электропривод переменного тока

Классы МПК:H02P27/06 с использованием преобразователей постоянного тока в переменный или инверторов
H02P27/08 с широтно-импульсной модуляцией
Автор(ы):, ,
Патентообладатель(и):Государственное образовательное учреждение Высшего профессионального образования Липецкий государственный технический университет (ГОУ ВПО ЛГТУ) (RU)
Приоритеты:
подача заявки:
2010-11-02
публикация патента:

Изобретение относится к области электротехники, в частности к регулируемым электроприводам переменного тока. Технический результат заключается в упрощении конструкции и повышении динамических показателей. В электропривод переменного тока введен блок коррекции задания момента двигателя, с помощью которого формируется вектор тока статора путем формирования мгновенных фазных значений тока статора, амплитуда и частота которых зависят от сигналов задания и сигналов коррекции. Путем поддержания на оптимальном уровне амплитуды и частоты тока статора достигается формирование оптимального угла электропривод переменного тока, патент № 2447573 0 между векторами тока статора и потокосцепления ротора, равного 45°, и обеспечивается минимизация потребления тока статора. Поддержание оптимального угла электропривод переменного тока, патент № 2447573 0 обеспечивается с помощью замкнутого контура управления углом, измерение угла электропривод переменного тока, патент № 2447573 0 осуществляется путем измерения угла сдвига фаз между мгновенными значениями тока статора и вычисленными значениями потокосцепления ротора. Инвертором формируются фазные токи статора с частотой и амплитудой, необходимой для формирования заданного значения момента при условии минимизации потребления тока статора и наиболее полного использования магнитопровода. Электропривод работает с реальной трехфазной системой координат, что позволит исключить преобразователи координат, усложняющие расчет и увеличивающие требования к управляющему контроллеру. 3 ил. электропривод переменного тока, патент № 2447573

электропривод переменного тока, патент № 2447573 электропривод переменного тока, патент № 2447573 электропривод переменного тока, патент № 2447573

Формула изобретения

Электропривод переменного тока, содержащий трехфазный инвертор, два силовых выхода которого через датчики фазного тока подключены к двум статорным обмоткам асинхронного двигателя, а третий силовой выход инвертора соединен с третьей обмоткой напрямую, управляющие входы инвертора соединены с выходами блока ШИМ-регулятора тока, датчик скорости, установленный на валу асинхронного двигателя, выход которого соединен с отрицательным входом блока сравнения, положительный вход которого подключен к блоку задания скорости, а выход блока сравнения подключен к входу пропорционально-интегрального регулятора скорости, выходы двух датчиков фазного тока соединены с входами сумматора фазных токов, а также соединены с двумя входами первой группы фазных входов блока ШИМ-регулятора тока, а также соединены с двумя входами первой группы фазных входов блока вычисления угла между вектором тока статора и параметра намагничивания, выход сумматора фазных токов соединен с третьим входом первой группы фазных входов ШИМ-регулятора тока и с третьим входом первой группы фазных входов блока вычисления угла между вектором тока статора и параметра намагничивания, выход блока расчета угла между векторами тока статора и параметра намагничивания соединен с отрицательным входом блока сравнения угла между векторами тока статора и параметра намагничивания, положительный вход которого соединен с блоком задания этого угла, выход датчика скорости также соединен с одним входом формирователя частоты вращения магнитного потока и с первым входом блока расчета скольжения, второй вход которого соединен с выходом блока формирования частоты вращения магнитного потока, второй вход которого соединен с выходом блока задания разности частот вращения поля статора и ротора двигателя, выход формирователя частоты вращения магнитного потока соединен с одним входом блока ограничения частоты вращения магнитного потока, выход блока расчета скольжения соединен с входом блока расчета постоянной времени интегрирования, выход которого соединен с первыми входами трех фазных блоков расчета параметра намагничивания, отличающийся тем, что параметром намагничивания двигателя является потокосцепление ротора, выход регулятора скорости подключен к входу блока ограничения, выход которого подключен к первому входу сумматора сигналов задания момента, ко второму входу которого подключен выход блока коррекции задания момента двигателя, вход которого подключен к выходу блока сравнения величин заданного и рассчитанного угла между векторами тока статора и потокосцепления ротора, выход сумматора сигналов задания момента подключен к входу формирователя задания модуля тока статора, выход которого подключен к амплитудному входу блока задания мгновенных значений тока статора, три фазных выхода которого соединены с тремя фазными входами второй группы входов инвертора, три фазных выхода блока задания мгновенных значений тока статора также соединены со вторыми входами трех фазных блоков расчета потокосцепления ротора, выходы которых соединены с тремя фазными входами второй группы входов блока вычисления угла между векторами тока статора и потокосцепления ротора, выход блока задания скорости соединен с одним входом сумматора сигналов скорости, со вторым входом которого соединен выход блока задания разности частот вращения поля статора и ротора двигателя, выход сумматора сигналов скорости соединен с другим входом блока ограничения частоты вращения магнитного потока, выход которого соединен с входом пропорционального блока, выход которого соединен с частотным входом блока задания мгновенных значений тока статора.

Описание изобретения к патенту

Изобретение относится к электротехнике, в частности к регулируемым электроприводам переменного тока, и может использоваться для регулирования момента и скорости асинхронных двигателей с минимизацией потерь электроэнергии при питании асинхронного электродвигателя от преобразователя частоты.

Известен электропривод переменного тока, содержащий адаптивный регулятор момента, который формирует вектор потокосцепления ротора путем формирования задания его мгновенных значений, амплитуда и частота которых зависит от задания на момент. Путем изменения частоты достигается формирование оптимального, с точки зрения минимизации потребления тока статора, угла между векторами тока статора и потокосцепления ротора, равного 45°. Поддержание потокосцепления ротора осуществляется путем введения фазных регуляторов, выходы которых подключены к управляющим входам ШИМ-регулятора тока. Инвертором формируются фазные токи статора с частотой и амплитудой, необходимой для формирования заданного значения момента при условии минимизации потребления тока статора из сети и наиболее полного использования магнитопровода [1].

Недостатками данного устройства являются сложность системы регулирования координат векторов тока статора и потока ротора из-за наличия множества математических операций, связанных с необходимостью коррекции параметров фазных регуляторов тока и фазных блоков, осуществляющих расчет потокосцепления ротора, при изменении скольжения двигателя, что приводит к снижению быстродействия системы, а также невысокая точность регулирования момента двигателя из-за отсутствия контроля и управления взаимным положением регулируемых векторов переменных двигателя.

Наиболее близким к изобретению по технической сущности и достигаемому результату является электропривод переменного тока, содержащий трехфазный инвертор, силовые выходы которого через датчики тока (а один напрямую) подключены к двум статорным обмоткам асинхронного двигателя, управляющие входы инвертора соединены с выходами блока ШИМ-регулятора тока, датчик скорости, установленный на валу двигателя, выход которого соединен с отрицательным входом блока сравнения, положительный вход которого подключен к блоку задания скорости, а выход подключен к входу ПИ-регулятора скорости, выход которого соединен с входом блока задания модуля регулируемого параметра, выход которого подключен к первому входу блока формирования задания регулируемого параметра, имеющего три фазных выхода, соединенных с блоками сравнения, отрицательные входы которых соединены с блоками расчета регулируемого параметра, а выходы блоков сравнения соединены с входами регуляторов, выходы которых поступают на входы блока ШИМ-регулятора тока, выходы которого соединены с управляющими входами инвертора. Входы двух датчиков тока соединены с входом сумматора токов, а также соединены с входами блока ШИМ-регулятора тока, а также соединены с входами фазных блоков расчета регулируемого параметра, выход сумматора токов соединен с входом блока расчета регулируемого параметра и входом ШИМ-регулятора тока, первый вход блока расчета скольжения соединен с входом блока формирования частоты вращения потока, выход датчика скорости подключен ко второму входу блока расчета скольжения, выход которого соединен с входом блока расчета постоянной времени интегрирования, выход которого соединен с блоками регуляторов регулируемого параметра и блоками расчета регулируемого параметра, выход блока сравнения подключен к блоку компаратора, выход которого соединен со вторым входом блока задания модуля регулируемого параметра, выход регулятора скорости также подключен к одному входу блока коррекции, выход которого соединен с третьим входом блока задания тока намагничивания, блок расчета угла между векторами токов статора и намагничивания соединен с блоком коррекции модуля тока намагничивания, который корректирует задание на амплитуду тока намагничивания [2].

Недостатками данного устройства являются сложность управления координатами векторов тока статора и тока намагничивания, необходимость выполнения множества математических операций при коррекции, в функции скольжения, постоянных времени в шести блоках - регуляторах тока намагничивания и блоках расчета тока намагничивания, и корректируется только одна из двух постоянных времени этих блоков, что приводит к снижению точности и быстродействия электропривода.

Целью изобретения является упрощение системы управления, повышение точности поддержания момента двигателя и быстродействия электропривода за счет построения системы коррекции, осуществляющей управление более просто определяемым углом между векторами тока статора и потокосцепления ротора, уменьшение количества и упрощения конструкции адаптивных блоков с изменяемой в функции скольжения постоянной времени, осуществляющих вычисление мгновенных значений потокосцеплений ротора.

Предлагаемый электропривод переменного тока содержит трехфазный инвертор, два силовых выхода которого через датчики фазного тока подключены к двум статорным обмоткам асинхронного двигателя, а третий силовой выход инвертора соединен с третьей обмоткой напрямую, управляющие входы инвертора соединены с выходами блока ШИМ-регулятора тока, датчик скорости, установленный на валу асинхронного двигателя, выход которого соединен с отрицательным входом блока сравнения, положительный вход которого подключен к блоку задания скорости, а выход блока сравнения подключен к входу пропорционально-интегрального регулятора скорости, выходы двух датчиков фазного тока соединены с входами сумматора фазных токов, а также соединены с двумя входами первой группы фазных входов блока ШИМ-регулятора тока, а также соединены с двумя входами первой группы фазных входов блока вычисления угла между вектором тока статора и параметра намагничивания, выход сумматора фазных токов соединен с третьим входом первой группы фазных входов ШИМ-регулятора тока и с третьим входом первой группы фазных входов блока вычисления угла между вектором тока статора и параметра намагничивания, выход блока расчета угла между векторами тока статора и параметра намагничивания соединен с отрицательным входом блока сравнения угла между векторами тока статора и параметра намагничивания, выход блока расчета угла между векторами тока статора и блока сравнения угла между векторами тока статора и потокосцепления ротора соединен с отрицательным входом блока сравнения угла между векторами тока статора и потокосцепления ротора, положительный вход которого соединен с блоком задания этого угла, выход датчика скорости также соединен с одним входом формирователя частоты вращения магнитного потока и с первым входом блока расчета скольжения, второй вход которого соединен с выходом блока формирования частоты вращения магнитного потока, второй вход которого соединен с выходом блока задания разности частот вращения поля статора и ротора двигателя, выход формирователя частоты вращения магнитного потока соединен с одним входом блока ограничения частоты вращения магнитного потока, выход блока расчета скольжения соединен с входом блока расчета постоянной времени интегрирования, выход которого соединен с первыми входами трех фазных блоков расчета параметра намагничивания, выход регулятора скорости подключен к входу блока ограничения, выход которого подключен к первому входу сумматора сигналов задания момента, ко второму входу которого подключен выход блока коррекции задания момента двигателя, вход которого подключен к выходу блока сравнения величин заданного и рассчитанного угла между векторами тока статора и потокосцепления ротора, выход сумматора сигналов задания момента подключен к входу формирователя задания модуля тока статора, выход которого подключен к амплитудному входу блока задания мгновенных значений тока статора, три фазных выхода которого соединены с тремя фазными входами второй группы входов инвертора, три фазных выхода блока задания мгновенных значений тока статора также соединены со вторыми входами трех фазных блоков расчета потокосцепления ротора, выходы которых соединены с тремя фазными входами второй группы входов блока вычисления угла между векторами тока статора и потокосцепления ротора, выход блока задания скорости соединен с одним входом сумматора сигналов скорости, со вторым входом которого соединен выход блока задания разности частот вращения поля статора и ротора двигателя, выход сумматора сигналов скорости соединен с другим входом блока ограничения частоты вращения магнитного потока, выход которого соединен с входом пропорционального блока, выход которого соединен с частотным входом блока задания мгновенных значений тока статора.

На фиг.1 приведена функциональная схема электропривода переменного тока; на фиг.2 показаны временные характеристики мгновенных значений тока статора и потокосцепления ротора и указаны временные интервалы, поясняющие работу блока 20 вычисления угла между векторами тока статора и потокосцепления ротора; на фиг.3 показан алгоритм работы блока коррекции задания момента двигателя 15.

Электропривод переменного тока содержит инвертор 1, два силовых выхода которого соединены через датчики тока 2 и 3 с двумя обмотками статора асинхронного двигателя 4, а третий выход инвертора 1 соединен с третьей обмоткой статора двигателя 4 напрямую. На валу двигателя 4 установлен датчик скорости 5. Управляющие входы инвертора 1 соединены с выходами блока широтно-импульсной модуляции (ШИМ) регулятора тока 6. Выходы датчиков тока 2, 3 соединены с входами сумматора фазных токов 7. Выходы датчиков тока 2, 3 наряду с выходом сумматора фазных токов 7 соединены с отрицательными фазными входами блока ШИМ регулятора тока 6. Выход датчика тока 5 соединен с отрицательным входом блока сравнения скорости 8, положительный вход которого подключен к блоку задания скорости 9, а выход блока сравнения 8 подключен ко входу регулятора скорости 10, выход которого подключен ко входу блока ограничений 11, выход которого подключен к первому входу сумматора сигналов задания момента 12, выход которого подключен ко входу формирователя задания модуля тока статора 13, выход которого подключен к амплитудному входу блока задания мгновенных значений тока статора 14. Второй вход сумматора сигналов задания момента 12 подключен к выходу блока коррекции задания момента двигателя 15, вход которого соединен с выходом блока 16 сравнения величин заданного и рассчитанного угла между векторами тока статора и потокосцепления ротора. Три фазных выхода блока задания мгновенных значений тока статора 14 соединены с тремя положительными входами блока ШИМ регулятора тока 6, шесть выходов которого соединены с шестью управляющими входами трехфазного инвертора 1. Три фазных выхода блока 14 также соединены с первыми входами трех фазных блоков расчета потокосцепления ротора 17, 18, 19. Выходы трех фазных блоков расчета потокосцепления ротора 17, 18, 19 соединены с тремя первыми фазными входами блока вычисления угла между векторами потокосцепления ротора и тока статора 20. Выходы датчиков тока 2, 3 и выход сумматора токов 7 подключены ко вторым фазным входам блока вычисления угла между векторами потокосцепления ротора и тока статора 20, выход которого подключен к отрицательному входу блока сравнения величин заданного и рассчитанного угла между векторами тока статора и потокосцепления ротора 16, положительный вход которого подключен к выходу блока задания угла между векторами тока статора и потокосцепления ротора 21. Выход датчика скорости 5 соединен с первым входом формирователя частоты вращения магнитного потока 22 и с первым входом блока расчета скольжения 23, второй вход которого соединен с выходом формирователя частоты вращения магнитного потока 22, второй вход которого соединен с выходом блока 24 задания разности частот вращения поля статора и ротора двигателя. Выход блока расчета скольжения 23 соединен с входом блока расчета постоянной времени интегрирования 25, выход которого соединен с вторыми входами трех фазных блоков расчета потокосцепления ротора 17, 18, 19. Выход блока задания частоты вращения ротора 9 подключен к первому входу сумматора 26, выход которого подключен к одному входу блока ограничения частоты вращения магнитного потока 27, к другому входу которого подключен выход формирователя частоты вращения магнитного потока 22, а выход блока ограничения частоты вращения магнитного потока 27 подключен к входу пропорционального блока 28, выход которого подключен к частотному входу блока задания мгновенных значений тока статора 14.

Электропривод переменного тока работает следующим образом.

Инвертор 1 через датчики 2,3 фазных токов и напрямую по третьему фазному проводу питает статорные обмотки асинхронного двигателя 4 широтно-модулируемыми пульсациями силового напряжения, длительность которых определяется управляющими пульсациями, поступающими с выхода ШИМ регулятора тока 6.

Формирование сигнала задания на амплитудные фазные входы блока ШИМ регулятора тока 6 происходит следующим образом. Сигнал задания на скорость электропривод переменного тока, патент № 2447573 *электропривод переменного тока, патент № 2447573 2, поступающий с блока задания скорости 9, сравнивается с сигналом текущей скорости вращения ротора электропривод переменного тока, патент № 2447573 2, поступающего с датчика скорости 5. Формируемая таким образом разница сигналов поступает на вход регулятора скорости 10, сигнал с выхода которого поступает на блок ограничения 11. Сигнал с выхода блока ограничения 11 поступает на первый вход сумматора сигналов задания момента 12, на второй вход которого поступает корректирующий сигнал с выхода блока коррекции задания момента 15. Сигнал с выхода сумматора 12 поступает на вход формирователя задания модуля тока статора 13, с выхода которого задание на модуль тока статора поступает на первый вход блока 14, в котором формируются заданные мгновенные значения тока статора.

При разгоне двигателя скорость двигателя электропривод переменного тока, патент № 2447573 2 меньше заданного значения электропривод переменного тока, патент № 2447573 и сигнал разности электропривод переменного тока, патент № 2447573 электропривод переменного тока, патент № 2447573 2=электропривод переменного тока, патент № 2447573 -электропривод переменного тока, патент № 2447573 2 на выходе блока сравнения 8 не равен 0, пропорционально-интегральный регулятор скорости 10 вырабатывает сигнал, ограничиваемый блоком ограничения 11, который, проходя через сумматор 12, дает задание блоку 13 на формирование величины модуля пускового тока статора. После окончания разгона двигателя в установившемся режиме при достижении заданной скорости, когда электропривод переменного тока, патент № 2447573 электропривод переменного тока, патент № 2447573 =0, сигнал с выхода пропорционально-интегрального регулятора скорости 10 становится меньше порогового значения, установленного блоком ограничения 11, этот сигнал поступает через сумматор 12 на блок 13, который формирует модуль тока статора в соответствии с величиной нагрузки на валу двигателя.

Частота тока статора формируется следующим образом. С датчика скорости вращения ротора 5 поступает сигнал электропривод переменного тока, патент № 2447573 2 на первый вход формирователя частоты вращения магнитного потока 22, на второй вход которого также поступает сигнал электропривод переменного тока, патент № 2447573 с блока задания разности частот вращения поля статора и ротора 24. Формирователь частоты вращения магнитного потока 22 проводит вычисление частоты вращения магнитного потока статора электропривод переменного тока, патент № 2447573 1 в соответствии с формулой:

электропривод переменного тока, патент № 2447573

Сумматор 26, на входы которого поступают сигналы электропривод переменного тока, патент № 2447573 с блока 9 и электропривод переменного тока, патент № 2447573 с блока 24, проводит вычисление максимально допустимой частоты вращения магнитного потока электропривод переменного тока, патент № 2447573 в соответствии с формулой:

электропривод переменного тока, патент № 2447573

Сигналы с выходов формирователя частоты вращения магнитного потока 22 и сумматора 26 поступают на вход блока ограничения 27, сигнал на выходе блока 27 электропривод переменного тока, патент № 2447573 определяется в соответствии с правилом

электропривод переменного тока, патент № 2447573

Этот сигнал с выхода блока 27 поступает на вход пропорционального блока 28, осуществляющего пропорциональный перерасчет желаемой механической частоты вращения поля статора электропривод переменного тока, патент № 2447573 в электрическую частоту тока ротора электропривод переменного тока, патент № 2447573 в соответствии с выражением

электропривод переменного тока, патент № 2447573

Сигнал с выхода блока 28 подается на частотный вход блока задания мгновенных значений тока статора 14.

В блоке задания мгновенных значений тока статора 14, в который поступают сигнал частоты электропривод переменного тока, патент № 2447573 и сигнал задания на модуль тока статора электропривод переменного тока, патент № 2447573 формируются сигналы задания мгновенных значений тока статора, зависящих от времени t, в соответствии с формулами:

электропривод переменного тока, патент № 2447573

Сформированные таким образом сигналы задания на фазные токи статора поступают на фазные входы первой группы входов регулятора тока 6. На фазные входы второй группы входов регулятора тока 6 поступают сигналы с датчиков тока 2, 3 и сумматора токов 7. В регуляторе тока 6 сравниваются заданные и измеренные значения фазных токов статора и формируются на шести выходах сигналы управления, подаваемые на шесть управляющих входов трехфазного инвертора 1.

Момент двигателя формируется и поддерживается на заданном уровне путем поддержания на заданном уровне амплитуды тока статора I1, а также задания постоянной величины абсолютной разности между скоростями вращения поля статора и ротора электропривод переменного тока, патент № 2447573 , контроля и поддержания на заданном уровне величины угла между векторами тока статора и потокосцепления ротора электропривод переменного тока, патент № 2447573 0.

Момент асинхронного двигателя можно определить по формуле

электропривод переменного тока, патент № 2447573

где pn - число пар полюсов; Lm - взаимная индуктивность обмотки статора и ротора; Lr - собственная индуктивность обмотки ротора (L r=Lm+L'электропривод переменного тока, патент № 2447573 2электропривод переменного тока, патент № 2447573 ); L'электропривод переменного тока, патент № 2447573 2электропривод переменного тока, патент № 2447573 - приведенная индуктивность рассеяния ротора; электропривод переменного тока, патент № 2447573 - вектор тока статора; электропривод переменного тока, патент № 2447573 - вектор потокосцепления ротора; электропривод переменного тока, патент № 2447573 0 - угол между векторами тока статора и потокосцепления ротора.

Операторные изображения потокосцепления ротора электропривод переменного тока, патент № 2447573 r(p) и тока статора I1(р) связаны выражением

электропривод переменного тока, патент № 2447573

где Т- постоянная времени.

электропривод переменного тока, патент № 2447573

электропривод переменного тока, патент № 2447573

где электропривод переменного тока, патент № 2447573 - приведенное сопротивление ротора; Sэлектропривод переменного тока, патент № 2447573 - относительное скольжение.

Уравнение момента двигателя (6) после преобразований имеет вид

электропривод переменного тока, патент № 2447573

Момент двигателя при постоянном значении тока статора будет максимальным при задании блоком 24 оптимального значения сигнала электропривод переменного тока, патент № 2447573

электропривод переменного тока, патент № 2447573

Оптимальное значение угла между векторами тока статора и потокосцепления ротора составляет электропривод переменного тока, патент № 2447573 0опт=45°.

Блок формирователя задания модуля тока статора 13 получает входной сигнал с сумматора 12, производит формирование задания модуля тока статора в соответствии с формулой

электропривод переменного тока, патент № 2447573

и подает этот сигнал на амплитудный вход блока задания мгновенных значений тока статора 14.

Блок вычисления угла электропривод переменного тока, патент № 2447573 0 между вектором тока статора и потокосцепления ротора 20 работает следующим образом. На входы блока 20 поступают измеренные мгновенные фазные значения тока статора I1 и мгновенные фазные значения потокосцепления ротора электропривод переменного тока, патент № 2447573 , вычисленные с использованием выражения (7) в блоках 17, 18, 19, получающих на вход мгновенные заданные фазные значения токов статора электропривод переменного тока, патент № 2447573 . На фиг.2 показаны поясняющие работу блока 20 графики мгновенных значений I1 и электропривод переменного тока, патент № 2447573 и отмечены временные интервалы, позволяющие вычислить угол сдвига фаз электропривод переменного тока, патент № 2447573 0 между мгновенными значениями тока статора и потокосцепления ротора. Первоначально происходит фиксирование момента перехода тока статора I1 через нулевое значение (при переходе с отрицательного значения на положительное), этот момент времени t0 является началом отчета времени (t0=0). Затем при переходе графика потокосцепления ротора электропривод переменного тока, патент № 2447573 через нулевое значение (с отрицательного значения на положительное) фиксируется отсчитанное от нуля значение времени t1 . Затем происходит фиксация момента перехода тока статора I 1 через нулевое значение (с положительного на отрицательное) и запоминается отсчитанное от нуля значение времени t2 . Используя измеренные значения времени, блок 20 вычисляет угол сдвига электропривод переменного тока, патент № 2447573 0 по следующему соотношению:

электропривод переменного тока, патент № 2447573

Расчет угла электропривод переменного тока, патент № 2447573 0 происходит циклически с последующей передачей на отрицательный вход блока сравнения 16.

Блок расчета скольжения 23 рассчитывает относительное скольжение S электропривод переменного тока, патент № 2447573 по формуле (9). В блоке 25 расчета постоянной времени интегрирования T(Sэлектропривод переменного тока, патент № 2447573 ) производится операция расчета по формуле (8), и рассчитанная величина T(Sэлектропривод переменного тока, патент № 2447573 ) вводится в фазные блоки расчета потокосцепления ротора 17, 18, 19. Работа блока коррекции задания момента двигателя 15 описывается алгоритмом, представленным на фиг.3. На вход блока 15 с выхода блока сравнения 16 поступает разность углов электропривод переменного тока, патент № 2447573 электропривод переменного тока, патент № 2447573 между заданным значением угла электропривод переменного тока, патент № 2447573 , задаваемым блоком 21, и вычисленным значением электропривод переменного тока, патент № 2447573 0, поступающим с блока 20. Если электропривод переменного тока, патент № 2447573 электропривод переменного тока, патент № 2447573 <0, то происходит уменьшение сигнала коррекции задания момента с шагом убывания электропривод переменного тока, патент № 2447573 =0.0005 Мн, продолжающееся до тех пор, пока угол электропривод переменного тока, патент № 2447573 0 не станет равным 45°, если электропривод переменного тока, патент № 2447573 электропривод переменного тока, патент № 2447573 >0, то происходит увеличение сигнала коррекции задания момента с шагом приращения электропривод переменного тока, патент № 2447573 =0.0005 Мн, продолжающееся до тех пор, пока угол электропривод переменного тока, патент № 2447573 0 не станет равным 45°, если электропривод переменного тока, патент № 2447573 электропривод переменного тока, патент № 2447573 =0, то электропривод переменного тока, патент № 2447573 М*=0. Считывание мгновенных значений угла происходит циклически с дискретностью, определяемой быстродействием системы.

Преимущество предлагаемого электропривода переменного тока заключается:

- в использовании минимального количества блоков с изменяемой в функции скольжения постоянной времени;

- в учете динамики изменения фазных значений потокосцепления ротора в зависимости от изменения фазных значений тока статора, что повышает быстродействие и точность электропривода.

Источники информации

1. Патент РФ № 2254666, МПК Н02Р 7/42. Электропривод переменного тока. Левин П.Н., Мещеряков В.Н. Приоритет 26.01.2004. Опубл. 20.06.2005. Бюл. № 17.

2. Патент РФ 2396696, МПК Н02Р 27/04. Электропривод переменного тока. В.Н.Мещеряков, В.А.Корчагина. Опубл. 10.08.2010. Бюл. № .22.

Класс H02P27/06 с использованием преобразователей постоянного тока в переменный или инверторов

система и способ динамического регулирования активной мощности на нагрузке -  патент 2528621 (20.09.2014)
электропривод переменного тока -  патент 2528612 (20.09.2014)
электропривод переменного тока -  патент 2512873 (10.04.2014)
вращающаяся электрическая машина -  патент 2510788 (10.04.2014)
устройство преобразователя мощности и способ управления устройства -  патент 2509405 (10.03.2014)
устройство управления возбуждением электродвигателя переменного тока -  патент 2507658 (20.02.2014)
высоковольтный частотно-регулируемый электропривод -  патент 2505918 (27.01.2014)
многозонный выпрямительно-инверторный преобразователь и способ управления преобразователем -  патент 2498490 (10.11.2013)
преобразователь частоты и стабилизатор напряжения источника бесперебойного питания -  патент 2498487 (10.11.2013)
способ управления частотно-разгоняемым электроприводом -  патент 2496219 (20.10.2013)

Класс H02P27/08 с широтно-импульсной модуляцией

Наверх