способ очистки растворов хлорида натрия

Классы МПК:C01D3/04 хлориды 
C25B1/14 соединений щелочных металлов
Автор(ы):, , ,
Патентообладатель(и):Чмиленко Федор Александрович,
Сидорова Лариса Петровна,
Бакланов Александр Николаевич,
Костенко Виктор Иванович
Приоритеты:
подача заявки:
1991-09-21
публикация патента:

Изобретение относится к химической технологии очистки растворов хлорида натрия от примесей тяжелых металлов и может быть использовано в химической промышленности и в анализе. В способе используют соосаждение с коллектором, полученным электрохимическим путем, анодным растворением магниевого электрода при параметрах тока и размерах электродов, обеспечивающих получение не менее 0,6 ммоль/л коллектора. 1 табл.
Рисунок 1

Формула изобретения

СПОСОБ ОЧИСТКИ РАСТВОРОВ ХЛОРИДА НАТРИЯ от примесей меди, кадмия, цинка, мышьяка и железа, включающий их соосаждение на коллекторе гидроксиде магния при воздействии на раствор ультразвуковых колебаний, отличающийся тем, что коллектор получают электрохимически анодным растворением магниевого электрода до концентрации 0,6 ммоль/л.

Описание изобретения к патенту

Изобретение относится к химической технологии очистки растворов хлорида натрия от примесей тяжелых металлов, например, меди, кадмия, мышьяка, цинка и железа, и может быть использовано в химической и медицинской промышленности, а также в аналитической химии.

Наиболее близким по технической сущности и достигаемому положительному эффекту является способ очистки растворов хлорида натрия от примесей тяжелых металлов, включающий соосаждение примесей на гидроксиде магния при воздействии ультразвуковых колебаний.

Недостаток способа необходимость введения значительного количества коллектора (1 ммоль/л) при невысокой эффективности очистки: метод позволяет очищать раствор хлорида натрия в концентрации до 160 г/дм3 при степени очистки 98%

Цель изобретения повышение эффективности очистки растворов хлорида натрия, заключающееся в увеличении степени очистки при уменьшении количества коллектора, увеличении концентрации очищаемого раствора хлорида натрия и уменьшении интенсивности используемых ультразвуковых колебаний.

Поставленная цель достигается тем, что используют коллектор, полученный электрохимическим путем, анодным растворением магниевого электрода при параметрах тока и размерах электродов, обеспечивающих получение не менее 0,6 ммоль/л коллектора.

Необходимость использования электрохимически полученного коллектора объясняется более высокой его эффективностью по сравнению с коллектором, полученным химическим путем. Количество коллектора 0,6 ммоль/л принято как обеспечивающее высокую эффективность концентрирования.

Сравнение предлагаемого способа с прототипом показывает, что он имеет существенные отличия, позволяющие повысить эффективность процесса очистки.

Других технических решений, в которых имеются признаки, сходные с признаками, отличающими заявляемый способ от прототипа, не обнаружено.

П р и м е р. В 40 мл растворов NaCl с концентрацией 120-240 г/л, приготовленных из препарата квалификации "х.ч. для спектрального анализа", вводили по 10 мкг меди, кадмия, цинка, железа и мышьяка. Полученные растворы очищали следующими способами:

соосаждением на гидроксиде магния, полученного химическим путем с воздействием и без воздействия ультразвука;

соосаждением на гидроксиде магния, полученного электрохимическим путем с воздействием и без воздействия ультразвука.

Осадок концентрата отделяли от раствора центрифугированием, растворяли в 5 мл HCl (1:1), разбавляли бидистиллированной водой до 10 мл и определяли степень очистки. Медь, кадмий, железо и цинк в концентрате определяли пламенным атомно-абсорбционным методом с использованием атомно-абсорбционного спектрометра AAS-3. Мышьяк определяли спектрофотометрическим методом с диэтилдитиокарбаминатом серебра на спектрофотометре СФ-46.

Для электрохимического получения гидроксида магния использовали электроды из магния ток силой 0,16 А, напряжением 1,6 В в течение 0,5-4,0 мин пропускали от универсального источника питания УИП-2.

Результаты опытов приведены в таблице.

Представлены усредненные результаты трех опытов. U 1,6 В, I 0,16 А, частота ультразвука 20 кГц, интенсивность 2 Вт/см, температура 20оС. Введено по 10 мкг микропримесей, объем раствора 40 мл, концентрация хлорида натрия 100 г/дм. В таблице приведено сравнение способов очистки раствора хлорида натрия: предлагаемого; прототипа; соосаждением на гидроксиде магния полученном химическим путем; соосаждением на гидроксиде магния, полученном электрохимическим путем.

Из результатов опытов, приведенных в таблице, следует что максимальную степень соосаждения примесей 98-99% при минимальном количестве коллектора 0,6 ммоль/л обеспечивает предлагаемый способ.

Для достижения максимального положительного эффекта необходимо использовать воздействие ультразвука частотой 18-24 кГц. Максимальный положительный эффект в предлагаемом способе обеспечивается воздействием ультразвука интенсивностью даже 1 Вт/см2, в то время как в способе по прототипу интенсивность ультразвука должна быть не менее 1,7 Вт/см2.

Предлагаемый способ обеспечивает возможность проведения очистки раствора хлорида натрия до концентрации 220 г/л, в то время как способ по прототипу лишь до 160 г/л.

Таким образом, осуществление заявляемого способа позволяет по сравнению с базовым объектом:

уменьшить количество коллектора в 1,6 раза;

снизить интенсивность ультразвука в 1,7 раза;

увеличить концентрацию очищаемого раствора хлорида натрия в 1,4 раза;

повысить степень очистки до 99-100%

Класс C01D3/04 хлориды 

способ получения диарилкарбоната и переработка, по меньшей мере, одной части образованного при этом раствора, содержащего хлорид щелочных металлов, в находящемся ниже по технологической цепочке электролизе хлорида щелочных металлов -  патент 2484082 (10.06.2013)
способ управления процессом получения хлористого калия -  патент 2479487 (20.04.2013)
способ получения хлористого калия -  патент 2465203 (27.10.2012)
способ получения хлорида калия -  патент 2448903 (27.04.2012)
способ получения гранулированного хлористого калия -  патент 2422363 (27.06.2011)
способ окрашивания хлористого калия -  патент 2414422 (20.03.2011)
способ управления процессом получения хлористого калия -  патент 2406695 (20.12.2010)
способ подготовки хлормагниевого сырья к процессу электролитического получения магния и хлора -  патент 2400425 (27.09.2010)
способ управления процессом получения хлористого калия -  патент 2399587 (20.09.2010)
способ подготовки карналлитовой руды к процессу электролитического получения магния и хлора -  патент 2380317 (27.01.2010)

Класс C25B1/14 соединений щелочных металлов

способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале -  патент 2525543 (20.08.2014)
способ и станция очистки и обеззараживания воды -  патент 2477707 (20.03.2013)
способ получения наноигольчатых катализаторов окислительно-восстановительных процессов на основе оксидных вольфрамовых бронз -  патент 2456079 (20.07.2012)
способ получения арсената натрия -  патент 2443632 (27.02.2012)
способ получения игольчатых оксидных вольфрамовых бронз -  патент 2354753 (10.05.2009)
электролизная ячейка с газодиффузионным электродом -  патент 2303085 (20.07.2007)
низкотемпературный способ получения вольфрамата натрия -  патент 2223226 (10.02.2004)
способ получения хлората натрия -  патент 2154125 (10.08.2000)
способ проведения электролиза водного раствора хлорида щелочного металла -  патент 2153540 (27.07.2000)
способ получения дитионита натрия -  патент 2146221 (10.03.2000)
Наверх