Сборка устройств или систем из отдельно обработанных компонентов, подвергающихся обработке – B81C 3/00

МПКРаздел BB81B81CB81C 3/00
Раздел B РАЗЛИЧНЫЕ ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ; ТРАНСПОРТИРОВАНИЕ
B81 Микроструктурные технологии
B81C Способы или устройства, специально предназначенные для изготовления или обработки микроструктурных устройств или систем
B81C 3/00 Сборка устройств или систем из отдельно обработанных компонентов, подвергающихся обработке

Патенты в данной категории

СПОСОБ СБОРКИ ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА МИКРОМЕХАНИЧЕСКОГО ДАТЧИКА

Изобретение относится к области приборостроения и может быть использовано при изготовлении чувствительных элементов, применяемых при изготовлении микромеханических акселерометров, микрогироскопов, интегральных датчиков давления. Задачей, на решение которой направлено изобретение, является упрощение и уменьшение технологического цикла сборки чувствительного элемента микромеханического датчика. В способе сборки чувствительного элемента микромеханического датчика совмещают стеклянную обкладку и кристалл из монокристаллического кремния, устанавливают и зажимают в специальном приспособлении, разогревают, выдерживают при заданной температуре и подают необходимое напряжение. При этом совмещают одновременно две стеклянные обкладки и кристалл из монокристаллического кремния, находящийся между ними, разогревают их до температуры 410°C, выдерживают 1,5 часа, подают напряжение на обе обкладки не меньше, чем на две минуты, отключают напряжение, меняют полярность напряжения, снова подают напряжение и повторяют цикл изменения полярности не менее трех раз. 1 ил.

2525715
выдан:
опубликован: 20.08.2014
СПОСОБ СБОРКИ МИКРОЭЛЕКТРОМЕХАНИЧЕСКИХ УСТРОЙСТВ

Использование: область микроэлектроники, а именно сборка микроэлектромеханических устройств и систем (МЭМС) на основе пьезоэлектрического кварца. Технический результат: повышение надежности функционирования в условиях высоких комплексных внешних воздействий. Сущность: способ включает выполнение на контактных площадках первичного преобразователя (ПП) кристаллического типа объемных токовыводов (ОВ) методом термозвуковой микросварки с последующей установкой ПП на плату вторичного преобразователя МЭМС. При этом предварительно осуществляют высокотемпературную сборку ПП, состоящего из чувствительного элемента ЧЭ и других функциональных элементов МЭМС, которую проводят при температуре не более 500°C, после чего к объемным токовыводам, выполненным на контактных площадках ПП, изготовленных из чередующихся металлических слоев Cr - Au толщиной не более 0,4 мкм, приваривают токовыводы в виде проволоки из золота методом контактной сварки. Затем полученный указанным образом ПП присоединяют сформированными токовыводами в виде проволоки методом контактной сварки к контактным площадкам вторичного преобразователя (ВП) МЭМС. 2 ил.

2525684
выдан:
опубликован: 20.08.2014
СПОСОБ ИЗГОТОВЛЕНИЯ МЭМС КОММУТАТОРА

Изобретение относится к микросистемной технике, а именно к способу изготовления МЭМС коммутаторов, имеющих контактную систему. Техническим результатом изобретения является получение стабильных характеристик МЭМС коммутаторов, таких как омическое сопротивление, управляющее напряжение, время срабатывания, переходное сопротивление контактов, за счет формирования металлического контакта и получения межконтактного зазора строго фиксированной величины с высокой воспроизводимостью. Сущность изобретения: в способе изготовления МЭМС коммутатора на подложку поэтапно наносят электродный слой, в котором формируют нижний управляющий электрод и нижний контакт. Поверх электродного слоя наносят первый жертвенный слой, толщина которого - сумма высот верхнего и нижнего контактов, вытравливают в жертвенном слое рельеф с образованием отверстия до поверхности нижнего контакта. Затем выполняют второй жертвенный слой, толщина которого равна расчетному значению межконтактного зазора. Далее формируют верхний контакт, подвижную часть необходимой конструкции, верхний управляющий электрод и вытравливают весь жертвенный слой. 4 ил.

2417941
выдан:
опубликован: 10.05.2011
СПОСОБ ИЗГОТОВЛЕНИЯ МИКРОМЕХАНИЧЕСКИХ УСТРОЙСТВ, СОДЕРЖАЩИХ ГАЗОПОГЛОТИТЕЛЬНЫЙ МАТЕРИАЛ, И ИЗГОТОВЛЕННЫЕ ЭТИМ СПОСОБОМ УСТРОЙСТВА

Изобретение относится к изготовлению микромеханических устройств. Сущность изобретения: в способе изготовления микромеханических устройств их формируют соединением вместе двух частей при помощи прямого соединения; при этом одна из частей (12) выполнена из кремния, а другая - из материала, выбранного из группы, состоящей из кремния и полупроводникового керамического или окисного материала; причем соединение между двумя частями образует полость (14), содержащую функциональные элементы устройства (11), возможные вспомогательные элементы и покрытие (13) из газопоглотительного материала. Изобретение обеспечивает получение микромеханических устройств, в которых предотвращено отсоединение находящихся на кремниевых подложках покрытий из газопоглотительного материала при выполнении способа прямого соединения. 14 з.п. ф-лы, 2 ил.

2401245
выдан:
опубликован: 10.10.2010
СПОСОБ ИЗГОТОВЛЕНИЯ ТУННЕЛЬНОГО СЕНСОРА МЕХАНИЧЕСКИХ КОЛЕБАНИЙ

Изобретение относится к области технологии изготовления микроэлектронных и микромеханических устройств и может быть использовано при изготовлении сенсоров, функционирующих на основе туннельного эффекта и обеспечивающих преобразование «перемещение - электрический сигнал». Технический результат: повышение воспроизводимости и технологичности изделия. Сущность: на диэлектрической или полупроводниковой подложке с диэлектрическим слоем формируют систему металлизации, состоящую из нижнего электрода системы электростатического управления, контактных площадок, системы электрической разводки. Затем на полученную структуру наносят «жертвенный» технологический слой и формируют в нем последовательно отверстие для опоры кантилевера и конусообразное отверстие для туннельного электрода. Наносят слой фоточувствительного композиционного материала из полимерной матрицы с наполнителем в виде электропроводящих порошков наночастиц. Проводят литографию и термообработку слоя композиционного материала для получения частично заполненной композиционным материалом вершины конуса отверстия для туннельного электрода. Затем формируют кантилевер, инерционную массу и удаляют «жертвенный» слой с частичным травлением полимерной матрицы композиционного материала для освобождения поверхности наночастиц, формируя туннельный электрод. 6 з.п. ф-лы, 1 ил.

2388682
выдан:
опубликован: 10.05.2010
УСТРОЙСТВО ДЛЯ НАНЕСЕНИЯ НАНОКЛАСТЕРНОГО ПОКРЫТИЯ

Изобретение относится к микро- и нанотехнологии. Магнетрон, оснащенный полым трубчатым катодом-мишенью (1), присоединен с помощью электромагнитного направляющего устройства (ЭНУ) к рабочей камере (2), в которой смонтирован держатель (3) обрабатываемого изделия. Магнетрон оборудован дополнительным охлаждаемым катодом-мишенью (5), плоскость распыления которого перпендикулярна боковой поверхности трубчатого катода-мишени (1). ЭНУ состоит из коаксиально расположенных катушки (6) электромагнита, магнитопровода, включающего выполненные из ферромагнитного материала электрически изолированные друг от друга полый цилиндр (7), круглую пластину (8) и кольцеобразный вкладыш (9), установленный непосредственно перед входом в рабочую камеру (2), и алюминиевой втулки (10), отверстие которой выполнено сужающимся по направлению транспортирования плазмы. Трубчатый катод-мишень (1) расположен внутри цилиндра (7), пластина (8) и дополнительный катод-мишень (5) установлены последовательно по направлению транспортирования плазмы со стороны торца трубчатого катода-мишени. Катушка (6) размещена между боковыми стенками цилиндра (7) и трубчатого катода-мишени (1), а втулка (10) присоединена к вкладышу (9) магнитопровода. Технический результат - расширение номенклатуры наносимых нанокластерных покрытий за счет снятия ограничений в отношении количества и свойств компонентов материалов покрытия и подложки. 3 з.п. ф-лы, 3 ил.

2362838
выдан:
опубликован: 27.07.2009
Наверх