000 мкм. Лабильные сшивки в полимерах ВПС подвергают деструкции, что приводит к освобождению расширяемой микрочастицы таким образом, что микрочастица расширяется. Предложен также способ изменения коэффициента проницаемости подземных пластов с использованием указанной композиции. Технический результат - увеличение подвижности и/или темпа добычи углеводородных флюидов, присутствующих в пластах. 2 н. и 18 з.п. ф-лы, 2 ил., 1 табл., 14 пр.

композиция и способ извлечения углеводородных флюидов из подземного   месторождения, патент № 2500711 композиция и способ извлечения углеводородных флюидов из подземного   месторождения, патент № 2500711

Формула изобретения

1. Композиция расширяемых полимерных микрочастиц для изменения коэффициента проницаемости воды в подземном пласте, в которой микрочастицы включают взаимопроникающую полимерную сетку, которая включает один или более акриламидных сополимеров, и где расширяемые полимерные микрочастицы имеют средний диаметр неувеличенного объема от примерно 0,05 до примерно 5000 мкм.

2. Композиция по п.1, в которой лабильные полимеры включают сшитые расширяемые полимерные микрочастицы.

3. Композиция по п.2, в которой лабильные полимеры содержат сшивающие агенты в количестве от примерно 100 до примерно 200000 частей на млн лабильных сшивающих агентов и от 0 до примерно 300 частей на млн нелабильных сшивающих агентов.

4. Композиция по п.1, в которой лабильные полимеры составляют от примерно 1 до примерно 75% масс. от общего содержания полимеров в микрочастицах.

5. Композиция по п.3, в которой лабильный полимер составляет от примерно 1 до примерно 25% масс. от общего содержания полимеров в микрочастицах.

6. Композиция по п.3, в которой лабильные сшивающие агенты выбраны из диакрилатов и полифункциональных производных полиспиртов.

7. Композиция по п.1, в которой лабильный полимер включает один или более ионных сшивающих агентов.

8. Композиция по п.7, в которой ионные сшивающие агенты включают катионные сложноэфирные мономеры.

9. Композиция по п.1, в которой расширяемые полимерные микрочастицы включают сшитые латексные полимеры.

10. Способ изменения коэффициента проницаемости воды в подземном пласте, включающий закачивание в подземный пласт композиции расширяемых полимерных микрочастиц, включающих взаимопроникающую полимерную сетку, которая включает один или более акриламидных сополимеров, и где расширяемые полимерные микрочастицы имеют средний диаметр неувеличенного объема от примерно 0,05 до примерно 5000 мкм, причем расширяемые полимерные микрочастицы имеют меньший диаметр, чем поры подземного пласта, и расширяются при изменении условий окружающей среды в подземном пласте.

11. Способ по п.10, в котором взаимопроникающая полимерная сетка дополнительно включает один или более лабильных полимеров.

12. Способ по п.10, в котором композицию добавляют в закачиваемую воду в качестве части вторичного или третичного способа добычи углеводородов из подземного пласта.

13. Способ по п.12, в котором закачиваемую воду добавляют в подземный пласт при температуре более низкой, чем температура подземного пласта.

14. Способ по п.10, в котором изменение в условиях окружающей среды включает изменение температуры, изменение давления, изменение pH, изменение солености, изменение усилия сдвига или изменение разбавления.

15. Способ по п.10, в котором изменение в условиях окружающей среды является результатом введения в пласт активирующего агента.

16. Способ по п.15, в котором активирующий агент включает восстановительный агент, окислительный агент, кислоту, основание или биологический агент.

17. Способ по п.10, в котором композицию добавляют к закачиваемой воде в качестве части способа вторичной или третичной добычи углеводородных флюидов из подземного пласта.

18. Способ по п.10, в котором композицию используют в программе третичной добычи с использованием диоксида углерода и воды.

19. Способ по п.10, в котором композицию используют в способе третичной добычи нефти, один из компонентов которого составляет закачивание воды.

20. Способ по п.10, в котором подземный пласт представляет собой углеводородное месторождение в песчанике или карбонатной горной породе.

Описание изобретения к патенту

Область техники

Изобретение относится к композициям и способам извлечения углеводородных флюидов из подземного месторождения и, более конкретно, к композиции расширяемых полимерных микрочастиц, включающей взаимопроникающую полимерную сетку, которая изменяет проницаемость подземных пластов, таким образом увеличивая подвижность и/или темп добычи углеводородных флюидов, присутствующих в пластах.

Уровень техники

На первой стадии извлечения углеводородов источник энергии, находящийся в месторождении, обеспечивает продвижение к эксплуатационной(ым) скважине(нам), откуда углеводороды могут вытекать или их можно выкачивать в наземные устройства транспортировки. Обычно относительно небольшую часть углеводородов в месторождении можно извлекать этими средствами. Для увеличения производительности флюиды закачивают вниз по смежным скважинам, с целью нагнетания дополнительного количества углеводородов на поверхность. Это широко известно как вторичная добыча. Обычно используемые флюиды представляют собой воду (такую, как вода из водоносного слоя, речная вода, морская вода или попутно добываемая вода) или газ (такой, как добываемый газ, диоксид углерода, дымовой газ и различные другие газы). Кроме того, если флюид способствует движению обычно неподвижной остаточной нефти или других углеводородов, способ называют третичной добычей.

Очень распространенная проблема при планировании вторичной и третичной добычи связана с неоднородностью пластов коллекторской породы. Подвижность закачиваемого флюида обычно отличается от подвижности углеводорода. Например, когда флюид является более подвижным, требуются различные способы регулирования подвижности для получения более однородного охвата месторождения и последующей более эффективной добычи углеводородов. К сожалению, такие способы имеют ограниченную ценность, когда внутри коллекторской породы существуют зоны высокой проницаемости, обычно называемые зонами поглощения или прожилками. Закачиваемый флюид течет по пути наименьшего сопротивления от места закачивания до эксплуатационной скважины. В таких случаях закачиваемый флюид не охватывает эффективно углеводородные флюиды из примыкающих зон с более низкой проницаемостью. Кроме того, когда добытый флюид используют повторно, это может привести к циклическому движению флюида через зону поглощения с малой конечной пользой и с большими затратами на топливо и на поддержание системы нагнетания.

Для отвода закачиваемых флюидов от зон поглощения в эксплуатационные и нагнетательные скважины или в близкие к ним области используют множество физических и химических способов. Когда такой обработке подвергают эксплуатационную скважину, эту обработку обычно называют изолированием водоносного (или газоносного и т.д.) горизонта. Когда такой обработке подвергают нагнетательную скважину, эту обработку называют регулированием профиля или выравниванием профиля приемистости.

В случаях, когда зона(ы) поглощения изолирована(ы) от прилегающих зон с более низкой проницаемостью, механические уплотнения или «цементировочные пробки» можно расположить в скважине для блокирования поступления закачиваемого флюида. Если флюид поступает или покидает пласт со дна скважины, для заполнения ствола скважины до уровня выше зоны проникновения также можно использовать цемент.

Когда завершение скважины допускает проникновение нагнетаемого флюида как в зоны поглощения, так и в прилегающие зоны, подходящим средством изолирования зоны прорыва воды в скважину часто является нагнетание цемента под давлением. Однако некоторые случаи не поддаются таким способам вследствие того, что между слоями коллекторской породы вне зоны, доступной для цемента, существуют сообщения. Типичными образцами этого являются случаи, когда позади обсадных труб существуют трещины, или зоны обломочных россыпей, или размытые полости. В таких случаях применяют химические гели, способные проникать через поры в коллекторской породе для закупоривания опустошенных зон.

Когда такие способы терпят неудачу, остаются только альтернативные способы - эксплуатация скважины с низкой величиной нефтеотдачи, зарезка бокового ствола скважины в сторону от преждевременно опустошенной зоны или консервация скважины. Иногда эксплуатационную скважину преобразуют в нагнетательную скважину для флюида с целью увеличения скорости нагнетания в залежь выше чистого темпа добычи углеводородов и увеличения давления в месторождении. Это может привести к улучшенной общей добыче, однако следует отметить, что закачиваемый флюид в основном поступает в зону поглощения в новой нагнетательной скважине и, вероятно, вызывает похожие проблемы в ближайших скважинах. Кроме того, все эти способы являются дорогостоящими.

Способы выравнивания профиля приемистости околоскважинного пространства всегда терпят неудачу, когда зона поглощения обширно контактирует с прилегающими зонами с более низкой проницаемостью, содержащими углеводороды. Причина этого состоит в том, что закачиваемые флюиды могут обходить обработку и поступать обратно в зону поглощения, контактируя только с очень небольшой частью оставшихся углеводородов или даже вообще не контактируя с ними. Среди специалистов в данной области техники в общем известно, что такая обработка в околоскважинном пространстве не приводит к значительному улучшению добычи из месторождений, имеющих переток закачиваемых флюидов между зонами.

Было разработано несколько способов с целью уменьшения проницаемости существенной части зоны поглощения и/или на значительном расстоянии от скважин нагнетания и эксплуатационных скважин. Одним таким примером является способ Deep Diverting Gel (гель глубокого отклонения), запатентованный Morgan et al. (1). Его используют на практике, и его недостатком является чувствительность к неизбежным изменениям качества реагентов, что приводит к плохому распространению. Гелеобразующая смесь представляет собой двухкомпонентный состав, и полагают, что это вносит вклад в плохое распространение обработки в пласте.

Использование набухающих сшитых полимерных микрочастиц суперабсорбентов для изменения проницаемости подземных пластов описано в патентах US 5465792 и 5735349. Однако описанное в них набухание микрочастиц суперабсорбентов вызывают путем замены углеводородного флюида-носителя на водный или воды высокой солености на воду низкой солености.

Сшитые, расширяемые полимерные микрочастицы и их применение для изменения проницаемости подземных пластов и увеличения подвижности и/или темпа добычи углеводородных флюидов, присутствующих в пласте, описаны в патентах US 6454003 В1, US 6709402 В2, US 6984705 B2 и US 7300973 B2 и в опубликованной заявке на патент US 2007/0204989 А1.

Взаимопроникающие полимерные сетки, способные претерпевать обратимые, непрерывные или дискретные фазовые переходы в ответ на изменение конкретного стимула, описаны в патентах US 5580929 и US 5403893.

Сущность изобретения

Авторами обнаружены новые расширяемые полимерные микрочастицы, включающие взаимопроникающую полимерную сетку (ВПС) с различными основными полимерами, образующими основную микрочастицу. В одном воплощении ВПС дополнительно включает один или более лабильных полимеров. Конформация и неувеличенный размер микрочастицы ограничены физическими пределами, налагаемыми лабильными полимерами, которые обладают обратимыми внутренними поперечными связями. Лабильный полимер, в сущности, удерживает размер частицы в течение того периода времени, прежде чем активирующий фактор не устранит или не разрушит лабильный полимер, обеспечивая возможность общего расширения микрочастицы. Свойства нерасширенных микрочастиц, такие как среднее распределение частиц по размерам и плотность, обеспечивают эффективное распространение в пористой структуре вмещающей породы углеводородного месторождения, такой как песчаник. Однако при воздействии на микрочастицы в течение периода времени активирующих условий, таких как изменение температуры и/или заранее заданное рН, обратимые (лабильные) внутренние поперечные связи в лабильных полимерах разрушаются, обеспечивая возможность расширения базовых расширяемых микрочастиц посредством поглощения закачиваемого флюида (обычно воды).

Способность микрочастицы увеличивать свой первоначальный размер (в месте закачивания) зависит от наличия условий, которые вызывают разрушение лабильных сшивающих агентов в лабильных полимерах, связанных в сеть с полимерами первичной микрочастицы. Частицы согласно изобретению могут распространяться в пористой структуре месторождения без использования заданного флюида или флюида более высокой солености, чем соленость флюида месторождения.

Высвобожденные, расширенные полимерные микрочастицы рассчитывают таким образом, чтобы иметь такое распределение частиц по размерам и физические характеристики, например реологию частиц, которые позволяют препятствовать течению закачиваемого флюида в пористой структуре. При этом обеспечивают возможность отклонения прогоняемого флюида в менее тщательно охваченные зоны месторождения.

Реологию и размеры расширенных частиц можно разрабатывать в соответствии с целевым месторождением. Например, на характеристики микрочастиц для использования в конкретном месторождении влияют путем выбора конкретной основной цепи мономера или отношения сомономеров во взаимопроникающем полимере. Другой способ влияния на характеристики микрочастицы состоит в содержании обратимых (лабильных) и необратимых поперечных связей, введенных при изготовлении первичных полимеров в базовой микрочастице или при изготовлении взаимопроникающих полимеров.

Соответственно, задачей изобретения является композиция расширяемых полимерных микрочастиц, содержащая сшитые расширяемые полимерные микрочастицы, которые включают полимеры, образующие взаимопроникающую полимерную сетку. В одном воплощении взаимопроникающая полимерная сетка дополнительно включает один или более лабильных полимеров. Задачей изобретения также является способ изменения водопроницаемости подземного пласта путем закачивания в подземный пласт композиции, включающей сшитые расширяемые полимерные микрочастицы, которые включают взаимопроникающую полимерную сетку.

Краткое описание чертежей

Фиг.1 представляет собой кривую гидролиза, полученную для расширяемой полимерной микрочастицы, включающей взаимопроникающую полимерную сетку, полученную согласно примеру 11.

Фиг.2 представляет собой кривую гидролиза, полученную для расширяемой полимерной микрочастицы, включающей взаимопроникающую полимерную сетку, полученную согласно примеру 12.

Подробное описание изобретения

Определения терминов

Взаимопроникающая полимерная сетка (ВПС) означает сочетание двух различных полимеров, которые не соединены друг с другом ковалентными связями, однако вместо этого взаимодействуют друг с другом другими средствами, благодаря непосредственной близости расположения двух различных полимеров в частицах. Эти другие средства взаимодействия могут включать механические переплетения, ионные взаимодействия или взаимодействия посредством водородной связи, либо по отдельности, либо в сочетании. Механическими переплетениями называют образование петель или закручивание отдельных полимерных цепей каждого различного типа полимера вокруг друг друга. Предпочтительно это выполняют путем последовательного формирования двух полимеров, путем формирования второго полимера в присутствии первого.

«Амфотерная полимерная микрочастица» означает сшитую полимерную микрочастицу, содержащую как катионные заместители, так и анионные заместители, хотя необязательно в одинаковых стехиометрических соотношениях. Типичные амфотерные полимерные микрочастицы включают определенные здесь тройные сополимеры неионных мономеров, анионных мономеров и катионных мономеров. Предпочтительные амфотерные полимерные микрочастицы имеют молярное отношение анионного мономера к катионному мономеру более 1:1.

«Мономер с амфолитной ионной парой» означает кислотно-основную соль основных азотсодержащих мономеров, таких как диметиламиноэтилакрилат (ДМАЭА), диметиламиноэтилметакрилат (ДМАЭМ), 2-метакрилоилоксиэтилдиэтиламин и подобные соединения, и кислотных мономеров, таких как акриловая кислота и сульфоновые кислоты, такие как 2-акриламид-2-метилпропансульфоновая кислота, 2-метакрилоилоксиэтансульфоновая кислота, винилсульфоновая кислота, стиролсульфоновая кислота и подобные соединения.

«Анионный мономер» означает определенный здесь мономер, который обладает кислотной функциональной группой, и его соли присоединения основания. Типичные анионные мономеры включают акриловую кислоту, метакриловую кислоту, малеиновую кислоту, итаконовую кислоту, 2-пропеновую кислоту, 2-метил-2-пропеновую кислоту, 2-акриламид-2-метилпропансульфоновую кислоту, сульфопропилакриловую кислоту и другие растворимые в воде формы этих или других полимеризуемых карбоновых или сульфоновых кислот, сульфометилированный акриламид, аллилсульфоновую кислоту, винилсульфоновую кислоту, четвертичные соли акриловой кислоты и метакриловой кислоты, такие как акрилат аммония и метакрилат аммония, и подобные соединения. Предпочтительные анионные мономеры включают натриевую соль 2-акриламид-2-метилпропансульфоновой кислоты, натриевую соль винилсульфоновой кислоты и натриевую соль стиролсульфоновой кислоты. Более предпочтительной является натриевая соль 2-акриламид-2-метилпропансульфоновой кислоты.

«Анионная полимерная микрочастица» означает сшитую полимерную микрочастицу, имеющую суммарный отрицательный заряд. Типичные анионные полимерные микрочастицы включают сополимеры акриламида и 2-акриламид-2-метилпропансульфоновой кислоты, сополимеры акриламида и акрилата натрия, тройные сополимеры акриламида, 2-акриламид-2-метилпропансульфоновой кислоты и акрилата натрия и гомополимеры 2-акриламид-2-метилпропансульфоновой кислоты. Предпочтительные анионные полимерные микрочастицы получают из неионных мономеров в количестве от примерно 95 до примерно 10 мол.% и анионных мономеров в количестве от примерно 5 до примерно 90 мол.%. Более предпочтительные анионные полимерные микрочастицы получают из акриламида в количестве от примерно 95 до примерно 10 мол.% и 2-акриламид-2-метилпропансульфоновой кислоты в количестве от примерно 5 до примерно 90 мол.%.

«Бетаинсодержащая полимерная микрочастица» означает сшитую полимерную микрочастицу, полученную полимеризацией бетаинового мономера и одного или более неионных мономеров.

«Бетаиновый мономер» означает мономер, содержащий в равных частях функциональные группы, заряженные катионным и анионным образом, так что мономер является суммарно нейтральным. Типичные бетаиновые мономеры включают N,N-диметил-N-акрилоилоксиэтил-N-(3-сульфопропил)-аммоний бетаин, N,N-диметил-N-метакрилоилоксиэтил-N-(3-сульфопропил)-аммоний бетаин, N,N-диметил-N-акриламидопропил-N-(2-карбоксиметил)-аммоний бетаин, N,N-диметил-N-акриламидопропил-N-(2-карбоксиметил)-аммоний бетаин, N,N-диметил-N-акрилоксиэтил-N-(3-сульфопропил)-аммоний бетаин, N,N-диметил-N-акриламидопропил-N-(2-карбоксиметил)-аммоний бетаин, N-3-сульфопропилвинилпиридинаммоний бетаин, 2-(метилтио)этилметакрилоил-8-(сульфопропил)сульфоний бетаин, 1-(3-сульфопропил)-2-винилпиридиний бетаин, N-(4-сульфобутил)-N-метилдиаллиламиноаммоний бетаин (МДАБС), N,N-диаллил-N-метил-N-(2-сульфоэтил)аммоний бетаин и подобные соединения. Предпочтительным бетаиновым мономером является N,N-диметил-N-метакрилоилоксиэтил-N-(3-сульфопропил)-аммоний бетаин.

«Катионный мономер» означает определенную здесь мономерную единицу, которая обладает суммарным положительным зарядом. Типичные катионные мономеры включают четвертичные или кислые соли диалкиламиноалкилакрилатов и метакрилатов, такие как четвертичная соль диметиламиноэтилакрилат-метилхлорид (ДМАЕАМХЧ), четвертичная соль диметиламиноэтилметакрилат-метилхлорид (ДМАЕММХЧ), солянокислая соль диметиламиноэтилакрилата, сернокислая соль диметиламиноэтилакрилата, четвертичная соль диметиламиноэтилакрилат-бензилхлорид (ДМАЕАБХЧ) и четвертичная соль диметиламиноэтилакрилат-метилсульфат, четвертичные или кислые соли диалкиламиноалкилакриламидов и метакриламидов, такие как солянокислая соль диметиламинопропилакриламида, сернокислая соль диметиламинопропилакриламида, солянокислая соль диметиламинопропилметакриламида и сернокислая соль диметиламинопропилметакриламида, метакриламидопропилтриметиламмоний-хлорид и акриламидопропилтриметиламмонийхлорид, а также N,N-диаллилдиалкиламмонийгалогениды, такие как диаллилдиметиламмоний-хлорид (ДАДМАХ). Предпочтительные катионные мономеры включают четвертичную соль диметиламиноэтилакрилат-метилхлорид, четвертичную соль диметиламиноэтилметакрилат-метилхлорид и диаллилдиметиламмоний-хлорид. Более предпочтительным является диаллилдиметиламмонийхлорид.

«Сшивающий мономер» означает этиленненасыщенный мономер, содержащий по меньшей мере две группы этиленненасыщенных связей, который добавляют для ограничения конформации полимерных микрочастиц согласно изобретению. Содержание любых сшивающих агентов, используемых в этих полимерных микрочастицах, выбрано таким, чтобы поддерживать жесткую нерасширяемую конфигурацию микрочастиц. Сшивающие мономеры согласно изобретению включают как лабильные сшивающие мономеры, так и нелабильные сшивающие мономеры.

«Эмульсия», «микроэмульсия» и «обратная эмульсия» означают полимерную эмульсию типа «вода-в-масле», включающую полимерные микрочастицы согласно изобретению в водной фазе, углеводородное масло для масляной фазы, и один или более эмульгаторов для эмульсий типа «вода-в-масле». Эмульсионные полимеры представляют собой непрерывную углеводородную фазу с растворимыми в воде полимерами, диспергированными в углеводородной матрице. Эмульсионный полимер при необходимости «обращают» или преобразуют в форму с непрерывной водной фазой, используя сдвиг, разбавление и, обычно, инвертирующее поверхностно-активное вещество. См. US 3734873, содержание которого включено сюда путем ссылки.

«Подвижность флюида» означает отношение, которое определяет, насколько легко флюид перемещается в пористой среде. Это отношение известно как подвижность и выражено в виде отношения коэффициента проницаемости пористой среды к вязкости для данного флюида.

1. Уравнение 1 для одного флюида х, протекающего в пористой среде

композиция и способ извлечения углеводородных флюидов из подземного   месторождения, патент № 2500711

Когда через конечную точку протекает более одного флюида, необходимо подставить относительные коэффициенты проницаемости в конечной точке вместо абсолютного коэффициента проницаемости, используемого в уравнении 1.

2. Уравнение 2 для флюида x, протекающего в пористой среде в присутствии одного или более других флюидов

композиция и способ извлечения углеводородных флюидов из подземного   месторождения, патент № 2500711

Когда протекают два или более флюида, подвижности флюидов можно использовать для определения отношения подвижностей.

3. Уравнение 3

композиция и способ извлечения углеводородных флюидов из подземного   месторождения, патент № 2500711

Отношение подвижностей применяют при изучении вытеснения флюида, например, при заводнении нефтяного месторождения, где х представляет собой воду, а у представляет собой нефть, так как с ним может быть связана эффективность процесса вытеснения. В качестве общего принципа при отношении подвижности, равном 1, фронт флюида движется почти подобно «пробковому течению», и охват месторождения является хорошим. Когда подвижность воды в десять раз выше по сравнению с нефтью, возникают нестабильности вязкости, известные как «образование языков», и охват месторождения является плохим. Когда подвижность нефти в десять раз выше по сравнению с водой, охват месторождения является почти полным.

«Полимерная микрочастица с ионной парой» означает сшитую полимерную микрочастицу, полученную полимеризацией мономера с амфолитной ионной парой и еще одного анионного или неионного мономера.

«Лабильный сшивающий мономер» означает сшивающий мономер, который можно разлагать при определенных условиях теплоты, pH или их сочетания после того, как он введен в полимерную структуру, чтобы уменьшить степень сшивания в полимерной микрочастице. Вышеупомянутые условия таковы, что они могут разрушать связи в «сшивающем мономере» без существенного разложения остальной основной цепи полимера. Типичные лабильные сшивающие мономеры включают диакриламиды и метакриламиды диаминов, такие как диакриламид пиперазина, акрилатные или метакрилатные сложные эфиры ди-, три-, тетрагидроксисоединений, включая этиленгликольдиакрилат, полиэтиленгликольдиакрилат, триметилолпропантриметакрилат, этоксилированный триметилолтриакрилат, этоксилированный пентаэритрит-тетраакрилат и подобные соединения, дивиниловые или диаллиловые соединения, разделенные посредством азогруппы, такие как диаллиламид 2,2'-азобис(изобутировой кислоты) и сложные виниловые или аллиловые эфиры ди- или трифункциональных кислот. Предпочтительные лабильные сшивающие мономеры включают растворимые в воде диакрилаты, такие как PEG 200 диакрилат и PEG 400 диакрилат, и многофункциональные винильные производные полиспирта, такие как этоксилированный (9-20) триметилолтриакрилат. Лабильный сшивающий агент может присутствовать в количестве от примерно 100 до примерно 200000 частей на млн. В других аспектах лабильные сшивающие агенты присутствуют в количестве от примерно 1000 до примерно 200000 частей на млн, от примерно 9000 до примерно 200000 частей на млн, от примерно 9000 до примерно 100000 частей на млн, от примерно 20000 до примерно 60000 частей на млн, от примерно 1000 до примерно 20000 частей на млн или от примерно 500 до примерно 50000 частей на млн по отношению к общему количеству молей мономера.

«Лабильные полимеры» означают любые сшитые полимеры, в которых по меньшей мере часть поперечных связей является обратимой (лабильной).

«Мономер» означает полимеризуемое аллиловое, виниловое или акриловое соединение. Мономер может быть анионным, катионным, неионным или цвиттер-ионным. Виниловые мономеры являются предпочтительными, акриловые мономеры являются более предпочтительными.

«Неионный мономер» означает определенный здесь мономер, который является электрически нейтральным. Типичные неионные мономеры включают N-изопропилакриламид, N,N-диметилакриламид, N,N-диэтилакриламид, диметиламинопропилакриламид, диметиламинопропилметакриламид, акрилоилморфолин, гидроксиэтилакрилат, гидроксипропилакрилат, гидроксиэтилметакрилат, гидроксипропилметакрилат, диметиламиноэтилакрилат (ДМАЭА), диметиламиноэтилметакрилат (ДМАЭМ), малеиновый ангидрид, N-винилпирролидон, винилацетат и N-винилформамид. Предпочтительные неионные мономеры включают акриламид, N-метилакриламид, N,N-диметилакриламид и метакриламид. Более предпочтительным является акриламид.

«Нелабильный сшивающий мономер» означает сшивающий мономер, который не разлагается при условиях температуры и/или pH, которые могли бы вызвать распад включенного в состав лабильного сшивающего мономера. Нелабильный сшивающий мономер добавляют к лабильному сшивающему мономеру для регулирования расширенной конформации полимерной микрочастицы. Типичные нелабильные сшивающие мономеры включают метиленбисакриламид, диаллиламин, триаллиламин, дивинилсульфон, диаллиловый эфир диэтиленгликоля и подобные соединения. Предпочтительным нелабильным сшивающим мономером является метиленбисакриламид.

В одном аспекте полимеры, образующие ограниченные основные расширяемые микрочастицы, являются сшитыми расширяемыми полимерами с лабильными и нелабильными сшивающими агентами, такими как описанные в патентах US 6454003 В1, US 6709402 В2, US 6984705 B2 и US 7300973 B2 и в опубликованной заявке на патент US 2007/0204989 А1, но не ограничиваются ими. Например, в одном аспекте нелабильный сшивающий агент присутствует в расширяемых микрочастицах в количестве от 0 до примерно 300 частей на млн, в другом аспекте от примерно 2 до примерно 300 частей на млн, в другом аспекте от примерно 0 до примерно 200 частей на млн, в другом аспекте от примерно 0 до примерно 100 частей на млн, в другом аспекте от примерно 0,1 до примерно 300 частей на млн, в другом аспекте от примерно 2 до примерно 300 частей на млн и в другом аспекте от примерно 5 до примерно 300 частей на млн по отношению к общему количеству молей мономера. В отсутствие нелабильного сшивающего агента полимерная частица, после полного распада лабильного сшивающего агента, превращается в смесь линейных полимерных нитей. Дисперсия частиц посредством этого превращается в полимерный раствор. Этот полимерный раствор, благодаря своей вязкости, изменяет подвижность флюида в пористой среде. В присутствии небольшого количества нелабильного сшивающего агента превращение частиц в линейные молекулы является неполным. Частицы становятся слабо связанной сеткой, однако сохраняют определенную «структуру». Такие «структурированные» частицы могут блокировать устья пор пористых сред и вызывать запирание потока.

В другом аспекте полимеры, образующие базовые расширяемые полимерные микрочастицы, представляют собой любые расширяемые полимеры, такие как, но не ограничиваясь ими, сшитые полимеры с нелабильными поперечными связями, которые способны образовывать нерасширенные полимерные частицы размером от примерно 0,05 до примерно 5000 мкм. Подходящие расширяемые полимеры включают, например, поливинилпирролидон, полигидроксиэтилметакрилат и полимеры с полиакрилатными главными цепями и нелабильными мономерными поперечными связями, такие как метиленбисакриламид.

В одном аспекте настоящего изобретения композиция, включающая расширяемые полимерные микрочастицы, содержащие взаимопроникающую полимерную сетку, образует микрочастицы, которые можно использовать преимущественно при добыче углеводородов из подземного пласта. В одном воплощении взаимопроникающая полимерная сетка дополнительно включает один или более лабильных полимеров. Лабильные полимеры являются любыми лабильными полимерами, которые образуют ВПС с основными полимерами в расширяемых полимерных микрочастицах и которые взаимодействуют с полимерными микрочастицами посредством нековалентного взаимодействия. Например, используют ионные связи, механические переплетения или водородные связи или другие связи, которые разрушаются под воздействием активирующих условий или агентов, таких как вода или тепло. Механическими переплетениями называют образование петель или закручивание вокруг друг друга отдельных полимерных цепей в лабильном полимере и в расширяемой первичной микрочастице.

В одном аспекте подходящее механическое переплетение достигается путем последовательного образования двух типов полимеров, где один образуют в присутствии другого, например, путем формирования (проведения реакции полимеризации) лабильных полимеров в присутствии предварительно полученных сшитых расширяемых микрочастиц. Альтернативно, сшитые расширяемые микрочастицы образуют в присутствии предварительно синтезированных лабильных полимеров. При получении таким образом ВПС из двух типов полимеров она получается относительно прочной. Однако подходящие ВПС формируют и путем механических переплетений, получающихся в результате простого сочетания двух групп полимеров после того, как синтезирован каждый из них. Другой тип нековалентного взаимодействия, который подходящим образом стабилизирует ВПС, представляет собой ионное взаимодействие. Ионные взаимодействия образуются между двумя заряженными полимерами (то есть полимерами, несущими заряженные группы), если полимеры обладают противоположными зарядами. Противоположные заряды притягивают друг друга, образуя лабильные ионные связи между составляющими полимерными цепями каждого из двух типов полимеров (полимеры в базисной расширяемой микрочастице и лабильные полимеры). Альтернативно, ионные взаимодействия между двумя различными полимерами, заряженными подобным образом, можно вызвать, используя многовалентный ионный промежуточный продукт с зарядом, противоположным заряду полимеров, который связывается одновременно с обоими полимерами. В примерном воплощении лабильные полимеры получают с использованием лабильных поперечных связей, которые разрушаются под воздействием активирующего фактора или условия, такого как изменение температуры, pH, солености и т.п. В одном аспекте сшивающие агенты разрушаются при более высоких температурах, встречающихся в подземном пласте. После разрушения сшивающих агентов лабильных полимеров ВПС разрушается и обеспечивает возможность расширения или разбухания базисных расширяемых микрочастиц. Примеры подходящих сшивающих агентов для лабильных полимеров включают, но не ограничиваясь этим, сложные диэфиры и другие типы лабильных сшивающих агентов, такие как полиэтиленгликольдиакрилат (например, PEG-200-диакрилат), как подробно описано в US 6454003. Кроме того, в качестве ионных сшивающих агентов для лабильных полимеров можно использовать катионные мономеры сложных эфиров, так как они образуют ионные связи с любыми анионными полимерами, образующими базисную нерасширенную полимерную микрочастицу. При более высоких температурах, встречающихся в пласте, катионные мономерные сложноэфирные звенья гидролизуются, в итоге превращая изначально катионные лабильные полимеры в анионный полимер, который более не способен вступать в ионное взаимодействие с анионными полимерами, образующими базисную нерасширенную полимерную микрочастицу. Примеры подходящих катионных мономеров сложных эфиров для получения лабильных полимеров включают, но не ограничиваясь этим, N,N-диметиламиноэтилакрилат и N,N-диметиламиноэтилметакрилат.

В одном воплощении лабильные полимеры составляют от примерно 1 до примерно 75 масс.% от общего содержания полимеров. В другом воплощении лабильные полимеры составляют от примерно 1 до примерно 25 масс.% от общего содержания полимеров в микрочастицах.

Лабильные полимеры могут быть получены с использованием лабильных сшивающих агентов, которые можно выбирать, исходя из чувствительности к деструкции под воздействием любого из ряда активирующих факторов. Изменения температуры и pH являются примерами активирующих факторов, однако предусматриваются и другие активирующие факторы для достаточной деструкции лабильных поперечных связей в лабильных полимерах, включающие изменения давления, солености, сдвигового усилия или разбавления. Активирующим фактором может быть, например, воздействие активирующего агента, такое как воздействие окислителя, восстановителя, кислоты, основания, биологического агента, органического или неорганического сшивающего агента, или соли, или их сочетания. Под воздействием активирующего фактора и последующей деструкции лабильных полимеров, образующих ВПС с полимерами в базисных микрочастицах, сшитые расширяемые полимерные микрочастицы получают возможность свободно расширяться в несколько раз от первоначального размера микрочастиц, ранее ограниченного ВПС.

Примеры лабильных полимеров, которые можно использовать, включают, например, лабильные полимеры, описанные в патенте US 6616946, включая чувствительные к температуре полимеры (такие, как N-ИПААм), pH-чувствительные полимеры, чувствительные к ионам полимеры, и полимеры, чувствительные ко многим факторам. pH-чувствительные полимеры включают полимеры на основе pH-чувствительных виниловых мономеров, таких как акриловая кислота (АК), метакриловая кислота (МАК), малеиновый ангидрид (МАн), малеиновая кислота (МК), 2-акриламид-2-метил-1-пропансульфоновая кислота (АМПС), N-винилформамид (N-ВФ), М-винилацетамид (N-BA), аминоэтилметакрилат (АЭМА), фосфорилэтилакрилат (ФЭА) или метакрилат (ФЭМА). pH-чувствительные полимеры также можно синтезировать в виде полипептидов из аминокислот (например, полилизин или полиглутаминовая кислота) или получить из натуральных полимеров, таких как протеины (например, лизоцим, альбумин, казеин и т.д.) или полисахариды (например, альгиновая кислота, гиалуроновая кислота, каррагинан, хитозан, карбоксиметилцеллюдоза и т.д.), или нуклеиновых кислот, таких как ДНК. Конкретные примеры pH-чувствительных полимеров включают сополимер дериватизированного 4-амино-N-[4,6-диметил-2-пиримидинил]-бензолсульфонамида и N,N-диметилакриламида, сополимер гидроксиэтилметакрилата и метакриловой кислоты и сополимер N,N-диметиламиноэтилметакрилата и дивинилбензола. Чувствительные к ионам полимеры включают полисахариды, такие как каррагинан, которые изменяют свою конформацию, например со статистической на упорядоченную конформацию, в зависимости от воздействия определенных ионов, или такие полимеры, как полимеры с боковыми ионными хелатирующими группами, такие как, например, гистидин или ЭДТК. Также можно использовать полимеры, чувствительные к двум или многим факторам.

Предпочтительные воплощения

В одном аспекте основные полимерные микрочастицы состоят из сшитых расширяемых полимерных микрочастиц, которые получают, используя способ обратной эмульсии или микроэмульсии для обеспечения определенного диапазона размера частиц. В одном воплощении средний диаметр полимерных микрочастиц неувеличенного объема составляет от примерно 0,05 до примерно 5000 мкм. В другом воплощении размер частиц составляет от примерно 0,05 до примерно 50 мкм. В другом воплощении размер частиц составляет от 0,1 до примерно 3 мкм. В другом воплощении размер частиц составляет от примерно 0,1 до примерно 1 мкм, включая лабильные полимеры, образующие ВПС с полимерами расширяемых микрочастиц.

Типичные способы получения сшитых расширяемых полимерных микрочастиц с использованием микроэмульсионного способа описаны в патентах US 4956400, US 4968435, US 5171808, US 5465792 и US 5737349.

В способе обратной эмульсии или микроэмульсии водный раствор мономеров и сшивающих агентов добавляют к углеводородной жидкости, содержащей подходящее поверхностно-активное вещество или смесь поверхностно-активных веществ, с образованием обратной мономерной микроэмульсии, состоящей из мелких водных капель, диспергированных в непрерывной углеводородной жидкой фазе, и проводят свободнорадикальную полимеризацию микроэмульсии мономеров.

Помимо мономеров и сшивающих агентов, водный раствор может также содержать другие традиционные добавки, включающие хелатирующие агенты для удаления ингибиторов полимеризации, регуляторы pH, инициаторы и другие традиционные добавки.

Углеводородная жидкая фаза включает углеводородную жидкость или смесь углеводородных жидкостей. Предпочтительными являются насыщенные углеводороды или их смеси. Обычно углеводородная жидкая фаза включает бензол, толуол, нефтяное топливо, керосин, непахучие уайт-спириты и смеси любых из перечисленных соединений.

Описанные здесь поверхностно-активные вещества, пригодные для использования в способе полимеризации микроэмульсий, включают сорбитановые сложные эфиры жирных кислот, этоксилированные сорбитановые сложные эфиры жирных кислот и т.п., или их смеси. Предпочтительные эмульгаторы включают этоксилированный сорбитол-олеат и сорбитан-сесквиолеат. Дополнительные сведения об этих агентах можно найти в кн. McCutcheon. Detergents and Emulsifiers, North American Edition, 1980.

Полимеризацию в эмульсии можно выполнять любым способом, известным специалистам в данной области техники. Инициирование можно проводить с помощью различных термических и окислительно-восстановительных инициаторов образования свободных радикалов, включающих азо-соединения, такие как азобисизобутиронитрил; пероксиды, такие как третбутилпероксид; органические соединения, такие как персульфат калия, и окислительно-восстановительные пары, такие как бисульфит натрия/бромат натрия. Получение водного продукта из эмульсии можно осуществлять путем инверсии, посредством добавления ее в воду, которая может содержать инвертирующее поверхностно-активное вещество. Затем можно образовать ВПС, осуществляя полимеризацию лабильных полимеров в присутствии ранее образованных микрочастиц.

Альтернативно, полимерные микрочастицы, сшитые с помощью лабильных поперечных связей, получают путем внутреннего сшивания полимерных частиц, которые содержат полимеры с боковыми группами карбоновой кислоты и гидроксильными группами. Сшивание достигается посредством образования сложных эфиров из карбоновой кислоты и гидроксильных групп. Этерификацию можно выполнять путем азеотропной перегонки (патент US 4599379) или технологии тонкопленочного испарения (патент US 5589525) для удаления воды. Например, полимерные микрочастицы, получаемые способом полимеризации обратной эмульсии с использованием в качестве мономера акриловой кислоты, 2-гидроксиэтилакрилата, акриламида и 2-акриламид-2-метилпропансульфоната натрия, превращают в сшитые полимерные частицы путем описанных выше процессов дегидратации.

При необходимости, полимерные микрочастицы получают в сухой форме путем добавления эмульсии к растворителю, который вызывает осаждение полимера, такому как изопропанол, изопропанол/ацетон или метанол/ацетон, или другим растворителям или смеси растворителей, которые смешиваются как с углеводородом, так и с водой, и фильтрования и сушки получаемого твердого вещества.

Водную суспензию полимерных микрочастиц получают путем повторного диспергирования сухого полимера в воде.

В другом воплощении изобретения предложен способ изменения коэффициента проницаемости воды в подземном пласте путем закачивания в подземный пласт композиции, включающей взаимопроникающую полимерную сетку. В одном воплощении взаимопроникающая полимерная сетка дополнительно включает один или более лабильных полимеров. Микрочастицы, включающие ВПС, имеют средний диаметр неувеличенного объема от примерно 0,05 до примерно 5000 мкм и имеют меньший диаметр, чем поры в подземном пласте, и разрушаются при изменении условий окружающей среды в подземном пласте так, что обеспечивают возможность свободного расширения расширяемых полимерных микрочастиц. Тогда композиция протекает через зону или зоны с относительно высокой проницаемостью в подземном пласте в условиях увеличивающейся температуры, пока композиция не достигает места, где температура или pH являются достаточно высокими, например, чтобы способствовать разрушению лабильных поперечных связей в лабильных полимерах и вызвать расширение микрочастиц посредством поглощения несущего флюида, обычно воды.

В одном воплощении в подземный пласт добавляют от примерно 100 частей на млн до примерно 100000 частей на млн композиции, в расчете на активные полимерные вещества. В другом воплощении в подземный пласт добавляют от примерно 500 частей на млн до примерно 10000 частей на млн композиции. В другом воплощении в подземный пласт добавляют от примерно 500 частей на млн до примерно 1000 частей на млн композиции. Подземный пласт представляет собой, например, углеводородное месторождение в песчанике или карбонатной горной породе. В одном воплощении композицию добавляют в закачиваемую воду в качестве части способа вторичной или третичной добычи углеводородов из подземного пласта. Закачиваемую воду добавляют в подземный пласт, например, в эксплуатационную скважину, при более низкой температуре, чем температура подземного пласта. Более высокая температура внутри пласта вызывает разрушение лабильных полимеров ВПС. В другом аспекте способ может дополнительно включать внесение изменения в условия среды, окружающей композицию, при котором данное изменение вызывает разрушение лабильных полимеров. Изменение условий окружающей среды может представлять собой изменение давления, солености, сдвигового усилия или разбавление композиции.

В отличие от традиционных блокирующих агентов, таких как полимерные растворы и полимерные гели, которые не могут проникать далеко и глубоко в пласт, композиция по этому изобретению, благодаря размеру частиц и низкой вязкости, может распространяться далеко от места закачивания до тех пор, пока она не будет активирована для расширения посредством ее нахождения в высокотемпературной зоне в течение достаточного времени.

Кроме того, варианты полимерных микрочастиц согласно изобретению являются сильно сшитыми и не расширяются в растворах различной солености, если для лабильных полимеров не выбирают лабильные сшивающие агенты, чувствительные к изменениям солености. Следовательно, соленость флюида, встречающегося в подземном пласте, не влияет на вязкость дисперсии. Соответственно для обработки не требуется никакого специального флюида-носителя. Только после того, как частицы сталкиваются с условиями, достаточными для снижения плотности сшивания в лабильных полимерах, реология флюида изменяется с достижением требуемого эффекта.

Среди других факторов, снижение плотности сшивания зависит от скорости расщепления лабильного сшивающего агента. В частности, различные лабильные сшивающие агенты имеют различные скорости разрыва связей при различных температурах. Температура и механизм зависят от природы сшивающих химических связей. Например, когда лабильный сшивающий агент представляет собой ПЭГ-диакрилат, механизм разрыва поперечных связей представляет собой гидролиз сложноэфирной связи. Различные спирты имеют немного различные скорости гидролиза. В общем, метакрилатные сложные эфиры гидролизуются с меньшей скоростью, чем акрилатные сложные эфиры при аналогичных условиях. В случае дивиниловых или диаллиловых соединений, разделенных посредством азо-группы, таких как диаллиламид 2,2'-азобисизубутировой кислоты, механизм разрыва поперечных связей представляет собой отщепление молекулы азота. Как продемонстрировано на примере различных азо-инициаторов свободнорадикальной полимеризации, различные азо-соединения действительно имеют различные температуры полуразложения.

Помимо скорости разрыва поперечных связей в лабильных полимерах, на общее количество остающихся поперечных связей также может влиять скорость увеличения диаметра частиц. Авторы наблюдали, что расширяемые сшитые частицы расширяются вначале постепенно, по мере того, как сначала уменьшается количество поперечных связей. После того как общее количество поперечных связей становится меньше количества, соответствующего определенной критической плотности, вязкость резко увеличивается. Таким образом, путем правильного выбора лабильного сшивающего агента в лабильных полимерах можно задавать как зависящие от температуры, так и зависящие от времени свойства расширения расширяемых полимерных частиц, содержащих ВПС.

Размер полимерных частиц перед расширением выбирают на основе расчетного размера пор зоны поглощения с наиболее высокой проницаемостью. Тип сшивающего агента и концентрация, и, следовательно, время задержки до того, как закачанные частицы начинают расширяться, основаны на температуре как вблизи нагнетательной скважины, так и глубже в пласте, ожидаемой скорости перемещения закачанных частиц через зону поглощения и на том, насколько легко вода может перетекать из зоны поглощения в прилегающие зоны с более низкой проницаемостью, содержащие углеводороды. Композиция полимерных микрочастиц, разработанная с учетом вышеописанных соображений, приводит к лучшему водяному барьеру после расширения частиц и к более оптимальному положению в пласте.

Вышеизложенное можно лучше понять при рассмотрении следующих примеров, которые представлены с целью иллюстрации и не подразумевают ограничение объема защиты данного изобретения.

Примеры

Примеры 1-8. Получение расширяемых полимерных микрочастиц

Типичные расширяемые сшитые полимерные микрочастицы для получения ВПС микрочастиц по этому изобретению легко получают, используя методики полимеризации в обратной эмульсии, как описано ниже.

Типичную композицию эмульсионного полимера получают полимеризацией эмульсии мономеров, состоящей из водной смеси 164,9 г 50% акриламида, 375,1 г 58% акриламидометилпропансульфоната натрия (АМПС), 16,38 г воды, 0,5 г 40% пентанатриевой соли диэтилентриаминопентауксусной кислоты, 3,2 г 1-процентного раствора метиленбисакриламида (МБА) и 36,24 г полиэтиленгликоль(ПЭГ)-диакрилата в качестве дисперсной фазы и смеси 336 г нефтяного дистиллята, 60 г этоксилированного сорбитололеата и 4 г сорбитансесквиолеата в качестве непрерывной фазы.

Эмульсию мономеров получают путем смешивания водной фазы и нефтяной фазы, затем гомогенизируют, используя гомогенизатор Сильверсона. После деоксигенирования азотом в течение 30 минут, полимеризацию инициируют с помощью окислительно-восстановительной пары бисульфит натрия/бромат натрия при комнатной температуре. Температуру полимеризации не регулируют. В общем, теплота полимеризации повышает температуру от примерно 25°С до примерно 80°С менее чем за 5 минут. После того как температура достигает максимума, реакционную смесь выдерживают при примерно 75°С еще в течение 2 часов.

При необходимости, полимерные микрочастицы можно изолировать от латекса путем осаждения, фильтрования и промывки смесью ацетона и изопропанола. После сушки нефть и частицы, не содержащие поверхностно-активного вещества, можно повторно диспергировать в водных средах. Средний размер этих латексных частиц, измеренный в деионизированной воде с использованием Malvern Instruments' Mastersizer Е, составляет 0,28 мкм.

В таблице 1 представлены типичные эмульсионные полимеры, полученные согласно способу примера 1.

композиция и способ извлечения углеводородных флюидов из подземного   месторождения, патент № 2500711

Пример 9. Получение катионных лабильных полимеров, образующих ВПС с расширяемыми полимерными микрочастицами

Получают полимерные микрочастицы, описанные в примерах 1-8, в водном растворе. Исходя из водной суспензии любых из полимерных микрочастиц, описанных в примерах 1-8, в суспензию дополнительно вводят водный раствор четвертичного аммониевого соединения N,N-диметиламиноэтилакрилат-метилхлорид и акриламида. Катионный сложный эфир и мономеры акриламида диффундируют во внутренние части микрочастиц физически очень близко к полимерным цепям полимеров, составляющих микрочастицы. Затем к смеси добавляют в качестве свободнорадикального инициатора азобисизобутиронитрил, и мономеры полимеризуют с образованием лабильного полимерного компонента ВПС.

При необходимости полимерные микрочастицы можно выделить из латекса путем осаждения, фильтрования и промывки смесью ацетона и изопропанола. После сушки частицы, не содержащие нефтепродукта и поверхностно-активного вещества, можно повторно диспергировать в водных средах.

Пример 10. Получение сшитых лабильных полимеров, образующих ВПС с расширяемыми полимерными микрочастицами

Получают полимерные микрочастицы, описанные в примерах 1-8, в водном растворе. Исходя из водной суспензии любых из полимерных микрочастиц, описанных в примерах 1-8, в суспензию дополнительно вводят 50% акриламид, 58% Na АМПС и ПЭГ-200-диакрилат. Затем к смеси добавляют в качестве свободнорадикального инициатора азобисизобутиронитрил, и мономеры полимеризуют с образованием лабильного полимерного компонента ВПС.

При необходимости полимерные микрочастицы можно выделить из латекса путем осаждения, фильтрования и промывки смесью ацетона и изопропанола. После сушки частицы, не содержащие нефтепродукта и поверхностно-активного вещества, можно повторно диспергировать в водных средах.

Пример 11.

Типичную композицию эмульсионного полимера получают полимеризацией эмульсии мономеров, состоящей из водной смеси 61,35 г 50% акриламида, 18,76 г 58% акриламидометилпропансульфоната натрия (АМПС), 2,48 г воды, 0,03 г ЭДТК и 0,075 г 1% метиленбисакриламида в качестве дисперсной фазы и смеси 101,3 г нефтяного дистиллята, 24,0 г этоксилированного сорбитололеата и 6,05 г сорбитансесквиолеата в качестве непрерывной фазы. Эмульсию мономеров получают путем смешивания водной фазы и нефтяной фазы. После деоксигенирования азотом в течение 30 минут, полимеризацию инициируют с помощью окислительно-восстановительной пары бисульфит натрия/бромат натрия при комнатной температуре. Температуру полимеризации не регулируют. После того как температура полимеризации достигала максимума, выжидали 30 минут и затем добавляли вторую часть мономеров, смешивали и продували N2 в течение еще одного часа при комнатной температуре. Вторую часть мономеров получают аналогично первой половине, за исключением того, что метиленбисакриламид заменяют на 0,60 г полиэтиленгликоль(ПЭГ)диакрилата. После одного часа смешивания и продувки инициируют полимеризацию с помощью окислительно-восстановительной пары бисульфит натрия/бромат натрия при комнатной температуре. После того, как температура достигала максимума, реакционную смесь поддерживают при 50°С еще в течение 2 часов.

Пример 12.

Типичную композицию эмульсионного полимера получают полимеризацией эмульсии мономеров, состоящей из водной смеси 98,16 г 50% акриламида, 30,02 г 58% акриламидометилпропансульфоната натрия (АМПС), 3,96 г воды, 0,048 г ЭДТК и 0,12 г 1% метиленбисакриламида в качестве дисперсной фазы и смеси 101,3 г нефтяного дистиллята, 24,0 г этоксилированного сорбитололеата и 6,05 г сорбитансесквиолеата в качестве непрерывной фазы. Эмульсию мономеров получают путем смешивания водной фазы и нефтяной фазы. После деоксигенирования азотом в течение 30 минут инициируют полимеризацию с помощью окислительно-восстановительной пары бисульфит натрия/бромат натрия при комнатной температуре. Температуру полимеризации не регулируют. После того как температура полимеризации достигала максимума, выжидали 30 минут и затем добавляли вторую часть мономеров, смешивали и продували Ns в течение еще одного часа при комнатной температуре. Вторую часть мономеров получают из водной смеси 24,54 г 50% акриламида, 7,50 г 58% акриламидометилпропансульфоната натрия (АМПС), 0,99 г воды, 0,012 г ЭДТК и 0,344 г полиэтиленгликоль(ПЭГ)-диакрилата, смешанных в качестве раствора. Полимеризацию инициируют с помощью окислительно-восстановительной пары бисульфит натрия/бромат натрия при комнатной температуре. После того как температура достигала максимума, реакционную смесь поддерживают при 50°С еще в течение 2 часов.

Пример 13. Активация полимерных микрочастиц теплом

По мере того как частицы расширяются в среде фиксированного объема, доля занимаемого ими объема увеличивается. Следовательно, доля объема непрерывной фазы уменьшается. Уменьшение свободного объема выражается в увеличении вязкости дисперсии. Активацию теплом микрочастиц согласно изобретению демонстрируют в испытании с отбором проб в бутылки.

Для выполнения испытания с отбором проб в бутылки в водной среде (например, синтетический соляной раствор) получают дисперсию, содержащую 5000 частей на млн частиц. Диспергирование частиц выполняют путем интенсивного перемешивания или с использованием гомогенизатора. Для предотвращения окислительной деструкции расширяющихся частиц во время наблюдения в смесь добавляют 1000 частей на млн тиосульфата натрия в качестве поглотителя кислорода.

Бутылки устанавливают в печь при постоянной температуре для выдержки. Затем в заданное время бутылки извлекают из печи и охлаждают до температуры 24°С (75°F). Вязкость измеряют при 24°С (75°F) с использованием шпинделя № 1 Brookfield LV при 60 об/мин (скорость сдвига 13,2 с -1).

Активация полимерных микрочастиц теплом характеризуется путем наблюдения изменения вязкости водных дисперсий частиц, выдерживаемых в течение возрастающих периодов времени и при различных температурах.

На Фиг.1 и Фиг.2 показаны кривые гидролиза, полученные из примеров 11 и 12 соответственно. Тип ВПС сеток различен для этих примеров. В примере 11 показана взаимопроникающая сетка, полученная с 50% нелабильных и 50% лабильных сшивающих агентов, тогда как в примере 12 показана сетка с 80% нелабильных и 20% лабильных сшивающих агентов. Гидролиз этих образцов проводят при 70°С в синтетическом растворе морской соли, причем оба образца показывают увеличение вязкости после расширения частиц, вызванного гидролизом.

Пример 14. Испытание с гравийным фильтром

Этот пример показывает, что можно распространять полимерные микрочастицы согласно изобретению с конформацией, частично ограниченной ВПС, и эти частицы увеличиваются в размерах при ее разрушении с образованием частиц подходящего размера для получения значительного эффекта.

В испытании с гравийным фильтром гравийный фильтр длиной 12,19 м (40 футов) и внутренним диаметром 0,635 см (0,25 дюйма), выполненный из трубок из обезжиренной и очищенной нержавеющей стали 316, собирали в виде восьми секций, оборудовали датчиками давления, продували газообразным диоксидом углерода и затем помещали в печь и заводняли модельной водой, закачиваемой в месторождение нефти.

Получали дисперсию типичных полимерных микрочастиц в модельной закачиваемой воде и закачивали ее в фильтр для заполнения объема пор. Наблюдали разность давления в трубчатых секциях для обнаружения признаков изменения конформации полимерной частицы по мере гидролиза лабильных элементов в композиции микрочастицы. «Внезапное вспучивание» полимерных частиц наблюдали как резкий рост разности давления. Испытание с гравийным фильтром описано подробно в WO 01/96707.

Данные для типичных полимерных микрочастиц показывают, что частицы способны перемещаться через первые две секции гравийного фильтра без изменения RRF (Residual Resistance Factor - остаточный фактор сопротивления) секций. Однако после достижения достаточного времени пребывания частицы в последней секции увеличивались в объеме и обеспечивали более высокое значение RRF. Более высокое значение RRF сохраняется после замены закачанного флюида с полимерной дисперсии на соляной раствор.

Этот эксперимент показывает, что композицию полимерных микрочастиц с конформацией микрочастицы, ограниченной присущими ей лабильными элементами, можно распространять в пористых средах. Микрочастицы увеличиваются в размерах, когда лабильные элементы, такие как поперечные связи, разрушаются с образованием частиц подходящего размера для получения значительного эффекта, даже в пористых средах с высокой проницаемостью.

Необходимо понимать, что конкретные воплощения настоящих идей в изложенном здесь виде не являются исчерпывающими или ограничивающими и что обычному специалисту в данной области техники ясно видно множество альтернатив, модификаций и изменений в свете вышеизложенных примеров и подробного описания. Соответственно, настоящие идеи подразумевают включение в себя всех таких альтернатив, модификаций и изменений, которые находятся в пределах сущности и объема защиты нижеследующей формулы изобретения.

Все публикации, патенты, заявки на патент и другие документы, которые упоминаются в описании, включены во всей их полноте в этот документ посредством ссылки так, как если бы было указано, что каждая индивидуальная публикация, патент, заявка на патент или другой документ специально и в отдельности включены путем ссылки.

Класс C09K8/508 высокомолекулярные соединения

способ изоляции водопроявляющих пластов при строительстве скважины -  патент 2526061 (20.08.2014)
полимерный состав для внутрипластовой водоизоляции -  патент 2524738 (10.08.2014)
способ получения акрилового реагента для ограничения притока вод в нефтяном пласте -  патент 2517558 (27.05.2014)
способ связывания немонолитных оксидных неорганических материалов этерифицированными аминопласт-смолами, отвержденные композиции из этих материалов и этерифицированные аминосмолы -  патент 2516505 (20.05.2014)
способ изоляции зон водопритока в скважине -  патент 2507377 (20.02.2014)
композиция и способ извлечения углеводородных флюидов из подземного месторождения -  патент 2505578 (27.01.2014)
блоксополимеры для извлечения углеводородных флюидов из подземного месторождения -  патент 2502775 (27.12.2013)
композиция и способ извлечения углеводородных флюидов из подземного месторождения -  патент 2499021 (20.11.2013)
водорастворимые и биологически разлагаемые сополимеры на основе полиамида и их применение -  патент 2451034 (20.05.2012)
способ экспресс-ремонта по восстановлению герметичности газо-водо-нефтепроявляющих скважин -  патент 2447257 (10.04.2012)

Класс C09K8/512 содержащие сшивающие агенты

гелеобразующие жидкости для обработки, содержащие соли четвертичного аммония в качестве модификаторов времени гелеобразования, и способы их использования -  патент 2517342 (27.05.2014)
способ связывания немонолитных оксидных неорганических материалов этерифицированными аминопласт-смолами, отвержденные композиции из этих материалов и этерифицированные аминосмолы -  патент 2516505 (20.05.2014)
композиция и способ отвода закачиваемых флюидов для достижения улучшенной добычи углеводородных флюидов -  патент 2511444 (10.04.2014)
блоксополимеры для извлечения углеводородных флюидов из подземного месторождения -  патент 2502775 (27.12.2013)
композиция и способ извлечения углеводородных флюидов из подземного месторождения -  патент 2501830 (20.12.2013)
композиция и способ извлечения углеводородных флюидов из подземного месторождения -  патент 2500712 (10.12.2013)
способы использования добавок, содержащих микрогели, для контроля потери текучей среды -  патент 2493190 (20.09.2013)
сшиваемая композиция и способ ее применения -  патент 2450040 (10.05.2012)
способ изоляции притока воды в скважину -  патент 2426863 (20.08.2011)
гелеобразующий состав для ограничения притока вод в скважину -  патент 2418030 (10.05.2011)

Класс C09K8/588 характеризующиеся использованием особых полимеров

способ снижения вязкости углеводородов -  патент 2528344 (10.09.2014)
усовершенствование способа добычи нефти с использованием полимера без дополнительного оборудования или продукта -  патент 2528186 (10.09.2014)
жидкости для технического обслуживания ствола скважины, содержащие катионные полимеры, и способы их применения -  патент 2527102 (27.08.2014)
композиция и способ отвода закачиваемых флюидов для достижения улучшенной добычи углеводородных флюидов -  патент 2511444 (10.04.2014)
блоксополимеры для извлечения углеводородных флюидов из подземного месторождения -  патент 2502775 (27.12.2013)
композиция и способ извлечения углеводородных флюидов из подземного месторождения -  патент 2501830 (20.12.2013)
композиция и способ извлечения углеводородных флюидов из подземного месторождения -  патент 2500712 (10.12.2013)
композиция и способ извлечения углеводородных флюидов из подземного месторождения -  патент 2499021 (20.11.2013)
состав для регулирования разработки нефтяных месторождений (варианты) -  патент 2429270 (20.09.2011)
микроэмульсия для добычи нефти -  патент 2382065 (20.02.2010)
Наверх