композиционный материал для сепаратора щелочных аккумуляторных батарей
Классы МПК: | H01M2/16 отличающиеся материалом H01M10/24 щелочные аккумуляторы |
Автор(ы): | Щетанов Б.В. (RU), Ивахненко Ю.А. (RU), Каблов Е.Н. (RU), Берсенев А.Ю. (RU), Семенова Е.В. (RU), Максимов В.Г. (RU), Плуталов Н.Ф. (RU) |
Патентообладатель(и): | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (RU) |
Приоритеты: |
подача заявки:
2002-11-18 публикация патента:
27.06.2004 |
Изобретение относится к области композиционных материалов, в частности к пористым диэлектрическим гибким материалам для химических источников тока. Техническим результатом изобретения является создание композиционного материала, пригодного для изготовления сепараторов щелочных аккумуляторных батарей, способного удерживать электролит и не препятствовать электрохимической реакции, обладающего высокой химической устойчивостью к воздействию электролита в условиях длительной эксплуатации и длительного хранения при обычных и повышенных температурах. Согласно изобретению композиционный материал для изготовления сепаратора щелочных аккумуляторных батарей содержит порошок диоксида циркония и волокна на основе диоксида циркония при следующем соотношении компонентов (мас.%): диоксид циркония (порошок) 50-72; волокна диоксида циркония 28-50. При этом диаметр волокна диоксида циркония составляет 1,5-12 мкм, а диаметр частиц порошка диоксида циркония 0,05-10 мкм. 1 табл.
Формула изобретения
1. Композиционный материал для сепараторов щелочных аккумуляторных батарей, содержащий порошок диоксида циркония, отличающийся тем, что он дополнительно содержит волокна диоксида циркония при следующем соотношении компонентов, мас.%:Порошок диоксида циркония 50 - 72Волокна диоксида циркония 28 - 502. Композиционный материал по п.1, отличающийся тем, что диаметр волокон диоксида циркония составляет 1,5-12 мкм, а диаметр частиц порошка диоксида циркония - 0,05-10 мкм.Описание изобретения к патенту
Изобретение относится к области композиционных материалов, в частности к пористым диэлектрическим гибким материалам для химических источников тока. Изделия, полученные из этого материала, найдут широкое применение при производстве аккумуляторных батарей как для источников электроэнергии бортовых систем питания летательных аппаратов, так и для судовых, автомобильных и бытовых аккумуляторов.Сепаратор щелочных аккумуляторных батарей должен обеспечивать электрическую изоляцию электродов, обладать достаточной пористостью для удержания электролита, выдерживать определенные перепады температур и обладать достаточной прочностью, чтобы предотвращать осыпание и оплывание активных масс электродов.Традиционными компонентами сепараторов щелочных аккумуляторных батарей являются волокна щелочеустойчивых органических полимеров и материалы на основе асбестовых волокон.Известны гибкие сепараторы батарей, изготовленные на основе мата из хризотилового асбеста (хризотил - гидросиликат магния Mg6Si4О10(OH)8), пропитанного полифениленоксидом и покрытого гибкой пленкой, состоящей из органического или керамического материала сепаратора, титаната калия в виде коротких волокон и органического полимера, такого как полифениленоксид, сформованного в виде короба или оболочки, в которую можно вставлять электрод (Патент США №3.625.770, Н 01 М 3/02).Недостатком такого сепаратора является невысокая коррозионная стойкость, обусловленная выщелачиванием из асбеста оксида кремния в процессе длительной эксплуатации, что ухудшает электрические характеристики аккумуляторов.Известен также нетканый материал для сепаратора, в котором один или более смешанных слоев из запутанных коротких (от 1 до 25 мм) и запутанных длинных (свыше 25 мм) волокон образуют нетканую основу (Патент США №6037079, Н 01 М 2/16.14). Слои запутанных волокон содержат композитные волокна, в основном на основе полиолефина, высокопрочные волокна (с прочностью одного волокна не менее 5 г/денье) и плавкие волокна, имеющие хотя бы на своей поверхности смолообразный компонент с точкой плавления ниже, чем у композиционных и высокопрочных волокон. После расплавления этих плавких волокон в материале получается спутано - сплавленный нетканый материал, которому затем путем дополнительной обработки придаются гидрофильные свойства.Существует способ получения сепараторов путем обертывания плоских листов вокруг электродов. Эти листы предлагается делать из различных волокнистых материалов - нетканых стеклянных волокон или нетканых полимерных волокон, например полиэтилена или полипропилена, которые удерживают электролит капиллярными силами, а кроме этого обеспечивают пространство для газа, т.к. матрица не полностью заполнена электролитом (Патент США №6153335, Н 01 М 4/56).Недостатком сепараторов из полимерных волокон является их низкая температуроустойчивость. При эксплуатации щелочных никель-кадмиевых аккумуляторов могут возникать локальные перегревы до температур порядка 300С, что приводит к разложению и карбонизации полимерного материала сепаратора и, в конечном итоге, к короткому замыканию между электродами.Наиболее близким по технической сущности и достигаемому результату к предлагаемому является выбранный в качестве прототипа сепаратор для щелочного никель-водородного аккумулятора на основе порошка диоксида циркония и волокон конвертированного хризотилового асбеста при следующем соотношении компонентов: диоксид циркония - 90-75%, конвертированный хризотиловый асбест - 10-25% (по массе). (Патент РФ №2173918, Н 01 М 2/16, 6/14, 8/02).Такой сепаратор имеет высокие электрические характеристики, однако недостатком его является то, что при взаимодействии с электролитом происходит выщелачивание соединений кремния из волокон асбеста. Об этом свидетельствует зафиксированная потеря массы материала сепаратора (порядка 2-4 мас.%) в результате коррозионных испытаний в 9,8 н.растворе гидроксида калия при температуре 130С в течение 100 часов. При эксплуатации аккумулятора в течение нормативного срока (10 лет) это может привести к изменению структурных характеристик сепаратора и, в результате этого, к снижению его электротехнических показателей.Технической задачей данного изобретения является создание композиционного материала, пригодного для изготовления сепараторов щелочных аккумуляторных батарей, способного удерживать электролит и не препятствовать электрохимической реакции, т.е. иметь низкое электросопротивление, обладающего высокой химической устойчивостью к воздействию электролита в условиях длительной эксплуатации и длительного хранения как при обычных, так и при повышенных температурах.Решение поставленной задачи достигается тем, что предлагаемый композиционный материал для изготовления сепаратора щелочных аккумуляторных батарей содержит порошок диоксида циркония и волокна на основе диоксида циркония при следующем соотношении компонентов (мас.%):Диоксид циркония (порошок) 50-72Волокна диоксида циркония 28-50при этом диаметр волокна диоксида циркония составляет 1,5-12 мкм, а диаметр порошка диоксида циркония 0,05-10 мкм.В данном случае волокна диоксида циркония с диаметром от 1,5 до 12 мкм исполняют роль каркаса композиционного материала, обеспечивающего гибкость и механическую прочность конструкции, а также способность удерживать электролит, обусловленную гидрофильностью поверхности и капиллярными силами. При использовании волокон с диаметром больше 12 мкм каркас материала имеет слишком высокую пористость и низкую способность удерживать порошковый наполнитель. Волокна тоньше 1,5 мкм не обеспечивают необходимой механической прочности материала. Содержание волокна в материале менее 28 мас.% приводит к снижению механической прочности композита, а увеличение его количества свыше 50 мас.% снижает однородность материала.Мелкодисперсные частицы порошка диоксида циркония с диаметром от 0,05 до 10 мкм, располагающиеся в пространстве между волокнами, создают мелкопористую структуру материала, что препятствует прорастанию дендритов металлического электрода через сепаратор, и обеспечивают свободную циркуляцию электролита между электродами. Частицы порошка с диаметром менее 0,05 мкм не удерживаются в пространстве между волокнами. Использование порошка диоксида циркония с частицами крупнее, чем 10 мкм, приводит к повышению неоднородности материала.Как показали эксперименты, диоксид циркония в виде волокна обладает высокой коррозионной устойчивостью к воздействию концентрированных растворов щелочей при повышенных температурах. Использование в качестве каркаса композиционного материала волокон из диоксида циркония приводит к повышению стабильности эксплуатационных характеристик изготовленных из него сепараторов щелочных аккумуляторных батарей на протяжении всего нормативного срока службы аккумуляторов.Примеры осуществления предлагаемого технического решения.Пример 14 г волокна из диоксида циркония со средним диаметром ~5 мкм и средней длиной ~300 мкм диспергировали в 0,5 л воды в барабане шаровой мельницы в течение 15 мин. В полученную суспензию вводили 12 г порошка диоксида циркония со средним диаметром частиц ~3 мкм при перемешивании лопастной мешалкой. Из суспензии методом вакуумного фильтрования через пористую подложку получали заготовку композиционного материала, которую после сушки прессовали до необходимой толщины. Композиционный материал содержал 72 мас.% порошка диоксида циркония и 28 мас.% волокна.Пример 2В соответствии с примером 1 была получена суспензия, содержащая 8 г волокна диоксида циркония со средним диаметром ~12 мкм и средней длиной ~700 мкм и 8 г порошка диоксида циркония со средним диаметром частиц ~10 мкм в 1 л воды, из которой получен композиционный материал с содержанием 35 мас.% волокна и 65 мас.% порошка.Пример 3В соответствии с примером 1 получен образец композиционного материала, содержащий 40 мас.% волокна диоксида циркония со средним диаметром ~1,5 мкм и средней длиной ~90 мкм и 60 мас.% порошка ZrO2 со средним диаметром частиц ~0,1 мкм.Пример 4В соответствии с примером 1 получен образец композиционного материала, содержащий 50 мас.% волокна диоксида циркония со средним диаметром ~7 мкм и средней длиной ~400 мкм и 50 мас.% порошка ZrO3 со средним диаметром частиц 7 мкм.Пример 5В соответствии с примером 1 получен образец композиционного материала, содержащий 30 мас.% волокна диоксида циркония со средним диаметром ~3 мкм и средней длиной ~180 мкм и 70 мас.% порошка диоксида циркония со средним диаметром частиц ~0,05-2 мкм.Пример 6В соответствии с примером 1 получен образец композиционного материала, содержащий 50 мас.% волокна со средним диаметром ~3 мкм и средней длиной ~180 мкм и 50 мас.% порошка ZrО2 со средним диаметром частиц ~3 мкм.Коррозионные испытания проводились в 9,8 н.растворе гидроксида калия, нагретом до 130С, в течение 100 часов.В таблице приведены составы и характеристики композиционных материалов, полученных в соответствии с предлагаемым техническим решением в сравнении с прототипом. Из таблицы видно, что полученные в соответствии с настоящим изобретением образцы композиционного материала при толщине 0,3 мм имеют пористость в пределах 56-70%, что несколько ниже пористости прототипа, однако, щелочеудержание у них превосходит прототип. Удельное электросопротивление образцов композиционного материала, заполненных электролитом (30% раствор КОН) совпадает с сопротивлением прототипа.Коррозионные испытания образцов композиционного материала, полученных согласно изобретению, показали, что они имеют коррозионную устойчивость на два порядка выше прототипа.Как показали испытания, предложенный композиционный материал имеет высокую коррозионную стойкость в щелочах, значительно превосходящую прототип, и при толщине 0,3 мм его пористость составляет ~63%, что позволит использовать его при изготовлении сепараторов щелочных батарей для бортовых аккумуляторов, которые должны иметь длительный ресурс работы, а также сохранять работоспособность после длительного хранения на борту в запасном состоянии, и в случае стерилизации щелочного аккумулятора, которая происходит при температуре 135С.Класс H01M2/16 отличающиеся материалом
Класс H01M10/24 щелочные аккумуляторы