цеолитный катализатор, способ его приготовления и способ неокислительной конверсии метана
Классы МПК: | B01J29/46 металлы группы железа или медь B01J29/48 содержащие мышьяк, сурьму, висмут, ванадий, ниобий, тантал, полоний, хром, молибден, вольфрам, марганец, технеций или рений B01J37/04 смешивание C07C15/04 бензол C07C2/76 конденсацией углеводородов с частичным отщеплением водорода |
Автор(ы): | Восмериков Александр Владимирович (RU), Коробицына Людмила Леонидовна (RU), Арбузова Нина Витальевна (RU), Ечевский Геннадий Викторович (RU), Коденев Евгений Геннадьевич (RU), Козлов Владимир Валерьевич (RU), Ануфриенко Владимир Феодосьевич (RU) |
Патентообладатель(и): | Институт химии нефти Сибирского отделения Российской Академии наук (RU), Институт катализа им. Г.К. Борескова Сибирского отделения Российской Академии наук (RU) |
Приоритеты: |
подача заявки:
2005-08-11 публикация патента:
27.03.2007 |
Изобретение относится к нефтехимической и химической промышленности, в частности к способу получения катализаторов конверсии метана в ароматические углеводороды в неокислительных условиях. Описан высококремнеземный цеолитный катализатор для процесса неокислительной конверсии метана, включающий в свой состав молибден и второй модифицирующий элемент - никель, при этом содержание молибдена в катализаторе составляет не более 4,0 мас.%, и никеля от 0,1 до 0,5 мас.%. Описан способ приготовления цеолитного катализатора для процесса неокислительной конверсии метана, включающий модификацию цеолита молибденом и вторым промотирующим элементом, при этом молибден и второй промотирующий элемент - никель вводят в цеолит в виде наноразмерных порошков металлов, при этом содержание молибдена в полученном катализаторе составляет не более 4,0 мас.%, а никеля от 0,1 до 0,5 мас.%. Описан также способ неокислительной конверсии метана в присутствии описанного выше катализатора. Технический эффект - повышение эффективности процессов неокислительной конверсии метана за счет увеличения активности и стабильности катализатора. 3 н.п. ф-лы, 1 табл.
Формула изобретения
1. Высококремнеземный цеолитный катализатор для процесса неокислительной конверсии метана, включающий в свой состав молибден и второй модифицирующий элемент, отличающийся тем, что содержание молибдена в катализаторе составляет не более 4,0 мас.%, второго модифицирующего элемента - никеля от 0,1 до 0,5 мас.%.
2. Способ приготовления цеолитного катализатора для процесса неокислительной конверсии метана, включающий модификацию цеолита молибденом и вторым модифицирующим элементом с последующим прокаливанием, отличающийся тем, что молибден и второй промотирующий элемент - никель вводят в цеолит в виде наноразмерных порошков металлов, при этом содержание молибдена в полученном катализаторе составляет не более 4,0 мас.%, а никеля - от 0,1 до 0,5 мас.%.
3. Способ неокислительной конверсии метана в присутствии высококремнеземного цеолитного катализатора, отличающийся тем, что используют катализатор по п.1.
Описание изобретения к патенту
Изобретение относится к нефтехимической и химической промышленности, в частности к способу получения катализаторов конверсии метана в ароматические углеводороды в неокислительных условиях.
Известно, что с целью повышения времени стабильного действия высококремнеземных цеолитов типа ZSM-5, содержащих молибден, в процессе неокислительной конверсии метана используют добавки таких промоторов, как Fe, Cr, Ga [Dong Qun, Ichkawa M. Каталитические особенности систем Mo/HZSM-5, промотированных добавками второго металла, в ароматизации метана // Fenzi cuihua=J.Mol.Catal. (China) - 2001. - Vol.15. - №1.-33-36] и Co [Tian Bing-lun, Lui Hong-mei, Shu Yu-ying, Wang Lin-sheng, Xu Yi-de Дегидроароматизация метана в отсутствие кислорода в присутствии модифицированных кобальтом катализаторов Mo/HZSM-5 // Fenzi cuihua=J.Mol.Catal. (China) - 2000. - vol.14 - №3-200-204].
Наиболее близким к предлагаемому катализатору является катализатор, содержащий 4,0 мас.% молибдена [Jun-Zhong Zhang, Mervyn A. Long, Russell F. Howe Molybdenum ZSM-5 zeolite catalysts for the conversion of methane to benzene // Catalysis Today 44(1998)293-300].
Наиболее близким к предлагаемому способу является способ получения Мо-Cu/HZSM-5 катализатора путем введения Cu в цеолит H-ZSM-5 методом ионного обмена из водного раствора ацетата меди, высушивания, прокаливания и последующего добавления механическим смешением необходимого количества МоО3. Приготовленный Mo-Cu/HZSM-5 катализатор тщательно измельчался и прокаливался на воздухе при 500°С в течение 4 часов [S. Li, С. Zhang, Q. Kan, D. Wang, Т. Wu, L. The function of Cu(II) ions in the Mo/Cu-HZSM-5 catalyst for methane conversion under non-oxidative condition // Applied Catalysis A: General 187(1999) 199-206].
Недостатком этого способа является высокая продолжительность срока приготовления катализатора, обусловленная многостадийностью процесса, а также сравнительно низкая каталитическая активность в процессе неокислительной конверсии метана при температуре 750°С и объемной скорости подачи 800 ч-1.
Наиболее близким к предлагаемому способу является способ неокислительной конверсии метана в присутствии цеолитного катализатора, модифицированного Мо [Jun-Zhong Zhang, Mervyn A. Long, Russell F. Howe Molybdenum ZSM-5 zeolite catalysts for the conversion of methane to benzene // Catalysis Today 44(1998) 293-300].
Задачей предлагаемого изобретения является получение катализатора, обеспечивающего повышение степени превращения метана и выхода ароматических углеводородов, и увеличение срока стабильного действия Mo/ZSM-5 катализатора путем добавления Ni в качестве второго промотирующего элемента.
Технический результат достигается тем, что Ni-Mo/HZSM-5 катализаторы получают путем сухого механического смешения цеолита HZSM-5 с мольным отношением SiO2/Al 2O3=40 (М=40) и наноразмерных порошков (НРП) Мо и Ni, полученных методом электрического взрыва проволоки металлов в среде аргона, с последующим прокаливанием приготовленных смесей при температуре Т=500°С в течение 4 часов. В результате получают Ni-Mo/HZSM-5 катализаторы, содержащие не более 4,0 мас.% НРП Мо и не менее 0,1 мас.% НРП Ni. Каталитическая активность и стабильность приготовленных контактов выше, чем катализаторов, полученных модифицированием цеолита HZSM-5 медью методом ионного обмена из водного раствора ее соли с последующим смешением с МоО3, а также катализатора, полученного механическим смешением цеолита HZSM-5 с нанопорошком Мо без добавления НРП Ni, при одинаковых условиях проведения процесса.
Примеры конкретного выполнения.
Пример 1. К 4,0 г декатионированного цеолита H-ZSM-5 (М=40) добавляют 0,16 г НРП Мо (4,0 мас.%) и 0,004 г НРП Ni (0,1 мас.%), полученных методом электрического взрыва проволок металла в среде аргона. Полученную смесь перемешивают в вибрационной мельнице в течение 0,5 ч и прокаливают при 500°С в течение 4 ч. Затем катализатор прессуют в таблетки, крошат и отбирают для исследований фракцию 0,5-1,0 мм.
Каталитические испытания образцов проводят в проточной установке при температуре реакции 750°С, объемных скоростях подачи метана 800-1000 ч-1 и атмосферном давлении. Катализатор в количестве 1 мл помещают в кварцевый трубчатый реактор диаметром 12 мм. Перед началом реакции катализатор нагревают в токе Не до 750°С и выдерживают при этой температуре в течение 20 мин, затем в реактор подают метан, степень чистоты которого составляет 99,9%. Продукты реакции и не превращенный метан поступают в шестиходовой кран для отбора проб на анализ.
Для предотвращения конденсации или прочной адсорбции образующихся высших углеводородов трубка на выходе из реактора и шестиходовой кран находятся при температуре выше 200°С. Анализ продуктов конверсии метана проводится через 60 мин работы катализатора методом газовой хроматографии. Конверсия метана при объемной скорости 800 ч-1 после 60 мин работы катализатора составляет 14,2%. Исследования влияния времени реакции на активность катализатора показывают, что конверсия сохраняется практически постоянной (13-14%) в течение 300 мин работы катализатора, затем наблюдается постепенное ее снижение, и за время реакции 480 мин она уменьшается до 10,9%.
Пример 2. Так же как в примере 1, но содержание НРП Ni составляет 0,25% от веса цеолита. Конверсия метана при 800 ч -1 составляет 13,8% после 60 мин работы катализатора и снижается до 10,0% за время реакции 480 мин.
Пример 3. Так же как в примере 1, но содержание НРП Ni составляет 0,5% от веса цеолита. Конверсия метана при 800 ч-1 составляет 12,5% после 60 мин работы катализатора и снижается до 7,8% за время реакции 480 мин.
Пример 4. Так же как в примере 1, но содержание НРП Ni составляет 1,0% от веса цеолита. Конверсия метана при 800 ч-1 составляет 11,1% после 60 мин работы катализатора и снижается до 3,5% за время реакции 480 мин.
Пример 5. Так же как в примере 1, но Mo/HZSM-5 катализатор не содержит Ni. Конверсия метана составляет 13,8% после 60 мин работы катализатора и снижается до 8,4% за время реакции 480 мин.
Пример 6. Так же как в примере 1, но объемная скорость подачи метана равна 1000 ч -1, при этом конверсия метана через 60 мин работы катализатора составляет 13,6% и снижается до 8,4% за время реакции 480 мин.
Пример 7. Так же как в примере 6, но Mo/HZSM-5 катализатор не содержит Ni. Конверсия метана составляет 12,1% после 60 мин работы катализатора и снижается до 5,4% за время реакции 480 мин.
В таблице представлены сравнительные характеристики каталитической активности и стабильности образцов Ni-Mo/HZSM-5 и Mo/ZSM-5, полученных путем модифицирования цеолита НРП Мо и Ni, и Mo-Cu/ZSM-5 катализатора, полученного путем модифицирования цеолита медью методом ионного обмена из водного раствора ацетата меди и последующего механического смешения образца Cu/ZSM-5 с оксидом молибдена (по прототипу).
Как видно из данных таблицы, предлагаемый способ позволяет получить катализатор, отличающийся от прототипа более высокой активностью и стабильностью в процессе конверсии метана в ароматические углеводороды.
Таблица | ||||||||
Сравнительная характеристика активности модифицированных цеолитных катализаторов | ||||||||
Показатели | По предлагаемому способу | По прототипу | ||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
Температура, °С | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 750 |
Объемная скорость, ч-1 | 800 | 800 | 800 | 800 | 800 | 1000 | 1000 | 800 |
Конверсия за время реакции 60 мин, % | 14,2 | 13,8 | 12,5 | 11,1 | 13,8 | 13,6 | 12,1 | 10,0 |
Селективность по аренам, % | 81,7 | 81,2 | 79,2 | 79,3 | 79,0 | 78,7 | 78,5 | 85,0 |
Выход аренов, % | 11,6 | 11,2 | 9,9 | 8,8 | 10,9 | 10,7 | 9,5 | 8,5 |
Конверсия за время реакции 480 мин, % | 10,9 | 10,0 | 7,8 | 3,5 | 8,4 | 8,4 | 5,4 | 7,2 (за 300 мин) |
Отношение Ni(Cu)/Mo в катализаторе | 0,04 | 0,1 | 0,2 | 0,4 | - | 0,04 | - | 0,13 |
Класс B01J29/46 металлы группы железа или медь
Класс B01J29/48 содержащие мышьяк, сурьму, висмут, ванадий, ниобий, тантал, полоний, хром, молибден, вольфрам, марганец, технеций или рений
Класс C07C2/76 конденсацией углеводородов с частичным отщеплением водорода