способ переработки шламов глиноземного производства

Классы МПК:C22B7/04 переработка шлака 
C22C33/04 плавлением
C04B7/32 глиноземистые цементы 
Автор(ы):, , , , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Иркутский государственный технический университет" (ГОУ ИрГТУ) (RU)
Приоритеты:
подача заявки:
2010-03-15
публикация патента:

Изобретение относится к металлургии, в частности к переработке отходов глиноземного производства - красных шламов, и может быть использовано при производстве ферросплавов. Восстановительную плавку осуществляют в руднотермической печи, шлам глиноземного производства вводят в шихту в количестве от 10 до 81 массовых % от общей массы оксидов кремния в шихте, при этом шихта дополнительно содержит кварцит при следующем соотношении компонентов, мас.%: шлам глиноземного производства 25-53, углеродистый восстановитель 13-24, кварцит 26-52. Изобретение позволяет при минимальных энергозатратах наиболее эффективно перерабатывать шламы глиноземного производства с получением ферросилиция. 1 табл.

Формула изобретения

Способ переработки шламов глиноземного производства, включающий загрузку в печь шихты, содержащей шлам глиноземного производства и углеродистый восстановитель, восстановительную плавку с получением ферросилиция и глиноземсодержащего шлака, отличающийся тем, что восстановительную плавку осуществляют в руднотермической печи, шлам глиноземного производства вводят в шихту в количестве от 10 до 81 мас.% от общей массы оксидов кремния в шихте, при этом шихта дополнительно содержит кварцит при следующем соотношении компонентов, мас.%:

шлам глиноземного производства 25-53
углеродистый восстановитель13-24
кварцит 26-52

Описание изобретения к патенту

Изобретение относится к металлургии, в частности к переработке отходов глиноземного производства - красных шламов, и может быть использовано при производстве ферросплавов в руднотермических печах.

Переработка шламов глиноземного производства с последующим использованием их в качестве металлургического или химического сырья является одной из важных технологических проблем алюминиевой промышленности.

Шламы, являясь слабо утилизируемыми отходами производства глинозема из бокситов, накапливаются в шламохранилищах, тем самым представляют угрозу окружающей среде, так как содержат едкую щелочь. Ежегодно до 2 млн. тонн таких отходов сливаются на шламовые поля, несмотря на то, что они являются перспективными источниками ценных веществ. Основными составляющими шламов являются глинозем (до 30% Al 2O3), оксиды железа (до 60% Fe2O 3), оксиды кремния (до 15% SiO2), щелочь (до 9% Na2O).

Проблема утилизации и переработки шламов давно привлекает внимание исследователей и производственников. Шламы рассматриваются как потенциальный источник получения практически-полезных продуктов, как, например, глинозем, каустическая щелочь, железо и др.

Известен способ переработки красных шламов, включающий в себя обработку красного шлама [Комплексная переработка и использование отвальных шламов глиноземного производства. Шморгуненко Н.С., Корнеев В.И. - М.: Металлургия, 1982. - С.128], в котором шлам подвергают восстановительной плавке в электропечи в смеси с известняком. При этом образуется чугун и алюмокальциевый шлак. Шлак далее перерабатывают на глинозем или цемент. Кроме этого способ достаточно трудоемок, требует существенных капитальных затрат, большого расхода электроэнергии и характеризуется низким качеством получаемых продуктов.

Другим аналогом является способ, включающий [Производство глинозема. Лайнер А.И., Еремин Н.И., Лайнер Ю.А. - М.: Металлургия, 1978. - С.287-291] восстановительную плавку красных шламов в смеси с углем и шлакообразующими добавками в доменных или руднотермических (дуговых) печах с получением чугуна и глиноземсодержащего шлака. Однако известный способ не позволяет получать ферросилиций, а получаемый чугун содержит большое количество примесей и такой чугун, как товарный продукт не пользуется достаточным спросом.

Наиболее близким по технической сущности, принятым за прототип является способ, позволяющий перерабатывать красный шлам глиноземного производства на ферросилиций и глиноземсодержащий шлак (RU 2179590 C1, С22В 7/04, С04В 7/32, 20.02.2002). Шихту, состоящую из смеси красного шлама, кремнеземистого и известкового компонентов, загружали в установку термической обработки, полученный при 1500°С расплав загружали в ванну, где его нагревали до 1800°С, затем его продували холодным природным газом, получали горячий восстановительный газ, который использовали для получения ферросилиция.

Признаками прототипа, совпадающими с существенными признаками заявляемого способа, являются: использование в качестве материала шихты шламов глиноземного производства, получение ферросилиция и глиноземсодержащего шлака.

Недостатками указанного способа-прототипа являются усложнение технологического процесса за счет большого количества переделов (многостадийность), в связи с этим сложность его аппаратурного оформления, а также низкое качество получаемого ферросилиция.

Задачей заявляемого изобретения является получение при минимальных энергозатратах с использованием в качестве добавки к шихте отходов глиноземного производства кондиционного товарного продукта - ферросилиция различных марок. Технический результат заявляемого изобретения заключается в повышении эффективности переработки шламов глиноземного производства с получением кондиционного ферросилиция, а также производство из глиноземсодержащего шлака - глинозема или высокоглиноземистого цемента.

Технический результат достигается тем, что в способе переработки шламов глиноземного производства, включающем загрузку в печь шихты, содержащей шлам глиноземного производства, углеродистый восстановитель, восстановительную плавку с получением ферросилиция и глиноземсодержащего шлака, согласно изобретению, восстановительной плавке в руднотермической печи подвергают шихту, содержащую шлам глиноземного производства в количестве от 10 до 81 массовых % от общей массы оксидов кремния в шихте, кварцит при следующем соотношении компонентов, мас.%:

шлам глиноземного производства 25-53
углеродистый восстановитель13-24
кварцит 26-52

Таблица
Вещественный состав шламов глиноземного производства
Содержание основных оксидов, мас.%
Fe2O3 Al2O3 TiO2 Na2O SiO2 CaOП.п.п.
22,0-60,0 13,0-20,00,9-5,0 2,0-3,0 5,0-15,512,0-25,0 11,20

Из-за наличия в составе шламов большого количества оксида железа их можно отнести к железосодержащему сырью. Наряду с железом они содержат алюминий, кремний, титан, кальций, натрий, редкоземельные и другие элементы [Красные шламы - свойства, складирование, применение. Корнеев В.И., Сусс А.Г., Цеховой А.И. - М.: Металлургия, 1991. - С.121].

Введение в шихту шлама глиноземного производства в количестве от 10 до 81 массовых % от общей массы оксидов кремния в шихте позволяет: сократить расход кварцита и не вводить в шихту металлическую стружку, из-за достаточного содержания железа в шламе; улучшить экологическое состояние предприятий алюминиевой промышленности. Кроме того, применение отхода глиноземного производства позволяет обеспечить производство ферросилиция любым количеством шихты, так как шлам глиноземного производства не является дефицитным и его количество весьма значительно. В настоящее время шламы не находят промышленного применения и складируются в отвалах.

Из уровня техники известно использование железосодержащего материала в качестве восстановителя в шихтах, например, при получении ферросилиция в руднотермических печах [патент РФ № 2109836, МПК С22С 334, опубл. 27.04.1998] и производства стали [патент РФ № 2245371, С21В 3/04, С21В 13/00, опубл. 27.01.2005].

Однако относительно широким спросом пользуются ферросплавы и, в частности, ферросилиций, для получения которого в составе шламов глиноземного производства содержится достаточное количество кремнезема и оксидов железа.

Способ реализуется в условиях плавки в руднотермических печах мощностью 25-63 МВ·А следующим образом.

В работе использовали шлам глиноземного производства следующего химического состава, мас.%: Fe2O3 45,1; Al2O3 13,3; SiO2 10,1; СаО 9,3; TiO2 4,6; Na 2O 3,6; СаО 11,0; MgO 1,1; P2O5 0,7.

Шихта загружается в печь. Расход шихты контролируется через воронки вокруг электродов, а ее состав во избежание получения не стандартного по кремнию сплава периодически контролируется добавками шихты с повышенным содержанием шлама глиноземного производства. Выпуск расплава из печи производится в ковш энергичной струей 2-4 раза в смену. Температура расплава 1400°С. Полученные продукты плавки исследовали химическим и рентгенофазовым методами анализа.

Пример 1.

Состав шихты:

шлам глиноземного производства - 80,51%;

углеродистый восстановитель - 13,55%;

кварцит - 5,94%.

Получен ферросилиций низкого качества. Содержание в шихте шлама глиноземного производства в количестве более 80% приводит к загрязнению конечного продукта примесями, содержащимися в шламе, и ведет процесс в сторону образования чугуна.

Пример 2.

Состав шихты:

шлам глиноземного производства 53%;

углеродистый восстановитель 18,81%;

кварцит 28,19%.

Получен ферросилиций марки ФС-45 (ГОСТ 1415-93 - Ферросилиций).

Пример 3.

Состав шихты:

шлам глиноземного производства 48,08%;

углеродистый восстановитель 19,59%;

кварцит 32,33%.

Получен ферросилиций марки ФС-50.

Пример 4.

Состав шихты:

шлам глиноземного производства 33,51%;

углеродистый восстановитель 22,30%;

кварцит 44,20%.

Получен ферросилиций марки ФС-65.

Пример 5.

Состав шихты:

шлам глиноземного производства 25%;

углеродистый восстановитель 24%;

кварцит 51%.

Получен ферросилиций марки ФС-75.

Пример 6.

Состав шихты:

шлам глиноземного производства 11,28%;

углеродистый восстановитель 26,44%;

кварцит 62,28%.

Получен ферросилиций низкого качества. Содержание в шихте кварцита в количестве более 52% приводит к спеканию шихты, что в свою очередь снижает газопроницаемость шихтового слоя, образуются так называемые «свищи», увеличиваются потери кремния с газообразным монооксидом кремния, снижается извлечение конечного продукта.

Применение в составе шихты шлама глиноземного производства сокращает улет монооксида кремния из реакционной зоны, улучшает ход процесса плавки в руднотермической печи.

Экспериментальным путем выявлено, что при другом соотношении компонентов шихты не удастся получить ферросилиций требуемого качества. Исходя из стехиометрических расчетов расход загружаемых материалов в шихту определяется составом выплавляемого ферросилиция.

Если содержание углеродистого восстановителя в составе шихты будет менее 13%, то вследствие недостатка углерода в процессе нагрева шихты будет образовываться газообразный монооксид кремния, который улетая из печи с газом, будет снижать выход целевого продукта. Если углеродистого восстановителя будет более 24%, то при регулярном избытке восстановителя происходит его накопление в ванне печи с образованием большого количества карборунда. По существу при использовании шихты предложенного состава количество углеродистого восстановителя выше, чем требуется для восстановления кремния из кремнезема и кварцита. Избыточное количество углерода расходуется на восстановление железа из шлама глиноземного производства. Если содержание оксидов кремния и железа в шламе глиноземного производства более 75%, то увеличивается количество шлака в ванне печи, а также увеличиваются потери кремния в виде оксида кремния.

Предлагаемый способ по сравнению с прототипом позволяет получить следующие преимущества: уменьшить расход электроэнергии, наиболее эффективно и рационально перерабатывать шламы глиноземного производства с получением более ценного для промышленности продукта - ферросилиция различных марок глиноземсодержащего шлака, который может быть использован для производства глинозема и высокоглиноземистого цемента.

Класс C22B7/04 переработка шлака 

способ переработки титановых шлаков -  патент 2522876 (20.07.2014)
способ переработки алюминиевого шлака -  патент 2518805 (10.06.2014)
способ получения неорганического материала на основе оксинитридов титана -  патент 2518363 (10.06.2014)
способ извлечения металлов из силикатных шлаков -  патент 2515735 (20.05.2014)
способ получения пентаоксида ванадия из ванадийсодержащего шлака. -  патент 2515154 (10.05.2014)
способ переработки отвальных конверторных шлаков предприятий по производству никеля с получением никелевого полуфабриката, пригодного для производства сталей 20хн2м и 20н2м -  патент 2514750 (10.05.2014)
способ переработки высокоглиноземистых шлаков алюмотермического производства ферросплавов -  патент 2511556 (10.04.2014)
способ извлечения никеля и кобальта из отвальных конверторных шлаков комбинатов, производящих никель -  патент 2499064 (20.11.2013)
устройство для сжатия горячего шлака цветного металла -  патент 2494157 (27.09.2013)
способ переработки солевых алюмосодержащих шлаков с получением покровных флюсов и алюминиевых сплавов-раскислителей -  патент 2491359 (27.08.2013)

Класс C22C33/04 плавлением

шихта и электропечной алюминотермический способ получения ферробора с ее использованием -  патент 2521930 (10.07.2014)
титаносодержащая шихта для алюминотермического получения ферротитана, способ алюминотермического получения ферротитана и способ алюминотермического получения титаносодержащего шлака в качестве компонента титаносодержащей шихты для алюминотермического получения ферротитана -  патент 2516208 (20.05.2014)
шихта и способ алюминотермического получения ферромолибдена с ее использованием -  патент 2506338 (10.02.2014)
способ перевода режима работающей печи при выплавке кремнистых ферросплавов с карборундного метода на бескарборундный -  патент 2504596 (20.01.2014)
суспензионная литая дисперсионно-твердеющая ферритокарбидная штамповая сталь -  патент 2487958 (20.07.2013)
способ удаления титана из высокохромистых расплавов -  патент 2471874 (10.01.2013)
способ алюминотермического получения ферромолибдена -  патент 2468109 (27.11.2012)
алюминотермический способ получения металлов и плавильный горн для его осуществления -  патент 2465361 (27.10.2012)
способ получения азотированного феррованадия -  патент 2462525 (27.09.2012)
способ извлечения молибдена, никеля, кобальта или их смеси из отработанных или регенерированных катализаторов -  патент 2462522 (27.09.2012)

Класс C04B7/32 глиноземистые цементы 

Наверх