способ построения профилей трехмерных объектов и устройство для его осуществления
Классы МПК: | G01B21/20 для измерения контуров или кривых, например для измерения профилей сечений G01C3/00 Приборы для измерения расстояний по линии визирования; оптические дальномеры |
Автор(ы): | Казаков Александр Сергеевич, Карпов Виктор Павлович, Коноплянников Юрий Константинович, Прилепский Борис Викторович, Пузыревский Игорь Иванович |
Патентообладатель(и): | Казаков Александр Сергеевич, Карпов Виктор Павлович, Коноплянников Юрий Константинович, Прилепский Борис Викторович, Пузыревский Игорь Иванович |
Приоритеты: |
подача заявки:
1995-12-29 публикация патента:
27.09.1997 |
Использование: радиофизика и лазерная локация, для контроля сооружений, сооружений метро, различных путепроводов, трубопроводов, в шахтах, горных разработках и др. Сущность изобретения: дискретное лазерное сканирование пространства в плоскости, перпендикулярной направлению лазера, с последующей регистрацией отраженного сигнала и определением дальности по каждой из точек дискретного сканирования, построение профилей объектов с учетом углового положения точек дискретного сканирования и скорости движения, при этом во время регистрации отраженный сигнал разделяют на три сигнала, два из них пространственно линейно преобразовывают в видеосигналы, временной интервал между которыми пропорционален дальности R до объекта, изменяют мощность третьего сигнала и при достижении ею верхней границы динамического диапазона ограничивают длительность лазерного импульса, а дальность R определяют по формуле R=k1/(1+k2k3h), где h - величина, пропорциональная временному интервалу между центрами световых отметок; k1, k2 - коэффициенты, определяемые в результате калибровки; k3 - коэффициент, связанный с масштабом пространственного линейного преобразования фотоприемника. Устройство для построения профилей трехмерных профилей содержит устанавливаемые на движущемся средстве импульсный лазер, блок синхронизации, блок регулировки длительности лазерного импульса, блок обработки данных, включающий входной объектив и последовательно соединенные первый фотоприемник, блок формирования информации о дальности и компьютер, а также второй фотоприемник с входной линзой и блок измерения мощности отраженного сигнала, блок дискретизации измерений, включающий вращающееся зеркало, блок стабилизации частоты вращения зеркала, блок синхронизации фазы вращения зеркала и запуска лазера в пачечном режиме, диафрагму с двумя отверстиями и оптически связанные с последними два оптических клина, при этом первый фотоприемник выполнен протяженным и дискретизированным. 2 с. и 4 з. п. ф-лы, 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3
Формула изобретения
1. Способ построения профилей трехмерных объектов, предусматривающий дискретное лазерное сканирование объекта в пространстве в плоскости, перпендикулярной направлению движения лазера, с последующей регистрацией отраженного сигнала фотоприемником и определением дальности до каждой из точек объекта дискретного сканирования, построение профилей объекта с учетом углового положения точек дискретного сканирования и скорости движения лазера, отличающийся тем, что при регистрации отраженный сигнал разделяют на три сигнала, два из которых пространственно линейно преобразовывают в видеосигналы, временной интервал между которыми пропорционален дальности до соответствующей точки объекта, измеряют мощность третьего сигнала и по достижении ею верхней границы динамического диапазона фотоприемника ограничивают длительность лазерного импульса, а дальность R определяют по формулеR k1/(1 + k2


где h величина, пропорциональная временному интервалу между центрами видеосигналов;
k1, k2 коэффициенты, определяемые в результате калибровки фотоприемника;
k3 коэффициент, связанный с масштабом пространственного линейного преобразования фотоприемника. 2. Способ по п.1, отличающийся тем, что отраженный сигнал разделяют на три одинаковых по мощности и форме сигнала. 3. Способ по п.1 или 2, отличающийся тем, что пространственное линейное преобразование осуществляют вдоль линии, соединяющей центры первого и второго разделенных сигналов. 4. Устройство для построения профилей трехмерных объектов, содержащее выполненные с возможностью установки на движущемся средстве импульсный лазер, блок обработки данных, включающий входной объектив и последовательно соединенные первый фотоприемник, блок формирования информации о дальности и компьютер, блок синхронизации, первый и второй выходы которого соединены соответственно с входом первого фотоприемника и вторым входом блока формирования информации о дальности, блок дискретизации измерений, включающий установленное с возможностью вращения зеркало с приводом, отличающееся тем, что в устройство введен блок регулировки длительности лазерного импульса, выход которого соединен с входом лазера, блок обработки данных дополнительно включает последовательно соединенные второй фотоприемник с входной линзой и блок измерения мощности отраженного сигнала, выход которого соединен с первым входом блока регулировки длительности лазерного импульса, а второй вход с третьим выходом блока синхронизации, диафрагму с двумя отверстиями и оптически связанные с последними два оптических клина, оптически связанных с объективом, при этом первый фотоприемник выполнен протяженным и дискретизированным, блок дискретизации измерений дополнительно содержит блок стабилизации частоты вращения зеркала, первый вход и выход которого соединены соответственно с первым выходом и входом привода зеркала, а второй вход связан с четвертым выходом блока синхронизации, и блок синхронизации фазы вращения зеркала и запуска лазера в пачечном режиме, вход которого связан с вторым выходом привода зеркала, а выход с вторым входом блока регулировки длительности лазерного импульса и третьим входом блока формирования информации о дальности. 5. Устройство по п.4, отличающееся тем, что отверстия в диафрагме выполнены одинаковыми и расположены симметрично относительно оптической оси входного объектива, между зеркалом и диафрагмой по оси входного объектива установлена призма, входная грань которой оптически сопряжена с лазером, а выходная с зеркалом, оптические клинья выполнены идентичными и установлены между диафрагмой и входным объективом напротив отверстий диафрагмы, а протяженный дискретизированный фотоприемник установлен вдоль линии, соединяющей центры световых отметок, формируемых отверстиями диафрагмы в плоскости изображений входного объектива, оптически сопряженной с плоскостью в пространстве объектов, соответствующей середине рабочего интервала дальностей, при этом второй фотоприемник с входной линзой установлен со стороны, противоположной входной грани призмы, а оптическая ось линзы параллельна оптической оси входного объектива. 6. Устройство по п.4 или 5, отличающееся тем, что положение и угол оптических клиньев выбраны из условия обеспечения наличия сигналов от обоих отверстий диафрагмы на первом фотоприемнике во всем диапазоне измерения дальности.
Описание изобретения к патенту
Изобретение относится к области радиофизики и лазерной локации и может быть использовано для контроля поперечных и продольных профилей железнодорожных сооружений, сооружений метро, различных путепроводов, трубопроводов, в шахтах, горных разработках, а также для построения профилей других сооружений и объемов. Основными направлениями в разработке и совершенствовании способов и устройств построения профилей трехмерных объектов являются повышение точности измерений, плотности замеров по профилю, а также скорости измерений и автоматизации процессов обработки и архивирования информации. Известно устройство измеритель негабаритности туннелей [1] реализующее способ, заключающийся в формировании светового контура, соответствующего контуру поперечного сечения туннеля, проецировании светового контура на трафарет, регистрации оптического сигнала светового контура с помощью последовательно соединенных объектива, оптоэлектронного преобразователя и электронной обработке сигнала. Данный способ и реализующее его устройство не позволяют работать даже при средней внешней освещенности, так как понижение контраста напрямую снижает точность измерений. Реализовать большие скорости измерений в данном устройстве не представляется возможным, так как происходит размывание светового контура при движении. Известны устройство для измерения габаритов и реализующий его способ [2] разработанные фирмой EUMIG (Австрия), заключающийся в сканировании габарита лазерным лучом с помощью вращающейся измерительной головки, частота вращения которой пропорциональна пройденному расстоянию и измерении дальности до точек габарита. Данное устройство обеспечивает измерение габарита вдоль пути с интервалом 2 м. При неподвижном положении измерительной головки допускается измерение продольного профиля при скорости не более 18 км/ч. Наиболее близким аналогом является способ построения профилей трехмерных объектов, реализованный в устройстве "Profil 2000" [3] заключающийся в дискретном лазерном сканировании пространства в плоскости, перпендикулярной направлению движения с последующей регистрацией отраженного сигнала и определением дальности до каждой из точек дискретного сканирования, построении профилей объектов с учетом углового положения точек дискретного сканирования и скорости движения. Устройство "Profil 2000" содержит устанавливаемые на движущемся средстве лазер, блок обработки данных, включающий входной объектив и последовательно соединенные фотоприемник, блок формирования информации о дальности и компьютер, блок синхронизации, блок дискретизации измерений, включающий вращающееся зеркало. Информацией о профиле служат угол поворота вращающегося зеркала и расстояние от точки обзора до препятствия. Число точек, измеряемых в одном профиле, доходит до 200. Измерение одного профиля производится из стационарного состояния прибора и занимает от 0,8 до 2,0 с в зависимости от выбранного числа точек по периметру профиля. Кассеты с записями для окончательной обработки передаются на стационарную ЭВМ. Технический результат, обеспечиваемый изобретением, возможность использования эффекта, связанного с одномоментным опросом одной точки с разнесенной в пространстве базы для работы на высокой частоте, в микросекундном режиме в метровом и сантиметровом диапазоне дальности. Сущность изобретения заключается в достижении упомянутого технического результата в способе построения профилей трехмерных объектов, предусматривающем дискретное лазерное сканирование пространства в плоскости, перпендикулярной направлению с последующей регистрацией отраженного сигнала и определением дальности до каждой из точек дискретного сканирования, построение профилей объектов с учетом углового положения точек дискретного сканирования и скорости движения, при этом во время регистрации отраженный сигнал разделяют на три сигнала, два из них одномоментно и пространственно линейно преобразовывают в видеосигналы, временной интервал между которыми пропорционален дальности К до объекта, измеряют мощность третьего сигнала и при достижении ею верхней границы динамического диапазона ограничивают длительность лазерного импульса, а дальность R определяют по формулеR k1/(1+k2


где h величина, пропорциональная временному интервалу между центрами световых отметок;
k1, k2 коэффициенты, определяемые в результате калибровки;
k3 коэффициент, связанный с масштабом пространственного линейного преобразования. Отраженный сигнал разделяют на три одинаковых по мощности и форме сигнала, а пространственное линейное преобразование осуществляется вдоль линии, соединяющей центры первого и второго разделенных сигналов. Суть изобретения заключается в достижении упомянутого технического результата, в частности в устройстве для построения профилей трехмерных объектов, содержащее устанавливаемые на движущемся средстве импульсный лазер, блок обработки данных, включающий входной объектив и последовательно соединенные первый фотоприемник, блок формирования информации о дальности и компьютер, блок синхронизации, соединенный с первым фотоприемником и блоком формирования информации о дальности, блок дискретизации измерений, включающий вращающееся зеркало, дополнительно в устройство введен блок регулировки длительности лазерного импульса, выход которого соединен с входом лазера, блок обработки данных дополнительно включает последовательно соединенные второй фотоприемник с выходной линзой и блок измерения мощности отраженного сигнала, выход которого соединен с первым входом блока регулировки длительности лазерного импульса, а второй вход с выходом блока синхронизации, диафрагму с двумя отверстиями и оптически связанные с последними два оптических клина, при этом первый фотоприемник выполнен протяженным и дискретизированным, блок дискретизации измерений дополнительно содержит блок стабилизации частоты вращения зеркала, вход и выход которого связаны с выходом и входом вращающегося зеркала, а второй вход связан с блоком синхронизации, и блок синхронизации фазы вращения зеркала и запуска лазера в пачечном режиме, вход которого связан с выходом вращающегося зеркала, а выход со вторым входом блока регулировки длительности лазерного импульса и блоком формирования информации о дальности. Отверстия в диафрагме выполнены одинаковыми и расположены симметрично относительно центра входного объектива, перед диафрагмой по оси входного объектива установлена призма, оптические клинья выполнены идентичными и установлены перед входным объективом напротив отверстий экрана, а протяженный дискретизированный фотоприемник установлен вдоль линии, соединяющей центры световых отметок, формируемых отверстиями диафрагмы в плоскости изображений входного объектива, оптически сопряженной с серединой рабочего интервала дальностей, при этом вход призмы съюстирован с выходом лазера, выход с осью вращения зеркала, при этом второй фотоприемник с входной линзой установлен со стороны, противоположной входу призмы, а ось линзы параллельна оси входного объектива. Положение и угол оптических клиньев выбраны из условия обеспечения наличия сигналов от обеих отверстий диафрагмы на первом фотоприемнике во всем диапазоне измерения дальности. На фиг. 1 изображена схема, поясняющая принцип измерения дальности до поверхности профиля; на фиг. 2 устройство для построения профилей трехмерных объектов; на фиг. 3 результаты измерения одного плоского профиля, полученные с помощью описываемого устройства
На объекте (фиг. 1), до которого измеряют расстояние R, с помощью оптической системы 9 и отклоняющего элемента 6 формируют излучение лазера 1 в виде пятна Л, размеры и пропорции сторон которого зависят от рабочего диапазона дальностей. Из отраженного от объекта сигнала с помощью диафрагмы 3 с двумя отверстиями 4, расположенными на расстоянии b друг от друга, формируют два сигнала, которые пройдя каждый по идентичному пути через клинья 5 и соответствующие краевые зоны объектива 2, имеющего фокусное расстояние f", формируют на пространственно линейном фотоприемнике 7 два изображения 8 пятна Л на объекте. Фотоприемник 7 преобразует изображения 8 в два видеосигнала, временной интервал между которыми пропорционален расстоянию d на фотоприемнике 7 между отметками 8. Одновременно с помощью устройства 10 измеряют мощность третьего сигнала, равную по величине мощности первого и второго сигналов, и, если последняя выходит за верхнюю границу динамического диапазона, прерывают лазерный импульс. Поскольку время распространения излучения на расстояние нескольких метров составляет десятки наносекунд, тогда как лазер излучает импульсы микросекундной длительности, то регулировку длительности импульса и соответственно принимаемой мощности осуществляют одновременно с регистрацией принимаемого сигнала. Такая мгновенная регулировка мощности позволяет проводить измерения по объектам с очень большим диапазоном и высокой динамикой отражательных свойств. Дальность R до объекта Л может быть рассчитана из соотношения (1). Для получения значений коэффициентов k1 и k2 процесс калибровки осуществляют следующим образом. Рабочий диапазон дальности разбивают на m участков. На дальностях, определяемых из выражения Ri=Rmin+i










Диапазон рабочих дальностей 0,7-3,5 м
Точность измерения дальности соответственно 2-25 мм
Точность измерения угловых координат в профиле < 0,2%
Время измерения координат в одной точке 65 мкс
Число точек измерения в одном профиле 500
Время измерения одного профиля 25 мс
Расстояние между профилями при движении со скоростью 20 км/ч 0,1 м
На фиг. 3 показаны результаты измерения плоского профиля, полученные при испытаниях с помощью описываемого устройства. Профиль состоял из элементов с различной отражательной способностью: зеленая масляная краска, побелка, струганное темное дерево. Размерность по осям X и Y соответствует миллиметрам, в точке X0 0 мм и Y0 4600 мм находилась ось вращения зеркала устройства. Таким образом предложенное техническое решения позволило повысить:
скорость измерения одного двумерного профиля от 40 до 200 раз;
точность построения профиля в два с половиной раза за счет увеличения числа точек измерения в одном профиле с 200 до 500;
скорость построения профилей трехмерных объектов за счет возможности работы при высоких скоростях движения транспортного средства. Применение предложенного технического решения по существу открывает новый класс приборов, которые позволяют проводить измерения с высокой частотой (десятки килогерц) в микросекундном режиме, в метровом диапазоне дальностей с миллиметровой (сантиметровой) точностью, а в сантиметровом диапазоне дальностей получить точность в несколько десятков микрометров. Источники информации
1. SU, авт. св. N 1323852, кл. G 01 B 21/00, 1986. 2. Rilssderger K. Ein neues Verfahren Zur Vermessung des lichten Raumes von Eisentahn-Strecken. -"Eisenbahningenieur", 1980, 31, N 9, 387 388, 390 -391. УДК 625 114; 12Г108). 3. Profil 2000 for automatic profill meuzurement and independent analytical output processing Sacher F. "Large Rock Caverns: proc Int Symp Helsinki", 25-28, 1986, Vol, Oxford e.a. 1987, 1009-1016. ГПНТБ СССР. Железнодорожный транспорт, сводный том РЖ ВИНИТИ, N 5, 1988.
Класс G01B21/20 для измерения контуров или кривых, например для измерения профилей сечений
Класс G01C3/00 Приборы для измерения расстояний по линии визирования; оптические дальномеры