способ стабилизации механических характеристик изделий из твердых сплавов
Классы МПК: | B22F3/24 последующая обработка заготовок или изделий C22F3/00 Изменение физической структуры цветных металлов или их сплавов особыми физическими способами, например обработкой нейтронами |
Автор(ы): | Коршунов Анатолий Борисович (RU), Ковальков Валерий Константинович (RU), Семенов Виктор Никанорович (RU), Вологдин Эрих Николаевич (RU), Аникин Вячеслав Николаевич (RU), Шахова Кира Ивановна (RU), Жуков Юрий Николаевич (RU), Нарва Валентина Константиновна (RU), Павлов Сергей Александрович (RU), Сухорукова Софья Евгеньевна (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) (RU) |
Приоритеты: |
подача заявки:
2011-12-14 публикация патента:
20.08.2014 |
Изобретение относится к металлургии, преимущественно к способам модификации изделий из твердых сплавов, применяемых для холодной и горячей механической обработки металлов и металлических сплавов, например, резанием. Твердосплавное изделие облучают быстрыми электронами при флюенсах, меньших 1·1012 эл/см2, и проводят стабилизирующий отжиг в интервале температур от 200 до 350 °С. Обеспечивается стабилизация механических характеристик. 5 ил.
Формула изобретения
Способ обработки твердосплавных изделий, включающий облучение твердосплавного изделия и стабилизирующий отжиг радиационных дефектов, отличающийся тем, что облучение осуществляют быстрыми электронами при флюенсах, меньших 1·1012 эл/см 2, а стабилизирующий отжиг проводят в интервале температур от 200 до 350 °С.
Описание изобретения к патенту
Изобретение относится к области металлургии, преимущественно к способам модификации изделий из твердых сплавов, применяемых для холодной и горячей механической обработки металлов и металлических сплавов, например, резанием.
Наиболее близким к заявляемому изобретению является способ стабилизации электрических характеристик полупроводниковых приборов после радиационной обработки посредством стабилизирующего отжига [1]. Сущность этого способа состоит в облучении полупроводниковых приборов большими дозами ионизирующего излучения с последующим отжигом радиационных дефектов таким образом, чтобы оставшаяся их часть обеспечивала придание приборам требуемых свойств. К недостаткам способа следует отнести большую длительность процесса облучения и необходимость использования относительно высоких температур отжига.
Предлагаемое изобретение направлено на упрощение способа и применение его к иному классу задач: стабилизации механических характеристик твердосплавных изделий, облученных сравнительно малыми дозами ионизирующей радиации.
Указанный результат достигается тем, что облучение твердосплавных изделий быстрыми электронами ведут флюенсами, меньшими 1012 эл./см2, а стабилизирующий отжиг проводят в интервале температур от 200 до 350 градусов Цельсия.
Отличительными признаками заявляемого изобретения являются:
- использование флюенсов быстрых электронов, меньших 1012 эл/см 2,
- интервал температур стабилизирующего отжига от 200 до 350 градусов Цельсия.
Верхний предел флюенсов используемых в изобретении быстрых электронов определен нами экспериментально при исследовании дозовой зависимости микротвердости облученных образцов твердого сплава ВК8. Интервал температур стабилизирующего отжига определен нами экспериментально в процессе исследований изохронного и изотермического отжигов и последующего старения облученных образцов твердого сплава ВК6.
Сущность заявленного изобретения поясняется нижеследующим описанием.
В качестве метода исследования механических характеристик твердых сплавов использовали измерение микротвердости [2]. Микротвердость является интегральной характеристикой целого ряда механических свойств: предела упругости, модуля упругости, пластичности, прочности и др. [3]. Микротвердость по Виккерсу Hv определяется выражением
где P - нагрузка, d - диагональ отпечатка, оставляемого на поверхности исследуемого материала алмазной пирамидкой микротвердомера.
Если Р выражено в Г, a d - в микронах, то размерность Hv - кГ/мм2. В микротвердомере ПМТ-3, которым пользовались при измерениях, для получения значений d в микронах разность отсчетов по лимбу прибора необходимо умножить на 0,3. Отсюда получаем удобную расчетную формулу
которой пользовались при определении Hv.
Поскольку в формулах (1) и (2) в знаменателе стоит квадрат d или , при вычислении Hv относительная погрешность удваивается по сравнению с относительной погрешностью определения d или . Поэтому в дальнейшем на фиг.1-5 приведены значения d eff= .
В ходе исследования дозовой зависимости облученных быстрыми электронами образцов твердого сплава ВК8 обнаружено измерениями на микротвердомере ПМТ-3, что флюенс Ф=1·10 11 эл/см2 обеспечивает максимальное увеличение микротвердости облученных образцов, тогда как при переходе к флюенсу Ф=1·1012 эл/см2 наблюдается резкое падение значений микротвердости (см. табл.1). Поэтому при исследовании стабилизирующего отжига выбрали единое значение флюенса быстрых электронов, равное 1·1011 эл/см 2.
Результаты исследований старения образцов твердого сплава ВК6 после стабилизирующих отжигов представлены на фиг.1-5. На них зависимости как функции от времени старения изображены сплошными толстыми линиями темно-синего цвета. Тонкими линиями малинового цвета изображены значения , где - среднее квадратическое отклонение, тонкими линиями красного цвета - значения . Штриховыми линиями темно-синего цвета, параллельными оси абсцисс, обозначены интервалы значений , после облучения быстрыми электронами до отжигов.
На фиг.1 приведен график от tстар для образца № XII-6, подвергнутого термообработке при Tотж =200°C. Большинство экспериментальных точек лежит в пределах погрешности измерений после электронного облучения, отмеченных пунктирными линиями, параллельными оси абсцисс. Лишь некоторые точки (при tстар=50,65 и 140 дн.) лежат ниже полосы погрешностей, т.е. здесь микротвердость значимо выше, чем после облучения. Таким образом, можно сделать вывод, что изотермический отжиг при 200°C стабилизирует по крайней мере на полгода микротвердость на облученной электронами поверхности образца.
На фиг.2 приведен график от tстар для образца № XII-5, старение которого было исследовано после последней точки изохронного отжига, равной 280°C. Все экспериментальные точки (кроме одной при tстар=67 дн.) лежат внутри полосы погрешностей .
Итак, отжиги как при 200°С, так и при 280°С приводят к требуемым результатам: либо к сохранению значений микротвердости, созданных облучением, либо к увеличению этих значений.
На фиг.3 приведен график от tстар для образца № XII-9, старение которого исследовано после изотермического отжига в вакууме при температуре 350°C. Почти все экспериментальные точки лежат внутри полосы погрешностей .
На фиг.4 приведен график от tстар для образца № XII-7, старение которого исследовано после изотермического отжига в вакууме при 400°C. На графике вначале наблюдается уменьшение (т.е. увеличение Hv), но начиная с tстар =39 дн. происходит существенное увеличение , причем оно выходит за пределы полосы погрешностей .
На фиг.5 приведен график от tстар для образца № XII-8, старение которого исследовано после изотермического отжига в вакууме при 500°C. Ход (tстар) подобен ходу для Т=400°C, но, по-видимому, вследствие больших значений погрешностей, чем на фиг.4, на фиг.5 значения , как правило, лежат внутри полосы погрешностей .
Итак, можно сделать вывод, что отжиг в интервале температур 200°C-350°C приводит к стабилизации значений микротвердости после электронного облучения, а следовательно, и механических характеристик твердых сплавов.
Источники информации
1. Радиационные методы в твердотельной электронике / Вавилов B.C., Горин В.М., Далинин М.С., Кив А.Е., Муров Ю.Л., Шаховцов В.И. // М.: Радио и связь, 1990. - 184 с.
2. Глазов В.М., Вигдорович В.Н. Микротвердость металлов. М.: Металлургия, 1969. - 248 с.
3. Современная кристаллография. М.: Наука, 1981. - Т.4. Физические свойства кристаллов. Гл.2. Урусовская А.А. Механические свойства кристаллов. - С.47-152.
Класс B22F3/24 последующая обработка заготовок или изделий
Класс C22F3/00 Изменение физической структуры цветных металлов или их сплавов особыми физическими способами, например обработкой нейтронами