способ рафинирования алюминиевых сплавов

Классы МПК:C22B9/10 с использованием рафинирующих средств или флюсов; использование материалов для этой цели
C22C1/06 с применением особых средств для рафинирования или раскисления 
C22B21/06 рафинирование алюминия 
Автор(ы):, , , , , , , ,
Патентообладатель(и):Институт металлургии и материаловедения им. А.А. Байкова РАН (RU)
Приоритеты:
подача заявки:
2006-06-28
публикация патента:

Способ рафинирования алюминиевых сплавов включает обработку расплава флюсом, содержащим хлориды, фториды и огнеупорные наполнители в виде дисперсных частиц тугоплавких оксидов алюминия и кремния, при этом флюс замешивают в сплав, находящийся в твердожидком состоянии, а затем нагревают его до температуры 720-730°С. В качестве основного рафинирующего реагента во флюсе используется диоксид кремния SiO2 или метакаолинит Al 2О3·2SiO2 при следующем соотношении компонентов, вес.%: KCl 1,9-9,4, NaCl 1,2-6,0, Na3AlF6 0,9-4,6, SiO2 или Al2 O3·2SiO2 - остальное. Обеспечивается повышенная рафинирующая способность, низкая себестоимость и экологическая безопасность. 1 з.п. ф-лы, 1 табл.

Формула изобретения

1. Способ рафинирования алюминиевых сплавов, включающий обработку расплава флюсом, содержащим хлориды, фториды и огнеупорные наполнители в виде дисперсных частиц тугоплавких оксидов алюминия и кремния, отличающийся тем, что флюс замешивают в сплав, находящийся в твердожидком состоянии, а затем нагревают его до температуры 720-730°С.

2. Способ по п.1, отличающийся тем, что в качестве основного рафинирующего реагента во флюсе используют диоксид кремния SiO2 или метакаолинит Al 2О3·2SiO2 при следующем соотношении компонентов, вес.%:

KCl1,9-9,4
NaCl1,2-6,0
Na3AlF6 0,9-4,6
SiO 2 или Al2O3 ·2SiO2остальное

Описание изобретения к патенту

Изобретение относится к металлургии цветных металлов, в частности к способам рафинирования алюминиевых сплавов от газов, окислов и других неметаллических включений, и может быть использовано в металлургии вторичных цветных металлов при производстве алюминиевых сплавов.

Наиболее распространенным способом рафинирования алюминиевых сплавов является рафинирование при помощи флюсов, содержащих соли фтора и хлора. Несмотря на свою широкую распространенность, ближайшие аналоги обладают общим недостатком - невозможностью обеспечения равномерного распределения рафинирующих реагентов по всему объему расплава и, соответственно, снижением их рафинирующей способности. Кроме того, большинство таких флюсов экологически небезопасны. Известен способ рафинирования с использованием флюсов, содержащих криолит, фторидные и хлоридные соли: NaF 25-38 вес.%; Na3AlF6 25-37 вес.%; NaCl - остальное [А.с. 834179, С22С 1/06, С22В 9/10. Флюс для активного фильтра Б.А. Иванов, Г.Н. Чирков, А.С. Кауфман, В.В. Хлынов, Е.А. Шуликов, 16.07.1979]. Недостатком способа является то, что использование этих флюсов не дает заметного повышения физико-механических свойств сплавов.

Известен способ рафинирования алюминиевых сплавов от железа [А.с.1161575, С22С 1/06, С22В 9/10. Способ рафинирования алюминиевых сплавов от железа. А.М. Апанасенко, И.П. Иванов, М.Я. Гендельман, 19.12.1983], включающий обработку расплава рафинирующим реагентом с последующим отделением соединений железа фильтрацией, отличающийся тем, что в качестве основного рафинирующего реагента используют смесь, содержащую 10-70% оксидов алюминия, кремния и магния в количестве 0,8-1,6 вес.ч. оксида на тонну вес.ч. железа в расплаве. Смесь помещают на поверхность расплава, выдерживают расплав в течение 20-30 мин до отстаивания частиц и фильтрацию расплава осуществляют через образовавшийся на подине слой, состоящий из смеси оксидов и интерметаллидов Fe2Al5. Недостаток данного способа заключается в том, что частицы рафинирующей смеси, находясь на поверхности расплава, покрываются окисной пленкой оксида алюминия, из-за чего не полностью вступают в реакцию с расплавом. Также недостатком являются повышенные энергозатраты при выдержке расплава в течение 25-30 мин под рафинирующим реагентом.

Известен способ, в котором флюс для обработки алюминия и алюминиево-кремниевых сплавов содержит оксиды титана, бора, кальция, калия, натрия и кремния [А.с. 955706, С22В 9/10. Флюс для обработки алюминия и алюминиево-кремниевых сплавов. Ю.Н. Степанов, А.И. Конягин, В.П. Ивченков и др., 03.12.1980]. Целью обработки является улучшение механических характеристик сплава за счет защиты его от воздействия окружающей среды, модифицирования эвтектики и рафинирования от неметаллических включений. Поставленная цель достигается тем, что флюс содержит указанные компоненты в следующем соотношении, вес.%: диоксид титана 0,5-4,0; оксид бора 30-40; оксид кальция 0,5-4,0; оксид калия 15-22; оксид кремния 15-23; оксид натрия - остальное. Недостатком данного способа является невозможность обеспечения равномерного распределения флюса по объему расплава, что снижает его рафинирующую способность.

Наиболее близким аналогом (прототипом) к предлагаемому изобретению является способ рафинирования с использованием комбинированных флюсов. Комбинированный флюс состоит из 20-40% солевого флюса, применяемого по технологии серийной плавки, а 60-80% его массы заменяют другими технологическими добавками с целью усилить защитные, рафинирующие свойства флюса и его экологичность, улучшить температурный режим плавки. Технологическими добавками являются вещества, состоящие из оксидов Al 2О3, SiO2, MgO и др., т.е. огнеупорные и теплоизоляционные материалы, например молотый шамот, вспученные перлит, вермикулит и т.п. [С.В. Филиппов, В.Ф. Колосков. Опыт применения комбинированных флюсов. - Прогрессивные литейные технологии: Труды III Междунар. науч.-практ. конф. - М.: МИСиС, 2005. - С.242-246]. Комбинированный флюс - порошкообразная, сыпучая масса, которая, равномерно покрывая зеркало расплава сравнительно толстым слоем, предохраняет его от контакта с атмосферой цеха и испарения компонентов, как сплава, так и флюса. Ввиду того, что флюс наносится на зеркало расплава, данный способ рафинирования обладает недостатком, связанным с тем, что при последующем дроблении флюса и замешивании его в расплав не удается равномерно распределить рафинирующие реагенты во всем объеме расплава, что существенно снижает рафинирующую способность флюса.

Задачей предлагаемого изобретения является создание способа рафинирования, отличающегося повышенной рафинирующей способностью, низкой себестоимостью и экологической безопасностью. Этот технический результат достигается тем, что при рафинировании алюминиевых сплавов, включающем обработку расплава флюсом, содержащим хлориды, фториды и огнеупорные наполнители в виде дисперсных частиц тугоплавких оксидов алюминия и кремния, флюс замешивают в расплав, находящийся в твердожидком состоянии, а затем нагревают его до температуры 720-730°С, т.е. выше ликвидуса, при следующем соотношении компонентов флюса, вес.%: KCl 1,9-9,4; NaCl 1,2-6,0; Na3AlF 6 0,9-4,6; оксиды Al и Si - остальное. От ближайшего прототипа предлагаемый способ рафинирования отличается тем, что содержание дисперсных тугоплавких частиц оксидов Al и Si в составе флюса достигает 80-96 вес.%, а также самой технологией рафинирования. Для реализации предлагаемого способа рафинирования разработана технология введения рафинирующих средств в сплав. Рафинирующую смесь, перемешивая, вводят в сплав, нагретый до температур в интервале ликвидус-солидус, т.е. находящийся в твердожидком состоянии, что и обеспечивает равномерное распределение реагентов в сплаве. При последующем повышении температуры до 720-730°С происходит активное взаимодействие флюса с расплавом, в результате которого частицы рафинирующего реагента всплывают на поверхность, адсорбируя при этом находящиеся в расплаве газы, окислы и др. неметаллические включения. Дисперсные частицы тугоплавких оксидов алюминия и кремния вводят в состав флюса в виде SiO2 или метакаолинита Al2O 3·2SiO2 (прокаленного при t=550-600°С каолинита Al2O3·2SiO 2·H2O для удаления конституционной влаги).

ПРИМЕР 1:

Рафинирование сплава АК12 (ГОСТ 1583-93) стандартным рафинирующим флюсом при 720-730°С. Состав флюса, вес.%:

KCl47
NaCl30
Na 3AlF623

Длительность выдержки расплава под флюсом 30 мин.

ПРИМЕР 2:

Рафинирование сплава АК12 по предлагаемому способу комбинированным флюсом состава, вес.%:

KCl1,9
NaCl1,2
Na 3AlF60,9
SiO2 96

При рафинировании сплава АК12 рафинирующий флюс вводили в количестве 2,5% от массы сплава. Замешивание флюса осуществляли в интервале температур ликвидус - солидус (Т=570-575°С). При последующем нагревании расплава до 730°С флюс взаимодействовал с расплавом с экзотермическим эффектом. С поверхности расплава снимали шлаки и отливали стандартные образцы по ГОСТ 1583-93 для последующих механических испытаний.

Длительность выдержки расплава под флюсом 15-20 мин.

ПРИМЕР 3:

Рафинирование сплава АК12 по предлагаемому способу комбинированным флюсом состава, вес.%:

KCl 1,9
NaCl 1,2
Na3AlF6 0,9
Метакаолинит Al 2O2·2SiO2 96

Рафинирование осуществляли аналогично способу, описанному в примере 2.

Длительность выдержки расплава под флюсом 15-20 мин.

ПРИМЕР 4:

Рафинирование сплава АК12 по предлагаемому способу комбинированным флюсом состава, вес.%:

KCl 9,4
NaCl 6,0
Na3AlF6 4,6
SiO2 80

Рафинирование осуществляли аналогично способу, описанному в примере 2.

Длительность выдержки расплава под флюсом 15-20 мин.

ПРИМЕР 5:

Рафинирование сплава АК12 по предлагаемому способу комбинированным флюсом состава, вес.%:

KCl 9,4
NaCl 6,0
Na3AlF6 4,6
Метакаолинит Al 2O3·2SiO2 80

Рафинирование осуществляли аналогично способу, описанному в примере 2.

Длительность выдержки расплава под флюсом 15-20 мин.

Уменьшение в составе флюса огнеупорной составляющей менее 80% и увеличение количества солей не усиливает рафинирующей способности флюса, но отрицательно воздействует на стенки тигля, футеровку печи и ухудшает экологическую обстановку в цехе. С другой стороны, уменьшение в составе флюса солевой составляющей менее 4% увеличивает прямые потери металла со шлаком, т.к. не обеспечивает эффективного разделения металла и шлака. Этим и определяются граничные значения содержания огнеупорных наполнителей - тугоплавких оксидов алюминия и кремния (80-96 вес.%) и солевых составляющих (20-4 вес.%).

Эффективность рафинирования сплава комбинированными флюсами оценивали по механическим свойствам сплава - временному сопротивлению разрыву способ рафинирования алюминиевых сплавов, патент № 2318029 В, МПа, и относительному удлинению способ рафинирования алюминиевых сплавов, патент № 2318029 , %. Результаты механических испытаний приведены в таблице 1.

Таблица 1.
Способ рафинирования (состав флюса в вес.%) Временное сопротивление разрыву способ рафинирования алюминиевых сплавов, патент № 2318029 В, МПаОтносительное удлинение способ рафинирования алюминиевых сплавов, патент № 2318029 , %
1 Рафинирование стандартным рафинирующим флюсом (47% KCl, 30% NaCl, 23% Na3AlF6) при 720-730°С190 4,2
2Рафинирование комбинированным флюсом (1,9% KCl, 1,2% NaCl, 0,9% Na 3AlF6, 96% SiO2 )2035,5
3Рафинирование комбинированным флюсом (1,9% KCl, 1,2% NaCl, 0,9% Na3AlF 6, 96% метакаолинит)202 5,5
4Рафинирование комбинированным флюсом (9.4% KCl, 6.0% NaCl, 4.69% Na 3AlF6, 80% SiO2 )2086,0
5Рафинирование комбинированным флюсом (9.4% KCl, 6.0% NaCl, 4.69% Na3AlF 6, 80% метакаолинит)210 6,5

Результаты испытаний показывают, что при использовании комбинированных флюсов, заявленных в изобретении, существенно повышается эффективность процесса рафинирования алюминиевых сплавов, что приводит к повышению их механических свойств. За счет сокращения длительности выдержки расплава под флюсом снижаются энергозатраты или себестоимость рафинирования. Уменьшение содержания солевых составляющих во флюсе (способ рафинирования алюминиевых сплавов, патент № 2318029 20 вес.%) способствует повышению экологической безопасности.

Класс C22B9/10 с использованием рафинирующих средств или флюсов; использование материалов для этой цели

способ модифицирования литых сплавов -  патент 2525967 (20.08.2014)
способ переработки электронного лома -  патент 2521766 (10.07.2014)
способ получения флюса для плавки и рафинирования магния или его сплавов -  патент 2492252 (10.09.2013)
флюс для электрошлакового переплава -  патент 2487173 (10.07.2013)
способ очистки висмута от полония -  патент 2478128 (27.03.2013)
способ модифицирования алюминиево-кремниевых сплавов -  патент 2475550 (20.02.2013)
способ химической очистки расплавленного хлорида магния от примесей для электролитического получения магния -  патент 2427670 (27.08.2011)
способ раскисления и рафинирования расплавленной стали -  патент 2423531 (10.07.2011)
расплавленные соли для очистки стронцийсодержащих магниевых сплавов -  патент 2417266 (27.04.2011)
способ получения флюса для плавки и рафинирования магния или его сплавов -  патент 2407813 (27.12.2010)

Класс C22C1/06 с применением особых средств для рафинирования или раскисления 

Класс C22B21/06 рафинирование алюминия 

способ очистки отходов алюминия от примесей и печь для осуществления способа -  патент 2483128 (27.05.2013)
усовершенствованный способ фильтрования расплавленных алюминия и алюминиевых сплавов -  патент 2465356 (27.10.2012)
способ и устройство для добавления порошка в жидкость -  патент 2448764 (27.04.2012)
способ переработки скрапа алюминиевого сплава, поступившего из авиационной промышленности -  патент 2441926 (10.02.2012)
способ очистки отходов алюминия от примесей и печь для осуществления способа -  патент 2440431 (20.01.2012)
способ очистки алюминия от примесей и печь для осуществления способа -  патент 2411297 (10.02.2011)
способ рафинирования алюминиевых сплавов -  патент 2396365 (10.08.2010)
устройство для фильтрации расплавленных металлов и сплавов -  патент 2385354 (27.03.2010)
нагреватель защищенного типа -  патент 2375848 (10.12.2009)
способ вакуумной обработки алюминиевых сплавов -  патент 2361938 (20.07.2009)
Наверх