Галогены; галогеноводородные кислоты – C01B 7/00
Патенты в данной категории
СПОСОБ ПОЛУЧЕНИЯ ЙОДИРУЮЩЕГО АГЕНТА
Изобретение относится к способу, включающему в себя следующие стадии: a) электрохимическое окисление 1 моля исходного ICl в кислотном водном растворе с образованием промежуточного производного со степенью окисления йода, равной (III); b) реагирование упомянутого промежуточного производного с йодом и c) получение 3 молей ICl. Использование настоящего способа позволяет избежать отрицательных факторов, связанных с применением больших объемов хлора. 19 з.п. ф-лы, 7 пр., 3 ил. |
2528402 выдан: опубликован: 20.09.2014 |
|
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ УГЛЕРОДНЫХ НАНОСТРУКТУР В БИОЛОГИЧЕСКИХ ОБРАЗЦАХ И ИХ РАСПРЕДЕЛЕНИЯ В ОРГАНИЗМЕ
Изобретение относится к медицине, в частности к экспериментальной фармакологии и биофармации, и описывает способ количественного определения углеродных наноструктур, в частности наноалмазов и нанотрубок, в биологических образцах и их распределение в организме ex vivo, основанное на использовании метода масс-спектрометрии с индуктивно-связанной плазмой. Способ характеризуется тем, что поверхность углеродных наноструктур модифицируют (2,4,5-трийодфенил)-метанолом, определяют количество йода в модифицированных углеродных наноструктурах, полученные модифицированные углеродные наноструктуры вводят в организм экспериментального животного с последующим изъятием органов и тканей, их гомогенизацией в 0,5-2 М растворе NaOH, отбором пробы гомогената, разбавлением ее водой, обработкой разбавленной пробы ультразвуком до температуры 40-70°C, определением в полученной пробе количества йода методом масс-спектрометрии с индуктивно-связанной плазмой и расчетом содержания углеродных наноструктур в пробе по разности содержания йода в пробе до введения модифицированных углеродных наноструктур и после их введения в организм и пересчетом этого количества йода в содержание углеродных наноструктур в образце, используя исходное содержание йода в модифицированной углеродной наноструктуре. Способ обеспечивает мониторинг распределения углеродных наноносителей в организме in vivo. 1 з.п. ф-лы, 6 ил., 3 пр., 2 табл. |
2528096 выдан: опубликован: 10.09.2014 |
|
СТАНЦИЯ ОБЕЗЗАРАЖИВАНИЯ ВОДЫ И УСТРОЙСТВО КОНТРОЛЯ И СЕПАРАЦИИ, ПРЕДНАЗНАЧЕННОЕ ДЛЯ ИСПОЛЬЗОВАНИЯ В СТАНЦИИ ОБЕЗЗАРАЖИВАНИЯ ВОДЫ
Группа изобретений относится к области обеззараживания и подготовки воды. Станция обеззараживания воды содержит электролизер с разделенными мембранной перегородкой анодной и катодной камерами, узел приготовления раствора хлорида натрия, линию подачи воды, средства дозирования, сепараторы анолита и католита и установленный в проточной магистрали эжектор. Средства дозирования выполнены в виде насосов-дозаторов с внешним управлением, один из которых установлен в линии подачи раствора хлорида натрия на вход анодной камеры, а другой - в линии подачи воды на вход катодной камеры. Сепаратор анолита, установленный на выходе анодной камеры, снабжен воздухозаборным элементом, на входе которого установлен гидрозатвор, при этом выходной газоотводящий патрубок сепаратора связан с всасывающим патрубком эжектора. Сепаратор католита установлен на выходе катодной камеры и связан с накопителем щелочи. Предлагаемое устройство контроля и сепарации включает скомпонованные в единый блок сепаратор анолита, сепаратор католита и гидрозатвор. Упомянутый блок размещен в прозрачном корпусе, разделенном перегородками на три камеры для размещения, соответственно, сепаратора анолита, гидрозатвора и сепаратора католита. На боковых стенках корпуса, по периметру, нанесены контрольные метки, обеспечивающие контроль уровня жидкости во всех трех камерах одновременно. Изобретение обеспечивает повышение безопасности и эксплуатационной надежности. 2 н. и 9 з.п. ф-лы, 6 ил. |
2511363 выдан: опубликован: 10.04.2014 |
|
СИСТЕМЫ ВЫДЕЛЕНИЯ ФТОРА И СПОСОБЫ ВЫДЕЛЕНИЯ ФТОРА
Изобретение может быть использовано в химической промышленности. Способ выделения фтора включает загрузку смеси, содержащей фторид урана и окислитель, в реакционный сосуд со сплошным основанием и проемом, обращенным в сторону от основания, нагрев этой смеси в реакционном сосуде и образование по меньшей мере одного оксида урана и нерадиоактивного газообразного продукта из нагретой смеси. При этом осуществляют регулирование толщины слоя смеси в реакционном сосуде для достижения требуемого выхода реакции и/или требуемой скорости реакции получения нерадиоактивного газообразного продукта. Используемая смесь может содержать тетрафторид урана UF4 и реагент для выделения фтора, выбранный из группы, включающей оксид германия GeO, диоксид германия GeO 2, кремний Si, триоксид бора B2O3 и диоксид кремния SiO2. Изобретение позволяет повысить выход фтора. 3 н. и 13 з.п. ф-лы, 2 ил., 1 табл. |
2508246 выдан: опубликован: 27.02.2014 |
|
СПОСОБ ПОЛУЧЕНИЯ ФТОРИСТОГО ВОДОРОДА
Изобретение может быть использовано в химической промышленности. Способ получения фтористого водорода включает сернокислотное разложение фторсодержащего материала алюминиевого производства при нагревании реакционной смеси. В качестве фторсодержащего материала используют высокодисперсные фторуглеродсодержащие отходы алюминиевого производства и/или вторичные фторсодержащие продукты алюминиевого производства. В составе используемых материалов определяют содержание фторидов и оксидов металлов, а оптимальную дозировку серной кислоты рассчитывают. Изобретение позволяет расширить сырьевую базу для производства фтористого водорода, утилизировать вторичные фторсодержащие продукты и отходы электролитического производства алюминия. 11 з.п. ф-лы, 2 табл., 1 пр. |
2505476 выдан: опубликован: 27.01.2014 |
|
АППАРАТ ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА ПОЛУЧЕНИЯ РАСТВОРА ДИОКСИДА ХЛОРА И ХЛОРА В ВОДЕ
Изобретение может быть использовано в химической технологии. Аппарат для осуществления способа получения раствора диоксида хлора и хлора в воде содержит корпус (1), в нижней части которого расположены патрубки для ввода реагентов (3, 4). Выходное отверстие патрубка (5) для вывода газообразных продуктов и отработанного водного раствора расположено в верхней части корпуса аппарата (1) и соединено с эжектором (6). Корпус (1) выполнен в виде обечайки с сечением, увеличивающимся кверху. Коаксиально корпусу (1) закреплено циркуляционное устройство (2) в виде обечайки. Патрубки для ввода реагентов (3, 4) размещены в торцевой части корпуса (1), заведены внутрь циркуляционного устройства (2) и расположены соосно оси корпуса (1). Изобретение позволяет снизить энергопотребление и повысить устойчивость гидродинамического режима аппарата. 2 з.п. ф-лы, 1 ил., 1 табл., 3 пр. |
2503614 выдан: опубликован: 10.01.2014 |
|
СПОСОБ ИЗВЛЕЧЕНИЯ ХЛОРА ИЗ ОТХОДОВ В ПРОИЗВОДСТВЕ ХЛОРА И ВИНИЛХЛОРИДА
Изобретение относится к способу извлечения хлора из отходов производства хлора и винилхлорида. Способ включает процессы сжигания хлорорганических отходов и получения хлора методом электролиза. При этом соляная кислота от установки сжигания отходов без дополнительной очистки от хлора и других примесей смешивается в реакционном сосуде с потоком или частью потока анолита от установки электролиза, содержащим отход электролиза - хлорат натрия в количестве 0.5-10 г/дм3, при температуре 92-106°C и поддержании концентрации соляной кислоты в реакционной массе 10-20 г/дм3. Способ обеспечивает исключение образования диоксида хлора и уменьшение времени разрушения хлората натрия с образованием хлорида натрия и молекулярного хлора, который возвращается в производственный процесс на стадию синтеза 1,2-дихлорэтана, промежуточного продукта в производстве винилхлорида. Изобретение позволяет также повысить эффективность производства за счет рационального использования сырья. 1 з.п. ф-лы, 2 табл., 7 пр. |
2498937 выдан: опубликован: 20.11.2013 |
|
СПОСОБ РЕГЕНЕРАЦИИ ОКСИДА ЖЕЛЕЗА И ХЛОРИСТОВОДОРОДНОЙ КИСЛОТЫ
Изобретение может быть использовано в химической промышленности. Для переработки отходов растворов хлорида железа, содержащего хлорид железа(II), хлорид железа(III) или возможные смеси этих веществ и необязательно свободную хлористоводородную кислоту указанные отходы концентрируют при пониженном давлении до получения концентрированной жидкости, с общей концентрацией хлорида железа, по меньшей мере, 30 мас.%, предпочтительно, по меньшей мере, 40 мас.%. При необходимости хлорид железа(II), содержащийся в полученной концентрированной жидкости, окисляют до хлорида железа(III) для получения жидкости, содержащей хлорид железа(III). Далее эту жидкость гидролизуют при температуре 155-350°C, поддерживая концентрацию хлорида железа(III) на уровне, по меньшей мере, 65 мас.% для получения потока, содержащего хлористый водород, и жидкости, содержащей оксид железа(III). Затем проводят стадию разделения, на которой оксид железа(III) отделяют от жидкости, содержащей оксид железа(III). После чего проводят стадию извлечения, на которой поток, содержащий хлористый водород, полученный на указанной стадии гидролиза, конденсируют для извлечения хлористоводородной кислоты с концентрацией, по меньшей мере, 10 мас.% предпочтительно, по меньшей мере, 15 мас.%. При этом энергию конденсации потока, содержащего хлористый водород, полученного на стадии извлечения, прямо или косвенно используют в качестве источника нагрева на стадии концентрирования. Изобретение позволяет получить высокочистый и легко фильтрующийся оксид железа(III), регенерировать хлористоводородную кислоту и снизить потребление энергии на 30-40%. 12 з.п. ф-лы, 2 ил., 3 пр. |
2495827 выдан: опубликован: 20.10.2013 |
|
СПОСОБ РЕГЕНЕРАЦИИ СОДЕРЖАЩЕГО РУТЕНИЙ ИЛИ СОЕДИНЕНИЯ РУТЕНИЯ КАТАЛИЗАТОРА, ОТРАВЛЕННОГО СЕРОЙ В ВИДЕ СЕРНИСТЫХ СОЕДИНЕНИЙ
Данное изобретение касается способа регенерации катализатора, в соответствии с которым содержание серы в содержащем рутений или соединения рутения катализаторе, отравленном серой в виде сернистых соединений, путем целенаправленной обработки содержащим галогеноводород, в частности хлороводород, газовым потоком, осуществляемой в неокислительных условиях при необходимости при повышенной температуре, может быть уменьшено настолько, что активность подобного катализатора повышается до активности аналогичного катализатора, не отравленного серой в виде сернистых соединений. Описан способ катализируемого газофазного окисления хлороводорода кислородом с применением катализатора на основе рутения или соединений рутения, при этом катализатор после снижения его каталитической активности до заданного значения подвергают регенерации согласно описанному выше способу. Технический эффект - содержание серы в катализаторе может быть сокращено настолько, что активность обработанного катализатора возрастает до уровня, характерного для аналогичного содержащего рутений или соединения рутения катализатора, не деактивированного серой в виде сернистых соединений. 2 н. и 10 з.п. ф-лы, 7 табл., 7 пр. |
2486008 выдан: опубликован: 27.06.2013 |
|
УСТОЙЧИВЫЙ К ВОЗДЕЙСТВИЮ ТЕМПЕРАТУРЫ КАТАЛИЗАТОР ДЛЯ ОКИСЛЕНИЯ ХЛОРОВОДОРОДА В ГАЗОВОЙ ФАЗЕ
Настоящее изобретение касается катализатора для реакции окисления хлорводорода в газовой фазе для получения хлора. Описан катализатор для окисления хлорводорода, содержащий оксид урана в качестве каталитически активного компонента и носитель, причем сам носитель является каталитически активным компонентом и катализатор прошел предварительную обработку стехиометрической смесью HCL и кислорода при температуре, составляющей, по меньшей мере, 400°С в течение, по меньшей мере, 10 часов. Описаны применение вышеуказанного катализатора в каталитическом окислении хлорводорода кислородом в газовой фазе и способ получения хлора с использованием катализатора. Технический эффект - катализатор отличается высокой стабильностью и активностью. 3 н. и 3 зав. п. ф-лы, 2 табл., 24 пр. |
2486006 выдан: опубликован: 27.06.2013 |
|
СПОСОБ ПОЛУЧЕНИЯ ХЛОРА ИЗ ХЛОРОВОДОРОДА С ПОМОЩЬЮ ВОЛЬФРАМСОДЕРЖАЩИХ СОЕДИНЕНИЙ
Изобретение может быть использовано в химической промышленности. Способ получения хлора из хлороводорода с помощью вольфрамсодержащих соединений включает хлорирование триоксида вольфрама хлороводородом при температуре более 1400 К. Образующийся диоксидихлорид вольфрама выделяют из газовой смеси продуктов реакции и окисляют кислородом при температуре менее 900 К для получения хлора. Триоксид вольфрама возвращают на стадию хлорирования. Изобретение позволяет получать хлор из хлороводорода с высокой удельной производительностью без катализаторов. 2 ил., 2 пр. |
2485046 выдан: опубликован: 20.06.2013 |
|
СПОСОБ ИЗВЛЕЧЕНИЯ ЙОДА ИЗ МИНЕРАЛЬНЫХ ИСТОЧНИКОВ
Изобретение может быть использовано в химической промышленности. Способ извлечения йода из растворов, содержащих йодид и бромид-ионы, включает ионный обмен анионами солей четвертичного аммония и окисление йодид-ионов. Соли четвертичного аммония берут в виде раствора в органическом растворителе - экстрагенте керосине, содержащем сорастворитель. В качестве сорастворителя берут ксилол, или трибутилфосфат, или хлороформ в количестве, на 10% превышающем массу соли, теоретически необходимую для связывания йодид- и бромид-ионов из водной фазы. После эмульгирования с водной фазой органическую фазу отделяют. Окисление йодид-ионов осуществляют в органической фазе хлорной или бромной водой. Образующийся молекулярный йод переводят в твердый концентрат добавлением сорбента. При этом соли четвертичного аммония содержат в своем составе алкильные радикалы с оптимальным количеством атомов углерода - от 8 до 16 и анионы брома и хлора. Изобретение позволяет упростить процесс извлечения йода и осуществлять его непосредственно на источниках йодсодержащих вод без создания стационарных предприятий. 3 з.п. ф-лы, 1 ил., 1 табл., 6 пр. |
2481266 выдан: опубликован: 10.05.2013 |
|
СПОСОБ ПОЛУЧЕНИЯ ХЛОРА КАТАЛИТИЧЕСКИМ ОКИСЛЕНИЕМ ХЛОРИСТОГО ВОДОРОДА И СПОСОБ ПОЛУЧЕНИЯ ИЗОЦИАНАТОВ
Изобретение может быть использовано в химической промышленности. При получении хлора каталитическим окислением хлористого водорода используемый поток хлористого водорода имеет содержание серы в элементарной форме менее 100 частей на млн, предпочтительно, менее 50 частей на млн, особенно предпочтительно, менее 5 частей на млн и, наиболее предпочтительно, менее 1 части на млн в расчете на массу потока хлористого водорода. Для получения изоцианатов фосгенированием соответствующих аминов a) оксид углерода подвергают взаимодействию с хлором с образованием фосгена, b) амины подвергают взаимодействию с фосгеном с образованием изоцианатов, c) сырую смесь изоцианатов подвергают очистке дистилляцией, d) полученную на стадии c) смесь изоцианата и неупаренного остатка направляют на регенерацию изоцианата выпариванием или регенерируют амин гидролизом остатка, а регенерированный изоцианат или регенерированный амин, по меньшей мере, частично возвращают для взаимодействия на стадию b), e) из полученного на стадии b) газового потока, содержащего хлористый водород, получают хлор каталитическим окислением, f) полученный на стадии e) хлор, по меньшей мере, частично возвращают на стадию a) для получения фосгена. Изобретение позволяет повысить чистоту хлора, снизив содержание серы в хлористом водороде, используемом для его получения, 2 н. и 8 з.п. ф-лы, 1 ил., 1 табл., 3 пр. |
2480402 выдан: опубликован: 27.04.2013 |
|
СПОСОБ ПОЛУЧЕНИЯ ХЛОРА ОКИСЛЕНИЕМ В ГАЗОВОЙ ФАЗЕ
Изобретение предназначено для химической промышленности. Способ получения хлора включает каталитическое окисление хлористого водорода 1 кислородом 2 в газовой фазе на не менее чем двух расположенных один за другим слоях катализатора I, II, III в адиабатических условиях. Смесь газообразных продуктов реакции 4, 6, 8 пропускают через не менее чем один теплообменник IV, V, VI. Температура в слоях катализатора от 150 до 800°C, температура газовой смеси 3 на входе в первый слой катализатора I или в каждый из слоев катализатора I, II, III от 150 до 400°C. Каталитическое окисление проводят при давлении 1-30 бар, количество слоев катализатора 2-12. Молярное отношение кислорода к хлористому водороду (0,25-10):1. Слои катализатора I, II, III термически изолированы. Реакторы 31-33 для получения хлора объединены в систему посредством линий 3, 5, 7 подачи исходных соединений и линий 4, 6, 8 отвода продуктов реакции. Упрощается конструкция реактора и управление поддержанием теплового режима в реакторе, исключается отрицательное влияние на стабильность и срок службы катализатора. 2 н. и 16 з.п. ф-лы, 4 ил., 1 табл., 5 пр. |
2475447 выдан: опубликован: 20.02.2013 |
|
СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИДА ЛИТИЯ ВЫСОКОЙ ЧИСТОТЫ И СОЛЯНОЙ КИСЛОТЫ
Изобретение может быть использовано в химической промышленности для получения кристаллического моногидрата гидроксида лития, применяемого в аккумуляторных батареях, и карбоната лития. Способ производства кристаллов моногидрата гидроксида лития и соляной кислоты включает очищение рассола, содержащего литий, посредством ионообмена для уменьшения концентраций ионов кальция и магния. Рассол подвергают электролизу для образования раствора гидроксида лития, содержащего меньше чем 150 частей на миллиард общего количества кальция и магния, с получением в качестве побочных продуктов газообразного хлора и водорода. Соляную кислоту производят посредством сжигания полученного газообразного хлора с избыточным водородом. Раствор гидроксида лития концентрируют и кристаллизуют для получения кристаллов моногидрата гидроксида лития. Изобретение позволяет получить высокочистый водный раствор гидроксида лития, из которого легко может быть выделен кристаллический моногидрат гидроксида лития, а также в качестве побочного продукта соляную кислоту. 7 н. и 42 з.п. ф-лы, 1 ил., 2 табл. |
2470861 выдан: опубликован: 27.12.2012 |
|
КАТАЛИЗАТОР И СПОСОБ ИЗГОТОВЛЕНИЯ ХЛОРА ПУТЕМ ОКИСЛЕНИЯ ХЛОРОВОДОРОДА В ГАЗОВОЙ ФАЗЕ
Настоящее изобретение касается катализатора и способа получения хлора путем каталитического окисления хлороводорода. Описан катализатор для каталитического окисления хлороводорода, включающий в себя активный компонент - по меньшей мере, соединение урана и материал-носитель, причем активный компонент включает в себя, по меньшей мере, оксид урана или смесь оксидов урана со стехиометрическим составом UO2,1 до UO2,9 . Описан также способ получения хлора путем каталитического окисления хлороводорода в присутствии описанного выше катализатора в адиабатическом режиме. Технический эффект - катализатор обладает высокой стабильностью и активностью. 2 н. и 8 з.п. ф-лы, 2 табл., 10 пр. |
2469790 выдан: опубликован: 20.12.2012 |
|
СПОСОБ ОТДЕЛЕНИЯ ФТОРОЛЕФИНОВ ОТ ФТОРОВОДОРОДА ПУТЕМ АЗЕОТРОПНОЙ ДИСТИЛЛЯЦИИ
Настоящее раскрытие относится к способу отделения фторолефина от смеси, содержащей фтороводород и фторолефин, предусматривающему азеотропную дистилляцию в присутствии или в отсутствие азеотропообразователя. В частности, раскрываются способы отделения любого из HFC-1225ye, HFC-1234ze, HFC-1234yf или HFC-1243zf от HF. Один способ предусматривает разделение смеси, содержащей HF и фторолефин, где указанный способ включает а) подачу композиции, содержащей HF и фторолефин, в первую дистилляционную колонну; b) отведение азеотропной композиции, содержащей HF и фторолефин, в качестве первого дистиллята и либо i) HF, либо ii) фторолефина в качестве композиции кубового остатка первой колонны; с) конденсацию первого дистиллята с образованием двух жидких фаз: i) HF-обогащенной фазы и ii) фторолефин-обогащенной фазы; и d) рециркуляцию первой жидкой фазы, обогащенной тем же самым соединением, которое удаляется в качестве кубового остатка первой колонны, где указанной первой жидкой фазой является либо i) HF-обогащенная фаза, либо ii) фторолефин-обогащенная фаза, обратно в первую дистилляционную колонну. Настоящего изобретения представляет собой более эффективный способ отделения HF от олефинов. 11 н. и 22 з.п. ф-лы, 8 ил, 13 пр., 14 табл. |
2466979 выдан: опубликован: 20.11.2012 |
|
СПОСОБ ПОЛУЧЕНИЯ ФТОРОВОДОРОДА
Изобретение может быть использовано в неорганической химии. Способ получения фтороводорода включает сернокислотное разложение флюорита. При этом во флюорит вводят добавку фторида натрия в количестве до 10% от общей массы флюорита. Изобретение позволяет снизить тепловые затраты на подогрев исходных реагентов, 1 пр. |
2453495 выдан: опубликован: 20.06.2012 |
|
СПОСОБ ПОЛУЧЕНИЯ СЕРЫ ИЗ СЕРОВОДОРОДА
Изобретение относится к области химии и может быть использовано для получения серы. Серу получают одностадийным окислением сероводорода хлором в газовой фазе с выделением серы и хлороводорода. Смесь хлороводорода и водорода при объемном отношении 8:1 направляют на хлорирование оксида железа (III) при температуре 1000-1200°С. Образующийся хлорид железа (II) выделяют из газовой смеси продуктов реакции и окисляют кислородом для получения хлора, возвращаемого на стадию окисления сероводорода, и оксида железа. Полученный оксид железа (III) возвращают на стадию хлорирования. Изобретение позволяет получать серу из сероводорода с высокой удельной производительностью без использования катализаторов и прямых затрат электрической энергии. 2 пр. |
2448040 выдан: опубликован: 20.04.2012 |
|
СПОСОБ КОНВЕРСИИ ХЛОРОВОДОРОДА ДЛЯ ПОЛУЧЕНИЯ ХЛОРА
Изобретение может быть использовано в неорганической химии. Способ конверсии хлороводорода для получения хлора включает хлорирование оксида железа (III) газовой смесью хлороводорода и водорода, выделение хлорида железа (II) из газовой смеси продуктов хлорирования, окисление хлорида железа (II) кислородом с выделением хлора и возврат оксида железа (III) на стадию хлорирования. Хлорирование оксида железа (III) проводят при температуре 1000-1200°С газовой смесью хлороводорода и водорода с объемным отношением 8:1. Окисление хлорида железа (II) кислородом выполняют при температуре 1000-1200°C с выделением хлора. Изобретение позволяет получать хлор из хлороводорода с высокой удельной производительностью без катализаторов и прямых затрат электрической энергии. 2 пр. |
2448038 выдан: опубликован: 20.04.2012 |
|
СПОСОБ ПОЛУЧЕНИЯ БЕЗВОДНОГО ФТОРОВОДОРОДА И ПЛАВИКОВОЙ КИСЛОТЫ
Изобретение относится к технологии неорганических веществ и может быть использовано для получения плавиковой кислоты и безводного фтороводорода. В способе получения безводного фтороводорода и плавиковой кислоты ректификацией фтороводородной кислоты, содержащей свыше 65 мас.% фтороводорода, с получением в дистилляте фтороводорода и плавиковой кислоты в кубовом остатке колонны процесс проводят при температуре паров в кубовой части колонны в интервале 115-130°С в интервале значений флегмового числа, равного 2-5, при этом содержание основного вещества во фтороводороде не менее 99,95% и плавиковой кислоты 40-45%. Способ позволяет получить из водных растворов, содержащих свыше 65 мас.% HF, 40-45% плавиковую кислоту и безводный фтороводород с содержанием основного вещества не менее 99,95% за одну стадию ректификационного разделения. 3 табл. |
2447013 выдан: опубликован: 10.04.2012 |
|
КАТАЛИТИЧЕСКАЯ СИСТЕМА ДЛЯ ГЕТЕРОГЕННЫХ РЕАКЦИЙ
Изобретение относится к области химической промышленности, к каталитическим системам, которые могут использоваться, в частности, в реакциях окисления хлористого водорода в молекулярный хлор, оксихлорирования метана, для парциального окисления низших парафинов (C1-C4) до спиртов и альдегидов (оксигенатов). Изобретение может найти применение в процессах получения ценных химических продуктов и полупродуктов, а также при переработке разнообразных газообразных и жидких отходов. Описана каталитическая система для гетерогенных реакций, представляющая собой геометрически структурированную систему, включающую микроволокна высококремнеземистого носителя диаметром 5-20 мкм, который характеризуется наличием в инфракрасном спектре полосы поглощения гидроксильных групп с волновым числом =3620-3650 см-1 и полушириной 65-75 см-1 , имеет удельную поверхность, измеренную методом БЭТ по тепловой десорбции аргона, SAr=0,5-30 м2/г, имеет величину поверхности, измеренную методом щелочного титрования, SNa=5-150 м2/г при соотношении SNa /SAr=5-50, и по крайней мере один активный элемент, отличающаяся тем, что активный элемент выполнен либо в виде Me zOxHaly композита, либо в виде N wMezOxHaly композита, при этом элемент N композита NwMezO xHaly выбран из группы, включающей щелочные, щелочноземельные элементы, либо водород, элемент Me композита NwMezOxHaly и композита MezOxHaly выбран из группы, включающей железо, кобальт, никель, рутений, родий, ванадий, хром, марганец, цинк, медь, серебро, золото, либо один элемент из группы элементов лантана и лантаноидов, а элемент Hal композита NwMezOxHaly и композита MezOxHaly является одним из галогенов: фтор, хлор, бром, иод. Технический эффект - более высокая активность каталитической системы и повышенная стойкость к дезактивации в агрессивных средах в реакциях окисления, хлорирования и оксихлорирования. 2 з.п. ф-лы, 3 пр. |
2446877 выдан: опубликован: 10.04.2012 |
|
СПОСОБ СОВМЕСТНОГО ПОЛУЧЕНИЯ ИЗОЦИАНАТОВ И ХЛОРА
Изобретение относится к способу совместного получения ароматических изоцианатов и хлора. Способ включает стадию а) нитрования ароматических соединений, выбранных из группы толуола, хлортолуола, бензола и хлорбензола, с получением в одной стадии соответствующих однократно или в двух стадиях соответствующих двукратно нитрованных ароматических соединений с использованием азотной кислоты. Нитрование проводят в присутствии серной кислоты с концентрацией 65,0-98,0% массовых долей серной кислоты в расчете на массовые доли серной кислоты и воды в качестве катализатора. Серная кислота после нитрования разбавляется до концентрации на 0,5-25% ниже, чем используемая серная кислота. На стадии b) осуществляют концентрирование разбавленной серной кислоты, полученной на стадии а), причем общий поток серной кислоты сначала концентрируют до концентрации, требуемой для нитрования на стадии а), и затем только часть потока от общего потока серной кислоты концентрируют далее на дополнительной стадии дистилляции. На стадии с) происходит взаимодействие полученного на стадии а) однократно или двукратно нитрованного ароматического соединения с водородом в присутствии катализатора с образованием соответствующего амина. На стадии d) полученный на стадии с) амин взаимодействует с фосгеном с образованием соответствующих изоцианатов. На стадии е) растворенный в воде или газообразный хлористый водород, образовавшийся при взаимодействии амина с фосгеном, рециркулируют со стадии d) в стадию f) получения хлор-газа путем электролиза НСl или каталитического газофазного окисления НС1 кислородом. На стадии g) осуществляют удаление реакционной воды при осушке хлор-газа, полученного на стадии f), с помощью обработки хлор-газа серной кислотой с концентрацией от 90,0 до 99,0% массовых долей серной кислоты в расчете на массовую долю серной кислоты и воды до того момента, пока серная кислота не будет иметь концентрацию 65,0-90,0% массовых долей серной кислоты в расчете на массовую долю серной кислоты и воды. На стадии h) сухой хлор-газ, полученный на стадии g), взаимодействует с монооксидом углерода для получения фосгена. На стадии i) фосген, полученный на стадии h), направляют на стадию d). На стадии j) осуществляют направление разбавленной серной кислоты, полученной на стадии g), или на то же концентрирование серной кислоты стадии b) или прямо в одну или несколько стадий нитрования согласно стадии а) и окончательное направление далее разбавленной серной кислоты, выходящей из указанной стадии или указанных стадий нитрования, на то же концентрирование серной кислоты согласно стадии b). При этом полученные на стадиях а) и g) разбавленные потоки серной кислоты на стадии b) объединяют и совместно концентрируют и за счет одной или нескольких стадий вакуумной дистилляции объединенный поток доводят до повышенной концентрации или за счет отвода части потоков после различных стадий дистилляции доводят до нескольких повышенных концентраций, необходимых соответственно для одной или нескольких стадий нитрования ароматических соединений согласно стадии а) или осушки хлор-газа согласно стадии g). На стадии k) осуществляют окончательную рециркуляцию сконцентрированной серной кислоты, полученной на стадии j), или для полного или для частичного ввода на стадию g) и/или на стадию а). Изобретение относится также к способу совместного получения ароматических изоцианатов и хлора, в котором на стадии а) в качестве ароматического соединения используют бензол. Способ позволяет сократить энергетические затраты и расход нейтрализующих средств при совместном получении ароматических изоцианатов и хлора за счет обработки объединенного потока разбавленной серной кислоты, полученной в каждом из указанных процессов. 2 н. и 7 з.п. ф-лы. |
2443682 выдан: опубликован: 27.02.2012 |
|
ОБРАТИМЫЙ БЕЗВОДНЫЙ СПОСОБ РАЗДЕЛЕНИЯ ГАЗОВЫХ СМЕСЕЙ, СОДЕРЖАЩИХ КИСЛОТЫ
Изобретение относится к обратимому удалению кислоты или кислот, выбранных из группы, состоящей из НСl, HF и НВr, из газовых смесей, которые содержат кислоты и одно или несколько других газообразных составляющих, представляющих собой РF 5, С(O)F2 или фторангидрид карбоновой кислоты. Способ включает контактирование этих газовых смесей на стадии поглощения с одной или несколькими ионными жидкостями, которые поглощают кислоту преимущественно по сравнению с другими составляющими газовых смесей. После контактирования газовой смеси с ионной жидкостью поглощенная кислота удаляется из ионной жидкости на стадии десорбции. Затем осуществляется, по меньшей мере, одна дополнительная стадия поглощения. Используемая ионная жидкость содержит протонированный анион, который соответствует кислоте, которая сильнее, чем кислота или кислоты, которые должны удаляться из газовой смеси. Анион ионной жидкости представляет собой анион трифторметансульфоновой кислоты (трифлата) или анион фторсульфоновой кислоты. Технический результат: возможность получения продуктов высокой очистки, например карболнилфторида высокой чистоты, а также создание простого способа удаления кислоты из газовых смесей обратимым образом и возможность повторного использования ионной жидкости. 19 з.п. ф-лы, 3 прим. |
2443621 выдан: опубликован: 27.02.2012 |
|
ВАНАДИЕВЫЙ КАТАЛИЗАТОР ОКИСЛЕНИЯ ХЛОРИСТОГО ВОДОРОДА В ХЛОР МОЛЕКУЛЯРНЫМ КИСЛОРОДОМ
Изобретение может быть использовано при получении хлорорганических соединений для регенерации хлора из абгазного хлористого водорода. В качестве компонентов ванадиевого катализатора окисления хлористого водорода в хлор молекулярным кислородом используют ванадаты аммония, калия, натрия или лития (2,5-10 мас.% ванадия от общей массы катализатора), сульфаты и гидроксиды калия, натрия или лития (1,2-21,6 мас.% щелочных металлов в виде сульфатов и гидроксидов от общей массы катализатора) и фосфорную кислоту (2-35 мас.% от общей массы катализатора), нанесенные на силикагель или оксид алюминия (остальное, до 100 мас.%). Удельная поверхность силикагеля или оксида алюминия от 80 до 800 м 2/г, объем пор от 0,3 до 4,5 мл/г, размер частиц от 0,1 до 20 мм. Изобретение позволяет повысить стабильность катализатора от 2,5 до 33 раз и расширить рабочий диапазон температур процесса до 450°С. |
2440927 выдан: опубликован: 27.01.2012 |
|
ТЕРМОСТОЙКИЙ КАТАЛИЗАТОР ДЛЯ ГАЗОФАЗНОГО ОКИСЛЕНИЯ
Изобретение относится к катализаторам для окисления хлороводорода кислородом. Описан катализатор для окисления хлороводорода кислородом, содержащий, по меньшей мере, один компонент, активный при катализе реакций окисления, содержащий, по меньшей мере, один элемент, выбранный из группы, состоящей из рутения, осмия, родия, иридия, палладия, платины, меди, серебра, золота, рения, висмута, кобальта, ванадия, хрома, марганца, никеля, вольфрама и железа, а также носитель для него, причем носитель основан на углеродных нанотрубках. Описан способ каталитического окисления хлороводорода кислородом, предусматривающий использование описанного выше катализатора. Технический результат - описанный катализатор характеризуется высокой стабильностью и активностью. 2 н. и 3 з.п. ф-лы, 1 табл., 3 ил. |
2440186 выдан: опубликован: 20.01.2012 |
|
УЛУЧШЕННЫЙ СПОСОБ ОЧИСТКИ БЕЗВОДНОГО ГАЗООБРАЗНОГО ХЛОРОВОДОРОДА
Изобретение может быть использовано в химической промышленности для очистки хлороводорода, извлекаемого при производстве изоцианатов. Способ охлаждения и перегонки для удаления загрязняющих примесей, имеющих температуры кипения выше, чем у хлороводорода, из газа, содержащего хлороводород, включает а) сжатие указанного газа, b) охлаждение полученного сжатого газа в первом теплообменнике, приводящее к формированию первого потока конденсата и первого потока газа, с) подачу первого потока газа из первого теплообменника в перегонную колонну, имеющую верхнюю часть и нижнюю часть, в точку между верхней и нижней частями, d) подачу газообразного хлороводорода из верхней части во второй теплообменник, где его частично конденсируют с формированием второго потока конденсата и второго потока газа, е) подачу второго потока конденсата в верхнюю часть колонны для обеспечения противотока в колонне, f) подачу первого потока конденсата в перегонную колонну ниже точки, в которую подается первый поток газа, g) подачу второго потока газа со стадии d) в первый теплообменник в качестве охлаждающего агента, h) выделение очищенного газообразного хлороводорода из первого теплообменника, и i) подачу указанных загрязняющих примесей из нижней части колонны в приемник. Изобретение позволяет снизить содержание органических примесей в хлороводороде до уровня ниже 100 частей на миллиард, 2 н. и 12 з.п. ф-лы, 3 ил. |
2438970 выдан: опубликован: 10.01.2012 |
|
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ГАЗООБРАЗНОГО ХЛОРА
Изобретение может быть использовано в области неорганической химии. Устройство для получения газообразного хлора включает реактор, термостат, устройство для очистки хлора и устройство для регулирования температуры. В качестве накопителя хлора установлена демпфирующая емкость с краном-регулятором. Устройство позволяет повысить управляемость процесса получения газообразного хлора для стабильного обеспечения хлоридных процессов получения высокочистых металлов в лабораторных условиях на начальном этапе хлорирования. 1 ил. |
2436728 выдан: опубликован: 20.12.2011 |
|
СПОСОБ ПОЛУЧЕНИЯ ХЛОРИСТОГО ВОДОРОДА ИЗ ХЛОРОРГАНИЧЕСКИХ ОТХОДОВ
Изобретение может быть использовано в химической промышленности. Способ получения хлористого водорода из хлорорганических отходов включает термическое окисление хлорорганических отходов, абсорбционное поглощение водой хлористого водорода, десорбцию хлористого водорода из абсорбционной соляной кислоты. Термическое окисление хлорорганических отходов проводят при соотношении хлорорганических отходов к окислителю из расчета величины коэффициента избытка кислорода 0,80-1,05. В качестве окислителя используют растворы азотной кислоты с концентрацией 56-99,0 мас.%, или азотный тетраоксид, или раствор азотного тетраоксида в азотной кислоте, или смеси кислорода с азотом с концентрацией кислорода 30-75 об.%. Газообразные продукты окисления разбавляют азеотропной соляной кислотой при массовом соотношении азеотропная соляная кислота: хлорорганические отходы (0,6-1,2):1, поддерживая температуру в реакторе не выше 1300°С. Изобретение позволяет снизить энергозатраты при получении хлористого водорода из хлорорганических отходов. 1 табл. |
2431598 выдан: опубликован: 20.10.2011 |
|
СПОСОБ ПОЛУЧЕНИЯ ГЕПТАФТОРИДА ЙОДА
Изобретение может быть использовано в химической промышленности. Для получения гептафторида йода реакцию проводят путем подачи фторсодержащего газа и йодсодержащего газа в реактор, в котором присутствует гептафторид йода или гептафторид йода и фтор, при осуществлении циркуляции и смешивания газа в реакторе. Изобретение позволяет осуществить непрерывное и стабильное производство гептафторида йода в промышленных масштабах путем одностадийной реакции при подаче в реактор фтора и йода. 2 н. и 9 з.п. ф-лы. |
2430877 выдан: опубликован: 10.10.2011 |