способ получения тонких пленок, содержащих наноструктурированный диоксид олова

Классы МПК:H01L21/316 из оксидов, стекловидных оксидов или стекла на основе оксидов
B82B3/00 Изготовление или обработка наноструктур
Автор(ы):,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (RU)
Приоритеты:
подача заявки:
2008-12-02
публикация патента:

Изобретение относится к области нанотехнологий и может быть использовано для изготовления сенсорных датчиков, приборов контроля составов газовых смесей, оптических приборов, в оптоэлектронике, наноэлектронике. Технический результат заключается в получении однородных упорядоченных структур диоксида олова. Сущность изобретения: в способе получения тонких пленок, содержащих наноструктурированный диоксид олова, электрохимически заполняют металлическим оловом поры в ячейках наноструктурированного оксида алюминия, после чего окисляют олово на воздухе при температуре 250-450°С в течение 40-90 минут.

Формула изобретения

Способ получения тонких пленок, содержащих наноструктурированный диоксид олова, заключающийся в электрохимическом заполнении металлическим оловом пор в ячейках наноструктурированного оксида алюминия и последующем окислении олова на воздухе при температуре 250-450°С в течение 40-90 мин.

Описание изобретения к патенту

Изобретение относится к области нанотехнологий и может быть использовано для изготовления сенсорных датчиков, приборов контроля составов газовых смесей, оптических приборов, в оптоэлектронике, наноэлектронике.

Известен способ получения высокодисперсного порошка диоксида олова (АС СССР № 1696390, C01G 19/02), который предполагает окисление металлического олова кислородом при температуре 1700-3200°С при определенных углах подачи струи кислорода в реакционную зону.

Известны методы получения наноматериалов, основанных на использовании газофазного синтеза, плазмохимии, осаждений из полученных растворов и т.д. (А.И.Гусев. Наноматериалы, наноструктуры, нанотехнологии. М.: Физматлит, 2007, с.416). Они предполагают получение высокодисперсных нанокристаллических порошков твердой среды, в частности оксидов с последующим компактированием, в том числе осаждением на подложку (патент США № 6036774, С30В 23/00, 2000).

Известен способ получения газочувствительного элемента на основе диоксида олова путем термического напыления олова на диэлектрическую подложку, последующее его термическое окисление в среде инертного газа и термического отжига в динамическом вакууме (заявка РФ № 2002133540, С23С 14/18, 2004).

Известен способ получения ферромагнитных наночастиц металла с использованием электрохимического восстановления металла до нульвалентного состояния в инертных пористых матрицах оксида алюминия, получаемых электрохимической анодной обработкой алюминия (патент США № 4808279, G11B 5/84, 1989), а также известно получение полупроводниковых наночастиц с использованием пористой матрицы оксида алюминия (патент США № 5202290, H01L 21/20, 1993).

Рассмотренные методы в своей основе предполагают использование уже высокодисперсных порошков металла, либо реализацию синтеза оксида при высоких температурах, давлениях и других энергетически затратных условиях. При этом не достигается определенного упорядоченного расположения наноструктур в системе, например в тонких пленках, что зачастую диктуется конкретными технологиями.

Технический результат заключается в получении однородных упорядоченных структур диоксида олова.

Технический результат достигается тем, что способ получения тонких пленок, содержащих наноструктурированный диоксид олова, заключается в электрохимическом заполнении металлическим оловом пор в ячейках наноструктурированного оксида алюминия и последующим окислением олова на воздухе при температуре 250-450°С в течение 40-90 минут.

Как известно [1], при электрохимическом анодном окислении в растворах кислот на алюминии образуется пористая оксидная пленка с регулярной наноструктурой в виде одинаковых пористых ячеек с диаметром пор 10-30 нм и плотностью (10-70)·10 9 частиц на см2, расположенных ортогонально поверхности алюминия.

Путем электрохимического осаждения с использованием, например, кислых электролитов или их модификаций (а.с. № 682581, C25D 3/32, 1979; патенты РФ № 1678094, 1994; № 2208664, 2003) поры заполняются металлическим оловом.

Затем система подвергается отжигу на воздухе при температуре 250-450°С в течение 40-90 минут. При этом металлическое олово подвергается окислению с образованием диоксида. При температуре ниже 250°С очень медленно идет реакция окисления, а при температурах более 450°С возможно разложение полученного соединения.

Пример.

1. Получение наноструктурированного анодного оксида на алюминии.

Электрохимическое анодное оксидирование алюминия производится в 10% водном растворе серной кислоты при плотности тела 10 мА/см 2. Толщина оксида при этом пропорциональна времени оксидирования, а количество пористых ячеек составляет порядка 5,7·10 17 м-2 (см. [1]).

2. Заполнение пор в ячейках наноструктурированного оксида алюминия. Операция производится электрохимически в водном кислом электролите следующего состава:

серно-кислое олово 20 г/л;

сульфосалициловая кислота 20 г/л;

серная кислота 9 г/л.

Одним электродом является образец алюминия с нанесенным наноструктурированным оксидом, другой электрод-графит. Ток переменный, напряжение 20 В, время обработки 10 минут.

После обработки образцы промывают и сушат.

3. Окисление олова в наноячейках.

Операция производится на воздухе при температуре 350°С в течение 60 минут.

Литература

1. Анодные оксидные покрытия на легких сплавах. Под общ. Ред. И.Н.Францевича. Киев: Наукова думка, 1977, с.259.

Класс H01L21/316 из оксидов, стекловидных оксидов или стекла на основе оксидов

способ получения слоя диоксида кремния -  патент 2528278 (10.09.2014)
способ получения стекла из пятиокиси фосфора -  патент 2524149 (27.07.2014)
способ защиты поверхности кристаллов p-n переходов -  патент 2524147 (27.07.2014)
способ защиты p-n-переходов на основе окиси бериллия -  патент 2524142 (27.07.2014)
золь-гель способ формирования сегнетоэлектрической стронций -висмут-тантал-оксидной пленки -  патент 2511636 (10.04.2014)
способ изготовления полупроводниковой структуры -  патент 2461090 (10.09.2012)
метод получения пленки диоксида кремния -  патент 2449413 (27.04.2012)
способ получения пористого диоксида кремния -  патент 2439743 (10.01.2012)
способ плазменного анодирования металлического или полупроводникового объекта -  патент 2439742 (10.01.2012)
способ получения фосфоросиликатных пленок -  патент 2407105 (20.12.2010)

Класс B82B3/00 Изготовление или обработка наноструктур

Наверх