способ получения цеолитного адсорбента структуры ах и цеолитный адсорбент структуры ах

Классы МПК:C01B39/18 из реакционной смеси, содержащей по меньшей мере один силикат алюминия или алюмосиликат типа глины, например каолин или метакаолин или его экзотермическую модификацию или аллофан
C01B39/22 типа X
B01J20/18 синтетические цеолитные молекулярные сита
Автор(ы):,
Патентообладатель(и):Общество с ограниченной ответственностью Торговый Дом "РЕАЛ СОРБ" (ООО ТД "РЕАЛ СОРБ") (RU)
Приоритеты:
подача заявки:
2010-05-12
публикация патента:

Изобретение относится к химической промышленности, конкретно к получению модифицированных цеолитных сорбентов структуры АХ. Предложены два варианта способа получения цеолитного адсорбента структуры АХ, которые включают обработку цеолитов типов NaA и NaX раствором хлористого кальция, осуществляемую либо в смеси исходных компонентов, либо раздельно с последующим смешиванием полученных кальциевых форм. Изобретение обеспечивает возможность получения различного фазового состава целевого продукта, что позволяет регулировать сорбционную способность адсорбента по поглощаемым компонентам. 2 н. и 1 з.п. ф-лы, 14 пр.

Формула изобретения

1. Способ получения цеолитного адсорбента, включающий модифицирование ионами кальция цеолита типа А, сушку, прокалку, отличающийся тем, что модифицированию подвергают смесь, состоящую из синтетических цеолитов типа NaA и NaX, синтезированных в каолиновых гранулах, при массовом отношении цеолита NaA к цеолиту NaX, равном 3,5:1,0, 0,5-0,7 N раствором хлористого кальция при отношении жидкая фаза: твердая фаза, равном 4,0 или 8,0, процесс модифицирования упомянутой смеси цеолитов хлористым кальцием проводят 1-3 раза, затем полученную смесь промывают, прокаливают при температуре 400°С.

2. Способ получения цеолитного адсорбента, включающий модифицирование ионами кальция цеолита типа А, сушку, прокалку, отличающийся тем, что раздельному модифицированию подвергают синтетические цеолиты типа NaA и NaX, синтезированные в каолиновых гранулах, модифицирование каждого из них осуществляют 0,5-0,7 N раствором хлористого кальция при отношении жидкая фаза: твердая фаза, равном 4,0 или 8,0, процесс модифицирования цеолитов хлористым кальцием проводят 1-3 раза, полученные путем модифицирования цеолиты СаА и СаХ промывают, прокаливают при температуре 400°С и смешивают при массовом отношении в смеси цеолита СаА к цеолиту СаХ от 20:1 до 0,05:1.

3. Способ по п.2, отличающийся тем, что гранулы цеолитов NaA и NaX перед модифицированием подвергают дроблению, получая гранулы произвольной формы и размера в пределах фракции 0,05-1,50 мм, полученные гранулы классифицируют, получая фракцию 0,25-0,80 мм.

Описание изобретения к патенту

Область техники

Данное изобретение относится к химической промышленности, конкретно к получению модифицированных сорбентов на основе цеолитов.

Промышленное производство адсорбентов структуры AX решит проблемы получения сорбентов для комплексного подхода к осуществлению технологических процессов. Адсорбент состоит из кристаллических фаз A и X, модифицирование их катионами кальция приводит к образованию дополнительных наноразмерных кристаллов цеолитов со стереорегулярными рабочими порами в 0,5 и 0,8 нм. Способ получения адсорбента AX позволяет очень точно регулировать соотношение стереорегулярных пор в адсорбенте AX, изменяя специфические свойства его в широких пределах.

Полученный цеолитный адсорбент структуры AX может быть использован в различных областях промышленности: нефтехимической, металлургической, нефтегазовой и медицинской. Одна из областей применения адсорбента структуры AX осушка и очистка различных газов (природных газов, нефтяных попутных газов, воздуха, инертных газов и различных углеводородных газов). Другая область применения для приготовления медицинских средств, используемых для остановки кровотечений.

Уровень техники по способу

Известен способ получения гранулированного цеолитного адсорбента структуры A и X высокой фазовой чистоты, не содержащего связующего вещества [1], [патент RU № 2203220, C1, дата публикации 27.04.2003 г.].

Согласно данному изобретению каолин смешивают с диоксидом кремния и древесным углем, добавляют 20-70% порошкового фожазита, обрабатывают раствором едкого натра, в полученную смесь добавляют раствор поливинилового спирта до образования однородной пластичной массы, формуют в гранулы, направляют на вызревание, подвергают чистовой формовке, сушат в два этапа, проводят термическую активацию, полученные гранулы охлаждают и подвергают гидротермальной кристаллизации в щелочном растворе, проводят термопаровую обработку гранул, промывают умягченной водой, полученные гранулы цеолитного адсорбента структуры A и X сушат.

Известен способ получения гранулированного цеолитного адсорбента структуры A и X, не содержащего связующего вещества [2], [патент RU № 2180318 C1, дата публикации 10.03.2002 г.]. Согласно данному способу каолин, взятый в количестве 10-40%, подвергают прокалке при 700-900°C, обрабатывают серной кислотой, смешивают с каолином до обеспечения конечного соотношения SiO2 :Al2O3=(2,2-3,1) и добавкой, содержащей углерод, добавляют воду, формуют в гранулы, проводят термическую активацию при 580-700°C, полученные гранулы охлаждают и подвергают гидротермальной кристаллизации в щелочном растворе, затем гранулы цеолитного адсорбента структуры A и X сушат.

Основным недостатком перечисленных способов является техническая сложность синтеза двух фаз цеолитов A и X одновременно. Соотношение фаз A и X после синтеза подвержено большим вариациям. В результате синтеза получаются сорбенты структуры A и X, неадекватные заложенной рецептуре. Кроме этого получается низкое суммарное массовое содержание фазы A и X в гранулах адсорбента. Модифицирование гранул полученного цеолита катионами кальция в приведенных способах не предлагается.

Наиболее близким по своей технической сущности и достигаемому техническому результату является изобретение «Способ получения сорбента и сорбент» [3], [патент RU № 2097124 C1, дата публикации 27.11.1997 г.]. Способ получения сорбента на основе цеолита типа A по патенту включает модифицирование цеолита NaA ионами кальция путем пропитки раствором 15%-ного CaCl2. Цеолит NaA получают путем смешения источников кремния (кремнегель, силикозоль - 30%-ный SiO2), алюминия (алюминат натрия, раствор сульфата алюминия, каолин), раствора гидрооксида натрия и 2-15% затравочных кристаллов от веса SiO 2, кристаллизацию гидрогеля при 80-110°C, смешение с 20-25 мас.% пластифицированного или пептизированного связующего (тонкоизмельченной глины или оксида алюминия) и водой до влажности продукта 30-55%, формование и прокалку при 400-600°C в течение 2-6 часов.

Основными недостатком прототипа является низкая механическая прочность гранул сорбента, что обусловлено применением в качестве связующего глин. По способу получения сорбента, указанному в прототипе, получают адсорбент, область применения которого ограничена осушкой газов.

Задачей настоящего изобретения является разработка способа получения цеолитного сорбента структуры AX, гранулы которого обладают высокой механической прочностью и динамической емкостью по воде, диоксиду углерода и сероводороду.

Раскрытие изобретения по способу

Поставленная задача достигается тем, что в способе получения цеолитного адсорбента структуры AX, включающем модифицирование ионами кальция цеолита типа A, сушку и прокалку, в отличие от прототипа модифицированию подвергают смесь, состоящую из гранул синтетических цеолитов NaA и NaX при массовом соотношении 20,00:0,05 соответственно, 0,5-0,7 N раствором хлористого кальция при соотношении жидкая фаза: твердая фаза, равном 4,0 и 8,0, повторяя процесс модификации 1-3 раза, затем полученную композицию промывают.

Модификация цеолитов с кристаллами A и X раствором хлористого кальция с концентрацией 0,7 N (около 4%) обеспечивает высокие прочностные характеристики адсорбента структуры AX.

Для обеспечения высокого содержания кальция в гранулах адсорбента структуры AX и хороших сорбционных характеристик полученного продукта проводят раздельное модифицирование цеолитов NaA и NaX, а затем полученные компоненты смешивают.

С целью повышения оксиредуктивного эффекта, при использовании адсорбента AX для медицинских целей, гранулы цеолитов типов NaA и NaX, синтезированные в каолиновых гранулах, перед модифицированием подвергают дроблению, получая гранулы произвольной формы и размера в пределах фракции 0,05-1,50 мм. Полученные гранулы классифицируют, получая фракцию 0,25-0,80 мм.

Полученный синтетический цеолитный адсорбент, содержащий катионы кальция в кристаллической решетке в количестве 6-12 мас.%, представляет собой композицию, включающую смесь синтетических цеолитов с кристаллами типов A и X, при следующем соотношении указанных компонентов, мас.%:

синтетический цеолит типа A формулы

mCaO·nNa2O·2,0SiO2·Al 2O3·H2O - 95,0-5,0;

синтетический цеолит типа X формулы

mCaO·nNa 2O·2,5SiO2Al2O3 H 2O - 5,0-95,0;

при m, равном 0,08-0,92, и n, равном 0,92-0,08.

Активные ионы кальция внедряют в кристаллические решетки заявляемого цеолитного адсорбента методом ионного обмена, обрабатывая определенные массовые части цеолитов типов NaA и NaX хлоридом кальция с предварительным или последующим смешением после обработки.

Состав адсорбента структуры АХ из двух типов цеолитов A и X позволяет регулировать сорбционную способность сорбента по поглощаемым компонентам.

Для осуществления способа получения цеолитного сорбента структуры AX применены цеолит NaA-НПГ и цеолит NaX-БКО производства ООО «Завод молекулярных сит «РЕАЛ СОРБ», выпускаемые серийно.

Цеолиты данного производителя синтезируются в каолиновых гранулах в виде экструдатов. Синтезированная цеолитная фаза характеризуется повышенной прочностью связи с матричной фазой - непревращенной частью каолина, поскольку образована из его компонентов и продолжает находиться в «генетической» связи с каолиновыми остатками. В связи с этим свойства гранулированного цеолита, сформованного методом смешения цеолита со связующим, и цеолита, выращенного в гранулах матрицы - каолина, различны.

Цеолиты типов NaA и NaX, синтезированные в каолиновых гранулах, проявляют наиболее ярко выраженные гидрофильные свойства и значительно активнее цеолитов, полученных со связующим. Уникальное сочетание в этих цеолитах сорбционных, ионообменных, молекулярно-ситовых свойств обеспечивают высокую скорость сорбции компонентов из газовых и жидких смесей.

Изобретение реализуется следующим образом:

- примеры 1-3 показывают реализацию настоящего изобретения по способу получения цеолитного адсорбента структуры AX, методом модифицирования катионами кальция смеси цеолитов NaA и NaX, при массовом соотношении 3,5;

- примеры 4-12 показывают реализацию настоящего изобретения по способу получения цеолитного адсорбента структуры AX, методом раздельного модифицирования катионами кальция цеолитов NaA и NaX, с последующим получением адсорбента структуры АХ, при весовом соотношении сухой цеолит СаА: сухой цеолит СаХ, равном 3,5:1,0; 2,0:1,0; 1,0:1,0; 1,0:0,5; 1,0:4,0; 1,0:0,05 и 1,0:20,0 соответственно;

- примеры 13-14 показывают реализацию настоящего изобретения по способу получения цеолитного адсорбента структуры AX методом раздельного модифицирования катионами кальция цеолитов NaA и NaX, гранулы которых предварительно подвергались дроблению и классификации, с последующим получением адсорбента структуры АХ, при весовом соотношении сухой цеолит СаА: сухой цеолит СаХ 3,5:1,0 соответственно.

Пример 1. Данный пример иллюстрирует реализацию по способу получения цеолитного адсорбента структуры AX, основанное на химической однократной обработке раствором хлористого кальция смеси, состоящей из гранул синтетических цеолитов с кристаллами типов A и X, и получение композиции, состоящей из двух ионообменных форм цеолитов A и X. В данном примере весовое соотношение сухой цеолит NaA: сухой цеолит NaX=3,5.

Для реализации способа получения заявленного синтетического цеолитного адсорбента структуры АХ готовят смесь, состоящую из гранул синтетических цеолитов с кристаллами типов A и X. Для этого берут навеску гранул в виде экструдатов, с диаметром 2,9 мм, цеолита NaA формулы Na 2O·2,0SiO2·Al2O3 ·H2O в количестве 70 г и навеску гранул в виде экструдатов с диаметром 2,9 мм, цеолита NaX формулы Na2 O·2,5SiO2·Al2O3·H 2O, в количестве 20 г.В данном примере весовое соотношение жидкая фаза: твердая фаза=8. Навески цеолитов с кристаллами типов A и X смешивают помещают в колбу с 720 мл 0,7 N раствором хлористого кальция, нагревают до 70°C и выдерживают в течение 4 часов. После чего отработанный раствор хлористого кальция сливают, полученную смесь цеолитов промывают дистиллированной водой. После промывки гранулы сушат и прокаливают в муфельной печи при температуре 400°C в течение 2 часов, охлаждают в эксикаторе и помещают в бюкс.

В результате получают композицию цеолитного адсорбента структуры AX, состоящую из смеси цеолитов типов СаА и СаХ следующего компонентного состава, мас.%:

0,50CaO·0,50Na2O·2,0SiO2·Al 2O3-H2O - 78,0;

0,46CaO·0,54Na 2O·2,5SiO2·Al2O3 -H2O - 22,0.

Таким образом, получен адсорбент структуры AX общей формулы 0,49CaO·0,51Na 2O·2,11SiO2·Al2O3 ·H2O, у которого 39% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 10% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 39% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 12% кристаллов имеют стереорегулярные поры, равные 1,0 нм.

Содержание кальция в адсорбенте структуры AX составляет 6,4 мас.% (определено методом атомно-абсорбционной спектроскопии).

Пример 2. Данный пример иллюстрирует способ получения адсорбента структуры AX аналогично примеру 1, но основанное на двухкратной химической обработке раствором хлористого кальция смеси, состоящей из гранул синтетических цеолитов с кристаллами типов A и X.

В результате получают композицию цеолитного адсорбента структуры AX, состоящую из смеси цеолитов типов СаА и СаХ следующего компонентного состава, мас.%:

0,77CaO·0,23Na2O·2,0SiO2·Al 2O3-H2O - 78,0;

0,70CaO·0,30Na 2O·2,5SiO2·Al2O3 -H2O - 22,0.

Таким образом, получен адсорбент структуры AX общей формулы 0,75CaO·0,25Na 2O·2,11SiO2·Al2O3 -H2O, у которого 60% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 15% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 18% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 7% кристаллов имеют стереорегулярные поры, равные 1,0 нм.

Содержание кальция в адсорбенте структуры AX составляет 9,5 мас.% (определено методом атомно-абсорбционной спектроскопии).

Пример 3. Данный пример иллюстрирует способ получения адсорбента структуры АХ аналогично примеру 1, но основанное на трехкратной химической обработке раствором хлористого кальция смеси, состоящей из гранул синтетических цеолитов с кристаллами типов А и X.

В результате получают третью композицию цеолитного адсорбента структуры АХ, состоящую из смеси цеолитов типов СаА и СаХ следующего компонентного состава, мас.%:

0,88CaO·0,12Na2O·2,0SiO2Al 2O3-H2O - 78,0;

0,80CaO·0,20Na 2O·2,5SiO2·Al2O3 -H2O - 22,0.

Таким образом, получен адсорбент структуры AX общей формулы 0,85CaO·0,15Na 2O·2,11SiO2·Al2O3 ·H2O, у которого 69% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 18% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 9% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 4% кристаллов имеют стереорегулярные поры, равные 1,0 нм.

Содержание кальция в адсорбенте структуры AX составляет 11,2 мас.% (определено методом атомно-абсорбционной спектроскопии).

Пример 4. Данный пример иллюстрирует способ получения адсорбента структуры AX, основанный на раздельной однократной химической обработке раствором хлористого кальция гранул синтетических цеолитов типов A и X, и получение двух ионообменных форм цеолитов A и X с последующим их смешением в определенных соотношениях. В данном примере весовое соотношение сухой цеолит СаА: сухой цеолит СаХ=3,5.

Для реализации заявленного способа получения синтетического адсорбента структуры AX берут навеску гранул цеолита NaA в количестве 90 г, помещают в колбу с 720 мл 0,7N хлористого кальция, нагревают до 70°C и выдерживают в течение 4 часов. В данном примере весовое соотношение жидкая фаза: твердая фаза=8. После чего отработанный раствор хлористого кальция сливают, обработанный цеолит промывают дистиллированной водой. После промывки гранулы сушат и прокаливают в муфельной печи при температуре 400°C в течение 2 часов, охлаждают в эксикаторе и помещают в бюкс.

В результате получают компонент № 1 адсорбента структуры АХ - цеолит типа СаА формулы 0,53CaO·0,47Na 2O·2,0SiO2·Al2O3 ·H2O, содержащий активный кальций.

Для приготовления компонента № 2 адсорбента структуры AX берут навеску гранул цеолита NaX в количестве 30 г, помещают в колбу с 240 мл 0,7N хлористого кальция, нагревают до 70°C и выдерживают в течение 4 часов. После чего отработанный раствор хлористого кальция сливают, обработанный цеолит промывают дистиллированной водой. После промывки гранулы сушат и прокаливают в муфельной печи при температуре 400°C в течение 2 часов, охлаждают в эксикаторе и помещают в бюкс.

В результате получают компонент № 2 адсорбента структуры AX - цеолит типа СаХ формулы 0,49CaO·0,51Na 2O·2,5SiO2·Al2O3 ·H2O, содержащий активный кальций.

Синтетический цеолитный адсорбент структуры AX согласно заявленной формуле готовят в смесителе по следующей рецептуре, мас.%:

- компонент № 1 - цеолит 0,53CaO·0,47Na2O·2,0SiO 2·Al2O3·H2O - 78,0;

- компонент № 2 - цеолит 0,49СаО·0,5lNa2O·2,5SiO 2·Al2O3·H2O - 22,0.

Таким образом, получен адсорбент структуры АХ общей формулы 0,52CaO·0,48Na2O·2,11SiO 2·Al2O3·H2O, у которого 41% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 11% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 37% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 11% кристаллов имеют стереорегулярные поры, равные 1,0 нм.

Содержание кальция в адсорбенте структуры AX составляет 6,8 мас.% (определено методом атомно-абсорбционной спектроскопии).

Пример 5. Данный пример иллюстрирует способ получения адсорбента структуры AX аналогично примеру 4, но основанный на двухкратной химической обработке раствором хлористого кальция гранул синтетических цеолитов типов A и X.

В результате химической обработки получают два компонента для приготовления адсорбента структуры AX.

Синтетический цеолитный адсорбент структуры AX готовят в смесителе по следующей рецептуре, мас.%:

- компонент № 1 - цеолит 0,78CaO·0,22Na2O·2,0SiO 2·Al2O3·H2O - 78,0;

- компонент № 2 - цеолит 0,71CaO·0,29Na2O·2,5SiO 2·Al2O3·H2O - 22,0.

Таким образом, получен адсорбент структуры AX общей формулы 0,77CaO·0,23Na2O·2,11SiO 2·Al2O3-H2O, у которого 61% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 16% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 17% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 6% кристаллов имеют стереорегулярные поры, равные 1,0 нм.

Содержание кальция в адсорбенте структуры AX составляет 10,1 мас.% (определено методом атомно-абсорбционной спектроскопии).

Пример 6. Данный пример иллюстрирует способ получения адсорбента структуры AX аналогично примеру 4, но основанный на трехкратной химической обработке раствором хлористого кальция гранул синтетических цеолитов типов A и X.

В результате получают два компонента для приготовления адсорбента структуры AX.

Синтетический цеолитный адсорбент структуры АХ готовят в смесителе по следующей рецептуре, мас.%:

- компонент № 1 - цеолит 0,92CaO·0,08Na2O·2,0SiO 2·Al2O3·H2O - 78,0;

- компонент № 2 - цеолит 0,84CaO·0,16Na2O·2,5SiO 2·Al2O3·H2O - 22,0.

Таким образом, получен адсорбент структуры АХ общей формулы 0,90CaO·0,10Na2O·2,11SiO 2·Al2O3·H2O, у которого 72% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 18% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 6% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 4% кристаллов имеют стереорегулярные поры, равные 1,0 нм.

Содержание кальция в адсорбенте структуры AX составляет 11,5 мас.% (определено методом атомно-абсорбционной спектроскопии).

Пример 7. Данный пример иллюстрирует получение адсорбента структуры AX аналогично примеру 6, основанный на раздельной трехкратной химической обработке раствором хлористого кальция гранул синтетических цеолитов типов A и X, отличающийся тем, что в данном примере весовое соотношение сухой цеолит СаА: сухой цеолит СаХ=2.

Синтетический цеолитный адсорбент структуры AX согласно заявленной формуле готовят в смесителе по следующей рецептуре, мас.%:

- компонент № 1 - цеолит 0,92CaO·0,08Na2O·2,0SiO 2·Al2O3·H2O - 67,0;

- компонент № 2 - цеолит 0,84CaO·0,16Na2O·2,5SiO 2·Al2O3·H2O - 33,0.

Таким образом, получен адсорбент структуры АХ общей формулы 0,90CaO·0,10Na2O·2,17SiO 2·Al2O3·H2O, у которого 62% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 28% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 5% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 5% кристаллов имеют стереорегулярные поры, равные 1,0 нм.

Содержание кальция в адсорбенте структуры AX составляет 11,8 мас.% (определено методом атомно-абсорбционной спектроскопии).

Пример 8. Данный пример иллюстрирует получение адсорбента структуры АХ аналогично примеру 6, основанный на раздельной трехкратной химической обработке раствором хлористого кальция гранул синтетических цеолитов типов A и X, отличающийся тем, что в данном примере весовое соотношение сухой цеолит СаА: сухой цеолит СаХ=1,0.

Синтетический цеолитный адсорбент структуры AX согласно заявленной формуле готовят в смесителе по следующей рецептуре, мас.%:

- компонент № 1 - цеолит 0,92CaO·0,08Na2O·2,0SiO 2·Al2O3·H2O - 50,0;

- компонент № 2 - цеолит 0,84CaO·0,16Na2O·2,5SiO 2·Al2O3·H2O - 50,0.

Таким образом, получен адсорбент структуры АХ общей формулы 0,88CaO·0,12Na2O·2,25SiO2 ·Al2O3·H2O, у которого 46% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 42% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 4% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 8% кристаллов имеют стереорегулярные поры, равные 1,0 нм.

Содержание кальция в адсорбенте структуры AX составляет 11,6 мас.% (определено методом атомно-абсорбционной спектроскопии).

Пример 9. Данный пример иллюстрирует получение адсорбента структуры AX аналогично примеру 6, основанный на раздельной трехкратной химической обработке раствором хлористого кальция гранул синтетических цеолитов типов А и X, отличающийся тем, что в данном примере весовое соотношение сухой цеолит СаА: сухой цеолит СаХ=0,5.

Синтетический цеолитный адсорбент структуры AX согласно заявленной формуле готовят в смесителе по следующей рецептуре, мас.%:

- компонент № 1 - цеолит 0,92CaO·0,08Na2O·2,0SiO 2·Al2O3·H2O - 33,0;

- компонент № 2 - цеолит 0,84CaO·0,16Na2O·2,5SiO 2·Al2O3·H2O - 67,0.

Таким образом, получен композитный адсорбент структуры AX общей формулы 0,90CaO·0,10Na2O·2,11SiO 2·Al2O3·H2O, у которого 31% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 56% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 2% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 11% кристаллов имеют стереорегулярные поры, равные 1,0 нм.

Содержание кальция в адсорбенте структуры AX составляет 11,5 мас.% (определено методом атомно-абсорбционной спектроскопии).

Пример 10. Данный пример иллюстрирует получение адсорбента структуры AX аналогично примеру 6, основанный на раздельной трехкратной химической обработке раствором хлористого кальция гранул синтетических цеолитов типов A и X, отличающийся тем, что в данном примере весовое соотношение жидкая фаза: обрабатываемый цеолит=4,0.

В результате получают компонент № 1 адсорбента структуры AX - цеолит типа СаА формулы 0,80 CaO·0,20Na2O·2,0SiO2·Al 2O3·H2O и компонент № 2 адсорбента структуры АХ - цеолит типа СаХ формулы 0,72CaO·0,28Na 2O·2,5SiO2·Al2O3 ·H2O.

Синтетический цеолитный адсорбент структуры AX согласно заявленной формуле готовят в смесителе по следующей рецептуре, мас.%:

- компонент № 1 - цеолит 0,80CaO·0,20Na2O·2,0SiO 2·Al2O3·H2O - 80,0;

- компонент № 2 - цеолит 0,72CaO·0,28Na2O·2,5SiO 2·Al2O3·H2O - 20,0.

Таким образом, получен композитный адсорбент структуры АХ общей формулы 0,78CaO·0,22Na2O·2,11SiO 2·Al2O3·H2O, у которого 62% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 16% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 16% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 6% кристаллов имеют стереорегулярные поры, равные 1,0 нм.

Содержание кальция в адсорбенте структуры АХ составляет 10,1 мас.% (определено методом атомно-абсорбционной спектроскопии).

Пример 11. Данный пример иллюстрирует получение адсорбента структуры AX аналогично примеру 6, основанный на раздельной трехкратной химической обработке раствором хлористого кальция гранул синтетических цеолитов типов A и X, отличающийся тем, что в данном примере весовое соотношение сухой цеолит СаА: сухой цеолит СаХ=0,05.

Синтетический цеолитный адсорбент структуры АХ согласно заявленной формуле готовят в смесителе по следующей рецептуре, мас.%:

- компонент № 1 - цеолит 0,92CaO·0,08Na2O·2,0SiO 2·Al2O3·H2O - 5,0;

- компонент № 2 - цеолит 0,84CaO·0,16Na2O·2,5SiO 2·Al2O3·H2O - 95,0.

Таким образом, получен адсорбент структуры АХ общей формулы 0,84CaO·0,16Na2O·2,38SiO 2·Al2O3·H2O, у которого 5% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 80% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 0,4% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 14,6% кристаллов имеют стереорегулярные поры, равные 1,0 нм.

Содержание кальция в адсорбенте структуры АХ составляет 11,2 мас.% (определено методом атомно-абсорбционной спектроскопии).

Пример 12. Данный пример иллюстрирует получение адсорбента структуры AX аналогично примеру 6, основанный на раздельной трехкратной химической обработке раствором хлористого кальция гранул синтетических цеолитов типов A и X, отличающийся тем, что в данном примере весовое соотношение сухой цеолит СаА: сухой цеолит СаХ=20,0.

Синтетический цеолитный адсорбент структуры AX согласно заявленной формуле готовят в смесителе по следующей рецептуре, мас.%:

- компонент № 1 - цеолит 0,92CaO·0,08Na2O·2,0SiO 2·Al2O3·H2O - 95,0;

- компонент № 2 - цеолит 0,84CaO·0,16Na2O·2,5SiO 2·Al2O3·H2O - 5,0.

Таким образом, получен адсорбент структуры AX общей формулы 0,91CaO·0,09Na2O·2,03SiO 2·Al2O3H2O, у которого 87% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 4% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 8% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 1% кристаллов имеют стереорегулярные поры, равные 1,0 нм.

Содержание кальция в адсорбенте структуры AX составляет 11,9 мас.% (определено методом атомно-абсорбционной спектроскопии).

Пример 13. Данный пример иллюстрирует получение адсорбента структуры АХ аналогично примеру 6, отличающийся тем, что перед химической обработкой раствором хлористого кальция гранулы цеолитов А их X подвергают дроблению, получая частицы произвольной формы и размера в пределах фракции 0,05-1,5 мм.

В результате получают два компонента для приготовления адсорбента структуры АХ.

Синтетический цеолитный адсорбент структуры АХ готовят в смесителе по следующей рецептуре, мас.%:

- компонент № 1 - цеолит 0,92CaO·0,08Na2O·2,0SiO 2·Al2O3·H2O - 78,0;

- компонент № 2 - цеолит 0,84CaO·0,16Na2O·2,5SiO 2·Al2O3·H2O - 22,0.

Таким образом, получен композитный адсорбент структуры AX общей формулы 0,90CaO·0,10Na2O·2,11SiO 2·Al2O3·H2O, у которого 72% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 18% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 6% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 4% кристаллов имеют стереорегулярные поры, равные 1,0 нм.

Содержание кальция в адсорбенте структуры АХ составляет 11,7 мас.% (определено методом атомно-абсорбционной спектроскопии).

Пример 14. Данный пример иллюстрирует получение адсорбента структуры AX аналогично примеру 11, отличающийся тем, что после дробления полученные частицы произвольной формы классифицируют, получая фракцию с размером зерен 0,25-0,8 мм.

В результате получают два компонента для приготовления адсорбента структуры AX.

Синтетический цеолитный адсорбент структуры АХ готовят в смесителе по следующей рецептуре, мас.%:

- компонент № 1 - цеолит 0,92CaO·0,08Na2O·2,0SiO 2·Al2OH2O - 78,0;

- компонент № 2 - цеолит 0,84CaO·0,16Na2O·2,5SiO 2·Al2O3·H2O - 22,0.

Таким образом, получен адсорбент структуры AX общей формулы 0,90CaO·0,10Na2O·2,11SiO 2·Al2O3·H2O, у которого 72% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 18% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 6% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 4% кристаллов имеют стереорегулярные поры, равные 1,0 нм.

Содержание кальция в адсорбенте структуры AX составляет 12,0 мас.% (определено методом атомно-абсорбционной спектроскопии).

Пояснения к лабораторным испытаниям образцов адсорбента структуры AX, полученных согласно примерам 1-14:

1. Перед ионным обменом в гранулах цеолитов A и X определяют массовое содержание кристаллической фазы методом дифференциальной рентгеновской спектроскопии на аппарате ДРОН-4.

2. После ионного обмена в полученном адсорбенте структуры AX, определяют содержание кристаллической фазы методом дифференциальной рентгеновской спектроскопии на аппарате ДРОН-4.

3. Динамическую активность по диоксиду углерода определяют на лабораторной установке из среды атмосферного воздуха (содержание диоксида углерода в воздухе около 400 ppm). Концентрацию диоксида углерода регистрировали газоанализаторами Гамма.

4. Динамическую активность по сероводороду определяют на лабораторной установке из газовой смеси (содержание сероводорода в смеси 500 ppm). Концентрацию сероводорода регистрировали газоанализатором Анкат-7631М и с помощью системы KITAGAWA с применением газоанализаторных трубок.

Примеры результатов лабораторных испытаний заявленного изобретения приведены в таблице 1.

Таблица 1
Результаты лабораторных испытаний заявленного изобретения
№ примераМеханическая прочность, кг/мм2 Адсорбционная емкость по парам воды, мг/г Динамическая емкость по CO2, см3 Динамическая емкость по H2S, г/100 г Содержание кальция, мас.%
12,8 2311,2 1,16,4
2 2,1237 3,71,5 9,5
3 2,0 2418,8 2,011,2
4 2,5234 2,11,2 6,8
5 2,1 2316,5 1,710,1
6 1,8246 9,11,9 11,5
7 1,7 2879,4 1,811,8
8 1,9303 11,51,5 11,6
9 1,8 31012,0 1,811,5
10 2,5247 12,11,5 10,1
11 - 241- -11,7
12 -237 -- 12,0
13 2,2 29111,9 1,711,2
14 1,9248 8,82,1 11,9
Прототип 1,2 2712,1 0,78,7

Достигаемый технический результат по способу

Преимуществом заявляемого способа перед прототипом являются:

- использование в качестве материала для получения адсорбента структуры AX цеолитов NaA и NaX, синтезированных в каолиновых гранулах;

- применение для модификации цеолитов типов A и X 0,5-0,7 N раствора хлорида кальция с концентрацией 3-4% (прототип 15%);

- точное регулирование содержания в адсорбенте соотношения кристаллических фаз А и X;

- получение сорбента структуры AX с увеличенным спектром стереорегулярных пор в 0,4 нм; 0,5 нм; 0,8 нм, 1,0 нм (прототип 0,4 нм и 0,5 нм);

- регулирование соотношения стереорегулярных пор в широких пределах.

Предшествующий уровень техники по синтетическому цеолитному сорбенту структуры AX, получаемому методом модификации цеолитов с кристаллами A и X

В уровне техники до настоящего времени не обнаружено синтетических сорбентов структуры AX, включающих смесь синтетических цеолитов типов СаА и СаХ, кристаллические решетки которых содержат катионы кальция в количестве 6-12 мас.% при следующем соотношении указанных компонентов, мас.%:

синтетический цеолит mCaO·nNa2O·2,0SiO 2·Al2O3·H2O - 5,0-95,0,

синтетический цеолит mCaO·nNa 2O·2,5SiO2·Al2O3 ·H2O - 95,0-5,0 при m, равном 0,08-0,92, и n, равном 0,92-0,08.

Синтетические цеолиты типов СаА и СаХ получаются многостадийной обработкой промышленных синтетических цеолитов типов NaA и NaX, в смеси или раздельно, раствором хлористого кальция согласно примерам 1-14 способа получения цеолитного сорбента структуры AX.

В изобретениях [1] и [2] указаны способы получения синтетических цеолитных сорбентов структуры A и X, включающих смесь синтетических цеолитов типов NaA и NaX.

В изобретении [3] - прототип сорбент CA в кристаллической фазе содержит катионы кальция. Содержание кальция 4-5%. Формула сорбента mCaO·nNa2O·2,0SiO2Al 2O3·H2O.

В изобретении [4] приведеннвй ниже гемостатический агент из кальциевого цеолита СаА также содержит в кристаллической фазе катионы кальция. Содержание кальция 8-11%.

Согласно изобретению [4] [выложенная заявка US № 2005/074505 A1, дата публикации 07.04.2005 г.] сорбционный материал, представляющий собой цеолит, сформованный со связующим веществом - глиной, причем цеолитная композиция имеет отрегулированное содержание кальция - собственно на цеолит приходится 75-83% и на связующее вещество 13-25% кальция (в расчете на общее количество кальциевых и натриевых катионов или около 6 ат.% в композиции). Отрегулированное содержание кальция получают добавлением к исходному цеолиту соединения, содержащего кальций, при этом кальцийсодержащее соединение выбирают из оксидов, сульфатов или хлоридов кальция.

Задачей предлагаемого изобретения по адсорбенту, пригодному для использования в осушке, очистке газов и в получении компонентов для кровоостанавливающих средств, является цеолитный адсорбент структуры AX, состоящий из кристаллических фаз A и X, с регулируемым соотношением стереорегулярных пор 0,5 и 0,8 нм.

Раскрытие изобретения по цеолитному адсорбенту структуры AX

Поставленная задача достигается тем, что адсорбент структуры AX, полученный по способу в примерах 1-14, содержит в узлах кристаллической решетки катионы кальция в количестве 6-12 мас.%, представляет композицию, состоящую из смеси синтетических цеолитов СаА и СаХ, полученную модифицированием хлористым кальцием цеолитов с кристаллами A и X.

Таким образом, из приведенных выше в таблице 1 результатов лабораторных испытаний адсорбентов структуры AX, полученных согласно примерам 1-14, следует, что полученные вещества являются синтетическими цеолитными адсорбентами структуры AX с регулируемым содержанием цеолитных фаз СаА и СаХ. Максимальное массовое содержание кальция в полученном сорбенте структуры AX равно 12%. Механическая прочность гранул сорбентов, определенная на приборе ИПГ-1М, составляет не менее 1,7 кг/мм2 сечения гранулы. Высокая адсорбционная емкость адсорбента AX по парам воды, достигающая 31%, позволяет использовать его для осушки природных газов. Высокая динамическая активность адсорбента AX по диоксиду углерода, составляющая 6,5-12,1 см3/г, позволяет успешно очищать воздух в криогенных процессах. Активность по сероводороду 1,5 г/100 г и более позволяет очищать кислые газы. В примере 14 получена фракция 0,25-0,8 мм с высоким содержанием активного кальция в узлах кристаллической решетки (12%). Полученная в примерах 13 и 14 мелкодисперсная фракция адсорбента структуры AX позволяет использовать его для приготовления композиции местного гемостатического средства, применяемого при остановках кровотечений различного генеза.

Класс C01B39/18 из реакционной смеси, содержащей по меньшей мере один силикат алюминия или алюмосиликат типа глины, например каолин или метакаолин или его экзотермическую модификацию или аллофан

способ изготовления гранулированного цеолита и цеолит -  патент 2526990 (27.08.2014)
способ получения синтетического цеолита типа а -  патент 2525246 (10.08.2014)
способ получения синтетических гранулированных цеолитов типа а -  патент 2508250 (27.02.2014)
способ получения гранулированного синтетического цеолита типа а -  патент 2498939 (20.11.2013)
способ получения цеолита типа а в качестве адсорбента -  патент 2466091 (10.11.2012)
композиция аморфного алюмосиликата и способ получения и использования такой композиции -  патент 2463108 (10.10.2012)
способ получения синтетического гранулированного цеолита типа а -  патент 2446101 (27.03.2012)
способ получения гранулированного без связующего цеолита типа а -  патент 2425801 (10.08.2011)
способ получения гранулированного без связующего цеолитного адсорбента структуры а и х высокой фазовой чистоты -  патент 2420457 (10.06.2011)
способ получения гранулированного без связующего цеолита типа а высокой фазовой чистоты -  патент 2420456 (10.06.2011)

Класс C01B39/22 типа X

способ изготовления гранулированного цеолита и цеолит -  патент 2526990 (27.08.2014)
адсорбенты без связующего и их применение для адсорбционного выделения пара-ксилола -  патент 2497932 (10.11.2013)
способ получения гранулированного без связующего цеолитного адсорбента структуры а и х высокой фазовой чистоты -  патент 2420457 (10.06.2011)
способ получения гранулированного синтетического цеолитсодержащего компонента смс -  патент 2335534 (10.10.2008)
способ получения гранулированного синтетического цеолитсодержащего компонента смс -  патент 2335533 (10.10.2008)
способ получения синтетического гранулированного цеолита типа х -  патент 2322391 (20.04.2008)
способ получения гранулированных синтетических цеолитов -  патент 2283279 (10.09.2006)
способ получения гранулированного цеолитного адсорбента структуры a и x высокой фазовой чистоты -  патент 2283278 (10.09.2006)
способ получения гранулированного синтетического цеолитсодержащего компонента смс -  патент 2230778 (20.06.2004)
способ получения синтетического цеолита типа x -  патент 2218304 (10.12.2003)

Класс B01J20/18 синтетические цеолитные молекулярные сита

способ очистки водных растворов от эндотоксинов -  патент 2529221 (27.09.2014)
гуминово-глинистый стабилизатор эмульсии нефти в воде -  патент 2528651 (20.09.2014)
способ очистки сточных вод от тяжелых металлов методом адсорбции, фильтрующий материал (сорбент) и способ получения сорбента -  патент 2524111 (27.07.2014)
поглощение летучих органических соединений, образованных из органического материала -  патент 2516163 (20.05.2014)
поверхностно-модифицированные цеолиты и способы их получения -  патент 2506226 (10.02.2014)
адсорбенты без связующего и их применение для адсорбционного выделения пара-ксилола -  патент 2497932 (10.11.2013)
цеолитовый катализатор с цеолитовой вторичной структурой -  патент 2493909 (27.09.2013)
способ отделения мета-ксилола от ароматических углеводородов и адсорбент для его осуществления -  патент 2490245 (20.08.2013)
цеолит y -  патент 2487756 (20.07.2013)
способ получения гибких композиционных сорбционно-активных материалов -  патент 2481154 (10.05.2013)
Наверх