способ очистки воды от органических веществ

Классы МПК:C02F9/12 облучение или обработка электрическим или магнитным полями
C02F1/32 ультрафиолетовым светом
C02F1/72 окислением
Автор(ы):
Патентообладатель(и):Общество с ограниченной ответственностью Научно-производственное предприятие "Эксорб" (RU)
Приоритеты:
подача заявки:
2007-11-06
публикация патента:

Изобретение относится к способам обработки воды и может быть использовано для очистки оборотных и сточных вод от органических загрязнителей различного происхождения, например синтетических поверхностно-активных веществ, нефтепродуктов, фенолов. Способ включает окисление пероксидом водорода, облучение УФ-лучами и применение катализатора на основе растворимых солей титана. Пероксид водорода используют в количестве 10-20 мг/л, растворимую соль титана добавляют из расчета 0,1-0,2 мг Ti на литр очищаемой воды. Аэрацию проводят при расходе воздуха 0,5-1 л/л, а последующее УФ-облучение состоит из волн длиной 253,7 нм и 185,6 нм. Способ обеспечивает упрощение процесса очистки, снижение энергозатрат, повышение степени очистки. 1 з.п. ф-лы, 2 табл.

Формула изобретения

1. Способ очистки воды от органических веществ, включающий ее обработку пероксидом водорода, ультрафиолетовым излучением при использовании катализатора на основе соединений титана, отличающийся тем, что в исходную воду последовательно вводят 10-20 мг/л пероксида водорода и раствор соли титана из расчета 0,1-0,2 мг Ti на литр воды, затем проводят ее аэрацию при расходе воздуха 0,5-1,0 л воздуха на литр воды и последующее УФ-облучение, состоящее из волн длиной 253,7 нм и 185,6 нм.

2. Способ по п.1, отличающийся тем, что аэрацию воды проводят при помощи эжектора или барботирующего устройства.

Описание изобретения к патенту

Изобретение относится к технологии очистки водных растворов и может быть использовано для очистки оборотных и сточных вод от синтетических поверхностно-активных веществ (СПАВ), нефтепродуктов, фенолов и др.

Известен способ очистки сточных вод от органических веществ путем их обработки потоком озона в барботажной колонне, использование в качестве окислителя пероксида водорода и обработку УФ-излучением при плотности мощности излучения не ниже 100 кВт/м 2 (RU 2031851 С1, 1995.03.27). Этот способ энергоемкий, требующий сложного оборудования.

Известен способ очистки воды, включающий озонирование, элекрокоагуляцию, обессоливание, повторное озонирование и УФ-облучение (RU 2096342 С1, 1997.11.20). Этот метод очень сложный и энергоемкий.

Известен способ очистки сточных вод от органических примесей, заключающийся в обработке их пероксидом водорода в количестве 100 -200 мг/л в присутствии катализатора - титаната бария при его содержании от 0,01 до 1% от массы воды, обработкой озоном около 50 мг/л и УФ-излучением (US 5330661, C02F 1/32, 1994). Этот способ экономически неэффективен, т.к. требует большого количества реагентов (до 200 мг Н2О2 и 50 мг О3 на 1 л сточной воды) и применение до 10 г/л дорогого титаната бария.

Наиболее близким к предлагаемому по технической сущности назначению и достигаемому результату является известный способ RU 2213706 С1, 2003.10.10, состоящий в том, что воду пропускают со скоростью 0,6-1 м 3/ч через реакторы с импульсными ксеноновыми лампами, вырабатывающими УФ-излучение длиной волны 200-400 нм при частоте 1-1,3 Гц и плотностью потока 2-5 кВт/м2, после чего в воду вводят пероксид водорода в количестве 50-100 мг/л и пропускают через второй реактор, содержащий гетерогенный катализатор, который получают путем смешения порошка рутила (TiO2 ) с размерами частиц не более 0,5 мм и металлического серебра с размерами частиц не более 0,05 мм при их массовом соотношении, соответственно равном (700-1000):

1. Недостатком этого метода является его высокая энергоемкость, высокий расход пероксида водорода и применение дорогого гетерогенного катализатора.

Целью заявляемого изобретения является разработка эффективного, экологически безопасного, простого и недорогого способа очистки водных растворов от органических загрязнителей.

Поставленная цель достигается тем, что очищаемую воду обрабатывают пероксидом водорода в количестве 10-20 мг/л, затем добавляют растворимую соль титана из расчета 0,1-0,2 мг Ti на литр воды, проводят ее аэрацию, используя эжектор при расходе воздуха 0,5-1 л на литр воды, после чего облучают УФ-лучами, используя бактерицидные лампы типа ДБК-36, имеющие как излучение с длиной волны 253,7 нм, так и с длиной волны 185,6 нм при плотности потока 0,3-0,6 кВт/м2.

Введение в раствор, содержащий пероксид водорода, микроколичеств растворимых соединений титана приводит к образованию опалесцирующей взвеси микрочастиц гидроксопероксида титана, который является активным катализатором окисления органических веществ.

Использование ультрафиолетовых ламп с излучением, имеющим длину волны 185,6 нм, позволяет получать озон непосредственно в объеме очищаемой воды из кислорода воздуха, введенного туда с использованием эжектора.

Одновременная обработка загрязненного органическими веществами раствора пероксидом водорода, ультрафиолетовым излучением, озоном, образующимся в объеме раствора, и в присутствии активного катализатора на основе гидроксопероксида титана приводит к полному окислению органических веществ.

Предлагаемые параметры способа и концентрации реагентов являются оптимальными для данной технологии очистки воды.

Важно отметить, что микрочастицы катализатора на основе гидроксопероксида титана способствуют разложению избытка пероксида водорода после окончания обработки воды ультрафиолетовым излучением.

Ниже приведены примеры осуществления заявляемого способа.

Пример №1. Испытания проводили на модельном растворе фенола в водопроводной воде при исходной концентрации фенола 2 мг/л. Контроль концентрации фенола до и после обработки осуществляли газожидкостной хроматографией.

В 180 л исходного раствора вводили 10 мг/л пероксида водорода, затем сульфат титанила из расчета 0,1 мг Ti на литр раствора и перекачивали его насосом через эжектор, а потом через реактор, в котором были размещены лампы типа ДБК-36. Эжектор был отрегулирован на подачу 0,5 л воздуха на 1 л прокачиваемой воды.

В таблице 1 представлены результаты проведенных исследований в различных режимах.

Таблица 1
РежимыКонцентрация Н2 О2, мг/лКонцентрация Ti, мг/лРасход воздуха,

л/л раствора
Конечная концентрация фенола, мг/л Степень чистки, Сисхкон
1- --1,150 1,74
25 0,050,3 0,405
3 100,1 0,50,0012000
420 0,21,00,001 2000
530 -2,0 0,1910,5
6300,3 -0,1118,2
710 0,52,00,17 11,8

Из представленных данных видно, что лучшие результаты очистки воды от фенола можно получить при соблюдении величины параметров в заявленном способе (режимы 3 и 4). При отсутствии одного из параметров (режимы 1, 5 и 6) степень очистки снижается. Следует также отметить, что увеличение концентрации Ti (режим 7) приводит к образованию в растворе взвеси, которая снижает эффективность действия УФ-облучения.

Более подробно влияние длины волны ультрафиолетового излучателя на степень разрушения различных органических веществ в водных растворах приведено в примере 2.

Пример №2. Исследование проводили на водных растворах бензола, додецилсульфата натрия (АПАВ) и карбофоса в условиях примера 1. В качестве источника ультрафиолетового излучения использовали в одном варианте лампы типа ДБК-36 (имеют излучение длин волн с максимумом при 253,7 нм и при 185,6 нм), в другом варианте - лампы типа TUV (имеют излучение только с пиком 253,7 нм). Мощность обоих типов ламп 40 Вт.

Результаты экспериментов приведены в таблице 2.

Таблица 2
ВеществоИсходная концентрация, мг/лКонечная концентрация, мг/л Степень очистки
TUVДБК-36TUV ДБК-36
Бензол 54,30,26 0,02208,82715
Додецилсульфат 9,20,840,01 10,9920
натрия       
Карбофос37,1 0,220,07 168,6530

Как видно из приведенных в таблице 2 данных, разрушение исследованных органических веществ значительно эффективней при использовании УФ-ламп ДБК-36, поскольку имеющееся у них излучение с максимумом 185,6 нм превращает кислород воздуха, растворенный в воде, в озон, который является мощным окислителем.

Как видно из приведенных в таблице примеров, заявляемый способ позволяет проводить очистку водных растворов от различных типов органических загрязнителей независимо от их исходной концентрации. Диапазон концентраций выбранных реагентов и условий УФ-облучения является оптимальным.

Предлагаемый способ очистки воды от органических веществ является высокоэффективным, экологически безопасным, недорогим и не требующим сложного оборудования.

Класс C02F9/12 облучение или обработка электрическим или магнитным полями

способ получения питьевой воды -  патент 2527788 (10.09.2014)
способ комплексной очистки воды -  патент 2524939 (10.08.2014)
способ получения питьевой воды -  патент 2523325 (20.07.2014)
способ утилизации продувочной воды циркуляционной системы -  патент 2502683 (27.12.2013)
способ очистки сточных вод и устройство для его осуществления -  патент 2492149 (10.09.2013)
способ глубокой очистки сточных вод от красителей -  патент 2480424 (27.04.2013)
установка водоподготовки с обратным осмосом -  патент 2473472 (27.01.2013)
способ очистки сточных вод -  патент 2473469 (27.01.2013)
способ очистки высокозагрязненных водных жидкостей и устройство для его осуществления -  патент 2464238 (20.10.2012)
способ очистки сточных вод от кобальта, марганца и брома -  патент 2460694 (10.09.2012)

Класс C02F1/32 ультрафиолетовым светом

Класс C02F1/72 окислением

способ обеззараживания воды -  патент 2524944 (10.08.2014)
установка безреагентной очистки и обеззараживания воды -  патент 2524601 (27.07.2014)
способ очистки природной воды -  патент 2514963 (10.05.2014)
способ очистки воды -  патент 2502682 (27.12.2013)
способ разрушения аниона 1-гидроксиэтан-1,1-дифосфоновой кислоты в отходах производства -  патент 2500629 (10.12.2013)
способ обезвреживания отходов, содержащих углеводороды, с одновременным осаждением растворенных солей металлов и устройство для его осуществления -  патент 2485400 (20.06.2013)
способ глубокой очистки сточных вод от красителей -  патент 2480424 (27.04.2013)
способ очистки сточных вод от фенолов -  патент 2476384 (27.02.2013)
способ получения гранулы покрытого окисляющего вещества, полученная гранула и ее применение -  патент 2471848 (10.01.2013)
способ каталитического окисления аниона 1-гидроксиэтан-1,1-дифосфоновой кислоты в водном растворе -  патент 2460693 (10.09.2012)
Наверх