способ получения цеолитного адсорбента структуры ах и цеолитный адсорбент структуры ах
Классы МПК: | C01B39/18 из реакционной смеси, содержащей по меньшей мере один силикат алюминия или алюмосиликат типа глины, например каолин или метакаолин или его экзотермическую модификацию или аллофан C01B39/22 типа X B01J20/18 синтетические цеолитные молекулярные сита |
Автор(ы): | Глухов Владимир Алексеевич (RU), Зеленов Алексей Владимирович (RU) |
Патентообладатель(и): | Общество с ограниченной ответственностью Торговый Дом "РЕАЛ СОРБ" (ООО ТД "РЕАЛ СОРБ") (RU) |
Приоритеты: |
подача заявки:
2010-05-12 публикация патента:
20.05.2012 |
Изобретение относится к химической промышленности, конкретно к получению модифицированных цеолитных сорбентов структуры АХ. Предложены два варианта способа получения цеолитного адсорбента структуры АХ, которые включают обработку цеолитов типов NaA и NaX раствором хлористого кальция, осуществляемую либо в смеси исходных компонентов, либо раздельно с последующим смешиванием полученных кальциевых форм. Изобретение обеспечивает возможность получения различного фазового состава целевого продукта, что позволяет регулировать сорбционную способность адсорбента по поглощаемым компонентам. 2 н. и 1 з.п. ф-лы, 14 пр.
Формула изобретения
1. Способ получения цеолитного адсорбента, включающий модифицирование ионами кальция цеолита типа А, сушку, прокалку, отличающийся тем, что модифицированию подвергают смесь, состоящую из синтетических цеолитов типа NaA и NaX, синтезированных в каолиновых гранулах, при массовом отношении цеолита NaA к цеолиту NaX, равном 3,5:1,0, 0,5-0,7 N раствором хлористого кальция при отношении жидкая фаза: твердая фаза, равном 4,0 или 8,0, процесс модифицирования упомянутой смеси цеолитов хлористым кальцием проводят 1-3 раза, затем полученную смесь промывают, прокаливают при температуре 400°С.
2. Способ получения цеолитного адсорбента, включающий модифицирование ионами кальция цеолита типа А, сушку, прокалку, отличающийся тем, что раздельному модифицированию подвергают синтетические цеолиты типа NaA и NaX, синтезированные в каолиновых гранулах, модифицирование каждого из них осуществляют 0,5-0,7 N раствором хлористого кальция при отношении жидкая фаза: твердая фаза, равном 4,0 или 8,0, процесс модифицирования цеолитов хлористым кальцием проводят 1-3 раза, полученные путем модифицирования цеолиты СаА и СаХ промывают, прокаливают при температуре 400°С и смешивают при массовом отношении в смеси цеолита СаА к цеолиту СаХ от 20:1 до 0,05:1.
3. Способ по п.2, отличающийся тем, что гранулы цеолитов NaA и NaX перед модифицированием подвергают дроблению, получая гранулы произвольной формы и размера в пределах фракции 0,05-1,50 мм, полученные гранулы классифицируют, получая фракцию 0,25-0,80 мм.
Описание изобретения к патенту
Область техники
Данное изобретение относится к химической промышленности, конкретно к получению модифицированных сорбентов на основе цеолитов.
Промышленное производство адсорбентов структуры AX решит проблемы получения сорбентов для комплексного подхода к осуществлению технологических процессов. Адсорбент состоит из кристаллических фаз A и X, модифицирование их катионами кальция приводит к образованию дополнительных наноразмерных кристаллов цеолитов со стереорегулярными рабочими порами в 0,5 и 0,8 нм. Способ получения адсорбента AX позволяет очень точно регулировать соотношение стереорегулярных пор в адсорбенте AX, изменяя специфические свойства его в широких пределах.
Полученный цеолитный адсорбент структуры AX может быть использован в различных областях промышленности: нефтехимической, металлургической, нефтегазовой и медицинской. Одна из областей применения адсорбента структуры AX осушка и очистка различных газов (природных газов, нефтяных попутных газов, воздуха, инертных газов и различных углеводородных газов). Другая область применения для приготовления медицинских средств, используемых для остановки кровотечений.
Уровень техники по способу
Известен способ получения гранулированного цеолитного адсорбента структуры A и X высокой фазовой чистоты, не содержащего связующего вещества [1], [патент RU № 2203220, C1, дата публикации 27.04.2003 г.].
Согласно данному изобретению каолин смешивают с диоксидом кремния и древесным углем, добавляют 20-70% порошкового фожазита, обрабатывают раствором едкого натра, в полученную смесь добавляют раствор поливинилового спирта до образования однородной пластичной массы, формуют в гранулы, направляют на вызревание, подвергают чистовой формовке, сушат в два этапа, проводят термическую активацию, полученные гранулы охлаждают и подвергают гидротермальной кристаллизации в щелочном растворе, проводят термопаровую обработку гранул, промывают умягченной водой, полученные гранулы цеолитного адсорбента структуры A и X сушат.
Известен способ получения гранулированного цеолитного адсорбента структуры A и X, не содержащего связующего вещества [2], [патент RU № 2180318 C1, дата публикации 10.03.2002 г.]. Согласно данному способу каолин, взятый в количестве 10-40%, подвергают прокалке при 700-900°C, обрабатывают серной кислотой, смешивают с каолином до обеспечения конечного соотношения SiO2 :Al2O3=(2,2-3,1) и добавкой, содержащей углерод, добавляют воду, формуют в гранулы, проводят термическую активацию при 580-700°C, полученные гранулы охлаждают и подвергают гидротермальной кристаллизации в щелочном растворе, затем гранулы цеолитного адсорбента структуры A и X сушат.
Основным недостатком перечисленных способов является техническая сложность синтеза двух фаз цеолитов A и X одновременно. Соотношение фаз A и X после синтеза подвержено большим вариациям. В результате синтеза получаются сорбенты структуры A и X, неадекватные заложенной рецептуре. Кроме этого получается низкое суммарное массовое содержание фазы A и X в гранулах адсорбента. Модифицирование гранул полученного цеолита катионами кальция в приведенных способах не предлагается.
Наиболее близким по своей технической сущности и достигаемому техническому результату является изобретение «Способ получения сорбента и сорбент» [3], [патент RU № 2097124 C1, дата публикации 27.11.1997 г.]. Способ получения сорбента на основе цеолита типа A по патенту включает модифицирование цеолита NaA ионами кальция путем пропитки раствором 15%-ного CaCl2. Цеолит NaA получают путем смешения источников кремния (кремнегель, силикозоль - 30%-ный SiO2), алюминия (алюминат натрия, раствор сульфата алюминия, каолин), раствора гидрооксида натрия и 2-15% затравочных кристаллов от веса SiO 2, кристаллизацию гидрогеля при 80-110°C, смешение с 20-25 мас.% пластифицированного или пептизированного связующего (тонкоизмельченной глины или оксида алюминия) и водой до влажности продукта 30-55%, формование и прокалку при 400-600°C в течение 2-6 часов.
Основными недостатком прототипа является низкая механическая прочность гранул сорбента, что обусловлено применением в качестве связующего глин. По способу получения сорбента, указанному в прототипе, получают адсорбент, область применения которого ограничена осушкой газов.
Задачей настоящего изобретения является разработка способа получения цеолитного сорбента структуры AX, гранулы которого обладают высокой механической прочностью и динамической емкостью по воде, диоксиду углерода и сероводороду.
Раскрытие изобретения по способу
Поставленная задача достигается тем, что в способе получения цеолитного адсорбента структуры AX, включающем модифицирование ионами кальция цеолита типа A, сушку и прокалку, в отличие от прототипа модифицированию подвергают смесь, состоящую из гранул синтетических цеолитов NaA и NaX при массовом соотношении 20,00:0,05 соответственно, 0,5-0,7 N раствором хлористого кальция при соотношении жидкая фаза: твердая фаза, равном 4,0 и 8,0, повторяя процесс модификации 1-3 раза, затем полученную композицию промывают.
Модификация цеолитов с кристаллами A и X раствором хлористого кальция с концентрацией 0,7 N (около 4%) обеспечивает высокие прочностные характеристики адсорбента структуры AX.
Для обеспечения высокого содержания кальция в гранулах адсорбента структуры AX и хороших сорбционных характеристик полученного продукта проводят раздельное модифицирование цеолитов NaA и NaX, а затем полученные компоненты смешивают.
С целью повышения оксиредуктивного эффекта, при использовании адсорбента AX для медицинских целей, гранулы цеолитов типов NaA и NaX, синтезированные в каолиновых гранулах, перед модифицированием подвергают дроблению, получая гранулы произвольной формы и размера в пределах фракции 0,05-1,50 мм. Полученные гранулы классифицируют, получая фракцию 0,25-0,80 мм.
Полученный синтетический цеолитный адсорбент, содержащий катионы кальция в кристаллической решетке в количестве 6-12 мас.%, представляет собой композицию, включающую смесь синтетических цеолитов с кристаллами типов A и X, при следующем соотношении указанных компонентов, мас.%:
синтетический цеолит типа A формулы
mCaO·nNa2O·2,0SiO2·Al 2O3·H2O - 95,0-5,0;
синтетический цеолит типа X формулы
mCaO·nNa 2O·2,5SiO2Al2O3 H 2O - 5,0-95,0;
при m, равном 0,08-0,92, и n, равном 0,92-0,08.
Активные ионы кальция внедряют в кристаллические решетки заявляемого цеолитного адсорбента методом ионного обмена, обрабатывая определенные массовые части цеолитов типов NaA и NaX хлоридом кальция с предварительным или последующим смешением после обработки.
Состав адсорбента структуры АХ из двух типов цеолитов A и X позволяет регулировать сорбционную способность сорбента по поглощаемым компонентам.
Для осуществления способа получения цеолитного сорбента структуры AX применены цеолит NaA-НПГ и цеолит NaX-БКО производства ООО «Завод молекулярных сит «РЕАЛ СОРБ», выпускаемые серийно.
Цеолиты данного производителя синтезируются в каолиновых гранулах в виде экструдатов. Синтезированная цеолитная фаза характеризуется повышенной прочностью связи с матричной фазой - непревращенной частью каолина, поскольку образована из его компонентов и продолжает находиться в «генетической» связи с каолиновыми остатками. В связи с этим свойства гранулированного цеолита, сформованного методом смешения цеолита со связующим, и цеолита, выращенного в гранулах матрицы - каолина, различны.
Цеолиты типов NaA и NaX, синтезированные в каолиновых гранулах, проявляют наиболее ярко выраженные гидрофильные свойства и значительно активнее цеолитов, полученных со связующим. Уникальное сочетание в этих цеолитах сорбционных, ионообменных, молекулярно-ситовых свойств обеспечивают высокую скорость сорбции компонентов из газовых и жидких смесей.
Изобретение реализуется следующим образом:
- примеры 1-3 показывают реализацию настоящего изобретения по способу получения цеолитного адсорбента структуры AX, методом модифицирования катионами кальция смеси цеолитов NaA и NaX, при массовом соотношении 3,5;
- примеры 4-12 показывают реализацию настоящего изобретения по способу получения цеолитного адсорбента структуры AX, методом раздельного модифицирования катионами кальция цеолитов NaA и NaX, с последующим получением адсорбента структуры АХ, при весовом соотношении сухой цеолит СаА: сухой цеолит СаХ, равном 3,5:1,0; 2,0:1,0; 1,0:1,0; 1,0:0,5; 1,0:4,0; 1,0:0,05 и 1,0:20,0 соответственно;
- примеры 13-14 показывают реализацию настоящего изобретения по способу получения цеолитного адсорбента структуры AX методом раздельного модифицирования катионами кальция цеолитов NaA и NaX, гранулы которых предварительно подвергались дроблению и классификации, с последующим получением адсорбента структуры АХ, при весовом соотношении сухой цеолит СаА: сухой цеолит СаХ 3,5:1,0 соответственно.
Пример 1. Данный пример иллюстрирует реализацию по способу получения цеолитного адсорбента структуры AX, основанное на химической однократной обработке раствором хлористого кальция смеси, состоящей из гранул синтетических цеолитов с кристаллами типов A и X, и получение композиции, состоящей из двух ионообменных форм цеолитов A и X. В данном примере весовое соотношение сухой цеолит NaA: сухой цеолит NaX=3,5.
Для реализации способа получения заявленного синтетического цеолитного адсорбента структуры АХ готовят смесь, состоящую из гранул синтетических цеолитов с кристаллами типов A и X. Для этого берут навеску гранул в виде экструдатов, с диаметром 2,9 мм, цеолита NaA формулы Na 2O·2,0SiO2·Al2O3 ·H2O в количестве 70 г и навеску гранул в виде экструдатов с диаметром 2,9 мм, цеолита NaX формулы Na2 O·2,5SiO2·Al2O3·H 2O, в количестве 20 г.В данном примере весовое соотношение жидкая фаза: твердая фаза=8. Навески цеолитов с кристаллами типов A и X смешивают помещают в колбу с 720 мл 0,7 N раствором хлористого кальция, нагревают до 70°C и выдерживают в течение 4 часов. После чего отработанный раствор хлористого кальция сливают, полученную смесь цеолитов промывают дистиллированной водой. После промывки гранулы сушат и прокаливают в муфельной печи при температуре 400°C в течение 2 часов, охлаждают в эксикаторе и помещают в бюкс.
В результате получают композицию цеолитного адсорбента структуры AX, состоящую из смеси цеолитов типов СаА и СаХ следующего компонентного состава, мас.%:
0,50CaO·0,50Na2O·2,0SiO2·Al 2O3-H2O - 78,0;
0,46CaO·0,54Na 2O·2,5SiO2·Al2O3 -H2O - 22,0.
Таким образом, получен адсорбент структуры AX общей формулы 0,49CaO·0,51Na 2O·2,11SiO2·Al2O3 ·H2O, у которого 39% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 10% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 39% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 12% кристаллов имеют стереорегулярные поры, равные 1,0 нм.
Содержание кальция в адсорбенте структуры AX составляет 6,4 мас.% (определено методом атомно-абсорбционной спектроскопии).
Пример 2. Данный пример иллюстрирует способ получения адсорбента структуры AX аналогично примеру 1, но основанное на двухкратной химической обработке раствором хлористого кальция смеси, состоящей из гранул синтетических цеолитов с кристаллами типов A и X.
В результате получают композицию цеолитного адсорбента структуры AX, состоящую из смеси цеолитов типов СаА и СаХ следующего компонентного состава, мас.%:
0,77CaO·0,23Na2O·2,0SiO2·Al 2O3-H2O - 78,0;
0,70CaO·0,30Na 2O·2,5SiO2·Al2O3 -H2O - 22,0.
Таким образом, получен адсорбент структуры AX общей формулы 0,75CaO·0,25Na 2O·2,11SiO2·Al2O3 -H2O, у которого 60% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 15% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 18% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 7% кристаллов имеют стереорегулярные поры, равные 1,0 нм.
Содержание кальция в адсорбенте структуры AX составляет 9,5 мас.% (определено методом атомно-абсорбционной спектроскопии).
Пример 3. Данный пример иллюстрирует способ получения адсорбента структуры АХ аналогично примеру 1, но основанное на трехкратной химической обработке раствором хлористого кальция смеси, состоящей из гранул синтетических цеолитов с кристаллами типов А и X.
В результате получают третью композицию цеолитного адсорбента структуры АХ, состоящую из смеси цеолитов типов СаА и СаХ следующего компонентного состава, мас.%:
0,88CaO·0,12Na2O·2,0SiO2Al 2O3-H2O - 78,0;
0,80CaO·0,20Na 2O·2,5SiO2·Al2O3 -H2O - 22,0.
Таким образом, получен адсорбент структуры AX общей формулы 0,85CaO·0,15Na 2O·2,11SiO2·Al2O3 ·H2O, у которого 69% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 18% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 9% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 4% кристаллов имеют стереорегулярные поры, равные 1,0 нм.
Содержание кальция в адсорбенте структуры AX составляет 11,2 мас.% (определено методом атомно-абсорбционной спектроскопии).
Пример 4. Данный пример иллюстрирует способ получения адсорбента структуры AX, основанный на раздельной однократной химической обработке раствором хлористого кальция гранул синтетических цеолитов типов A и X, и получение двух ионообменных форм цеолитов A и X с последующим их смешением в определенных соотношениях. В данном примере весовое соотношение сухой цеолит СаА: сухой цеолит СаХ=3,5.
Для реализации заявленного способа получения синтетического адсорбента структуры AX берут навеску гранул цеолита NaA в количестве 90 г, помещают в колбу с 720 мл 0,7N хлористого кальция, нагревают до 70°C и выдерживают в течение 4 часов. В данном примере весовое соотношение жидкая фаза: твердая фаза=8. После чего отработанный раствор хлористого кальция сливают, обработанный цеолит промывают дистиллированной водой. После промывки гранулы сушат и прокаливают в муфельной печи при температуре 400°C в течение 2 часов, охлаждают в эксикаторе и помещают в бюкс.
В результате получают компонент № 1 адсорбента структуры АХ - цеолит типа СаА формулы 0,53CaO·0,47Na 2O·2,0SiO2·Al2O3 ·H2O, содержащий активный кальций.
Для приготовления компонента № 2 адсорбента структуры AX берут навеску гранул цеолита NaX в количестве 30 г, помещают в колбу с 240 мл 0,7N хлористого кальция, нагревают до 70°C и выдерживают в течение 4 часов. После чего отработанный раствор хлористого кальция сливают, обработанный цеолит промывают дистиллированной водой. После промывки гранулы сушат и прокаливают в муфельной печи при температуре 400°C в течение 2 часов, охлаждают в эксикаторе и помещают в бюкс.
В результате получают компонент № 2 адсорбента структуры AX - цеолит типа СаХ формулы 0,49CaO·0,51Na 2O·2,5SiO2·Al2O3 ·H2O, содержащий активный кальций.
Синтетический цеолитный адсорбент структуры AX согласно заявленной формуле готовят в смесителе по следующей рецептуре, мас.%:
- компонент № 1 - цеолит 0,53CaO·0,47Na2O·2,0SiO 2·Al2O3·H2O - 78,0;
- компонент № 2 - цеолит 0,49СаО·0,5lNa2O·2,5SiO 2·Al2O3·H2O - 22,0.
Таким образом, получен адсорбент структуры АХ общей формулы 0,52CaO·0,48Na2O·2,11SiO 2·Al2O3·H2O, у которого 41% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 11% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 37% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 11% кристаллов имеют стереорегулярные поры, равные 1,0 нм.
Содержание кальция в адсорбенте структуры AX составляет 6,8 мас.% (определено методом атомно-абсорбционной спектроскопии).
Пример 5. Данный пример иллюстрирует способ получения адсорбента структуры AX аналогично примеру 4, но основанный на двухкратной химической обработке раствором хлористого кальция гранул синтетических цеолитов типов A и X.
В результате химической обработки получают два компонента для приготовления адсорбента структуры AX.
Синтетический цеолитный адсорбент структуры AX готовят в смесителе по следующей рецептуре, мас.%:
- компонент № 1 - цеолит 0,78CaO·0,22Na2O·2,0SiO 2·Al2O3·H2O - 78,0;
- компонент № 2 - цеолит 0,71CaO·0,29Na2O·2,5SiO 2·Al2O3·H2O - 22,0.
Таким образом, получен адсорбент структуры AX общей формулы 0,77CaO·0,23Na2O·2,11SiO 2·Al2O3-H2O, у которого 61% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 16% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 17% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 6% кристаллов имеют стереорегулярные поры, равные 1,0 нм.
Содержание кальция в адсорбенте структуры AX составляет 10,1 мас.% (определено методом атомно-абсорбционной спектроскопии).
Пример 6. Данный пример иллюстрирует способ получения адсорбента структуры AX аналогично примеру 4, но основанный на трехкратной химической обработке раствором хлористого кальция гранул синтетических цеолитов типов A и X.
В результате получают два компонента для приготовления адсорбента структуры AX.
Синтетический цеолитный адсорбент структуры АХ готовят в смесителе по следующей рецептуре, мас.%:
- компонент № 1 - цеолит 0,92CaO·0,08Na2O·2,0SiO 2·Al2O3·H2O - 78,0;
- компонент № 2 - цеолит 0,84CaO·0,16Na2O·2,5SiO 2·Al2O3·H2O - 22,0.
Таким образом, получен адсорбент структуры АХ общей формулы 0,90CaO·0,10Na2O·2,11SiO 2·Al2O3·H2O, у которого 72% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 18% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 6% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 4% кристаллов имеют стереорегулярные поры, равные 1,0 нм.
Содержание кальция в адсорбенте структуры AX составляет 11,5 мас.% (определено методом атомно-абсорбционной спектроскопии).
Пример 7. Данный пример иллюстрирует получение адсорбента структуры AX аналогично примеру 6, основанный на раздельной трехкратной химической обработке раствором хлористого кальция гранул синтетических цеолитов типов A и X, отличающийся тем, что в данном примере весовое соотношение сухой цеолит СаА: сухой цеолит СаХ=2.
Синтетический цеолитный адсорбент структуры AX согласно заявленной формуле готовят в смесителе по следующей рецептуре, мас.%:
- компонент № 1 - цеолит 0,92CaO·0,08Na2O·2,0SiO 2·Al2O3·H2O - 67,0;
- компонент № 2 - цеолит 0,84CaO·0,16Na2O·2,5SiO 2·Al2O3·H2O - 33,0.
Таким образом, получен адсорбент структуры АХ общей формулы 0,90CaO·0,10Na2O·2,17SiO 2·Al2O3·H2O, у которого 62% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 28% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 5% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 5% кристаллов имеют стереорегулярные поры, равные 1,0 нм.
Содержание кальция в адсорбенте структуры AX составляет 11,8 мас.% (определено методом атомно-абсорбционной спектроскопии).
Пример 8. Данный пример иллюстрирует получение адсорбента структуры АХ аналогично примеру 6, основанный на раздельной трехкратной химической обработке раствором хлористого кальция гранул синтетических цеолитов типов A и X, отличающийся тем, что в данном примере весовое соотношение сухой цеолит СаА: сухой цеолит СаХ=1,0.
Синтетический цеолитный адсорбент структуры AX согласно заявленной формуле готовят в смесителе по следующей рецептуре, мас.%:
- компонент № 1 - цеолит 0,92CaO·0,08Na2O·2,0SiO 2·Al2O3·H2O - 50,0;
- компонент № 2 - цеолит 0,84CaO·0,16Na2O·2,5SiO 2·Al2O3·H2O - 50,0.
Таким образом, получен адсорбент структуры АХ общей формулы 0,88CaO·0,12Na2O·2,25SiO2 ·Al2O3·H2O, у которого 46% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 42% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 4% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 8% кристаллов имеют стереорегулярные поры, равные 1,0 нм.
Содержание кальция в адсорбенте структуры AX составляет 11,6 мас.% (определено методом атомно-абсорбционной спектроскопии).
Пример 9. Данный пример иллюстрирует получение адсорбента структуры AX аналогично примеру 6, основанный на раздельной трехкратной химической обработке раствором хлористого кальция гранул синтетических цеолитов типов А и X, отличающийся тем, что в данном примере весовое соотношение сухой цеолит СаА: сухой цеолит СаХ=0,5.
Синтетический цеолитный адсорбент структуры AX согласно заявленной формуле готовят в смесителе по следующей рецептуре, мас.%:
- компонент № 1 - цеолит 0,92CaO·0,08Na2O·2,0SiO 2·Al2O3·H2O - 33,0;
- компонент № 2 - цеолит 0,84CaO·0,16Na2O·2,5SiO 2·Al2O3·H2O - 67,0.
Таким образом, получен композитный адсорбент структуры AX общей формулы 0,90CaO·0,10Na2O·2,11SiO 2·Al2O3·H2O, у которого 31% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 56% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 2% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 11% кристаллов имеют стереорегулярные поры, равные 1,0 нм.
Содержание кальция в адсорбенте структуры AX составляет 11,5 мас.% (определено методом атомно-абсорбционной спектроскопии).
Пример 10. Данный пример иллюстрирует получение адсорбента структуры AX аналогично примеру 6, основанный на раздельной трехкратной химической обработке раствором хлористого кальция гранул синтетических цеолитов типов A и X, отличающийся тем, что в данном примере весовое соотношение жидкая фаза: обрабатываемый цеолит=4,0.
В результате получают компонент № 1 адсорбента структуры AX - цеолит типа СаА формулы 0,80 CaO·0,20Na2O·2,0SiO2·Al 2O3·H2O и компонент № 2 адсорбента структуры АХ - цеолит типа СаХ формулы 0,72CaO·0,28Na 2O·2,5SiO2·Al2O3 ·H2O.
Синтетический цеолитный адсорбент структуры AX согласно заявленной формуле готовят в смесителе по следующей рецептуре, мас.%:
- компонент № 1 - цеолит 0,80CaO·0,20Na2O·2,0SiO 2·Al2O3·H2O - 80,0;
- компонент № 2 - цеолит 0,72CaO·0,28Na2O·2,5SiO 2·Al2O3·H2O - 20,0.
Таким образом, получен композитный адсорбент структуры АХ общей формулы 0,78CaO·0,22Na2O·2,11SiO 2·Al2O3·H2O, у которого 62% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 16% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 16% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 6% кристаллов имеют стереорегулярные поры, равные 1,0 нм.
Содержание кальция в адсорбенте структуры АХ составляет 10,1 мас.% (определено методом атомно-абсорбционной спектроскопии).
Пример 11. Данный пример иллюстрирует получение адсорбента структуры AX аналогично примеру 6, основанный на раздельной трехкратной химической обработке раствором хлористого кальция гранул синтетических цеолитов типов A и X, отличающийся тем, что в данном примере весовое соотношение сухой цеолит СаА: сухой цеолит СаХ=0,05.
Синтетический цеолитный адсорбент структуры АХ согласно заявленной формуле готовят в смесителе по следующей рецептуре, мас.%:
- компонент № 1 - цеолит 0,92CaO·0,08Na2O·2,0SiO 2·Al2O3·H2O - 5,0;
- компонент № 2 - цеолит 0,84CaO·0,16Na2O·2,5SiO 2·Al2O3·H2O - 95,0.
Таким образом, получен адсорбент структуры АХ общей формулы 0,84CaO·0,16Na2O·2,38SiO 2·Al2O3·H2O, у которого 5% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 80% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 0,4% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 14,6% кристаллов имеют стереорегулярные поры, равные 1,0 нм.
Содержание кальция в адсорбенте структуры АХ составляет 11,2 мас.% (определено методом атомно-абсорбционной спектроскопии).
Пример 12. Данный пример иллюстрирует получение адсорбента структуры AX аналогично примеру 6, основанный на раздельной трехкратной химической обработке раствором хлористого кальция гранул синтетических цеолитов типов A и X, отличающийся тем, что в данном примере весовое соотношение сухой цеолит СаА: сухой цеолит СаХ=20,0.
Синтетический цеолитный адсорбент структуры AX согласно заявленной формуле готовят в смесителе по следующей рецептуре, мас.%:
- компонент № 1 - цеолит 0,92CaO·0,08Na2O·2,0SiO 2·Al2O3·H2O - 95,0;
- компонент № 2 - цеолит 0,84CaO·0,16Na2O·2,5SiO 2·Al2O3·H2O - 5,0.
Таким образом, получен адсорбент структуры AX общей формулы 0,91CaO·0,09Na2O·2,03SiO 2·Al2O3H2O, у которого 87% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 4% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 8% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 1% кристаллов имеют стереорегулярные поры, равные 1,0 нм.
Содержание кальция в адсорбенте структуры AX составляет 11,9 мас.% (определено методом атомно-абсорбционной спектроскопии).
Пример 13. Данный пример иллюстрирует получение адсорбента структуры АХ аналогично примеру 6, отличающийся тем, что перед химической обработкой раствором хлористого кальция гранулы цеолитов А их X подвергают дроблению, получая частицы произвольной формы и размера в пределах фракции 0,05-1,5 мм.
В результате получают два компонента для приготовления адсорбента структуры АХ.
Синтетический цеолитный адсорбент структуры АХ готовят в смесителе по следующей рецептуре, мас.%:
- компонент № 1 - цеолит 0,92CaO·0,08Na2O·2,0SiO 2·Al2O3·H2O - 78,0;
- компонент № 2 - цеолит 0,84CaO·0,16Na2O·2,5SiO 2·Al2O3·H2O - 22,0.
Таким образом, получен композитный адсорбент структуры AX общей формулы 0,90CaO·0,10Na2O·2,11SiO 2·Al2O3·H2O, у которого 72% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 18% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 6% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 4% кристаллов имеют стереорегулярные поры, равные 1,0 нм.
Содержание кальция в адсорбенте структуры АХ составляет 11,7 мас.% (определено методом атомно-абсорбционной спектроскопии).
Пример 14. Данный пример иллюстрирует получение адсорбента структуры AX аналогично примеру 11, отличающийся тем, что после дробления полученные частицы произвольной формы классифицируют, получая фракцию с размером зерен 0,25-0,8 мм.
В результате получают два компонента для приготовления адсорбента структуры AX.
Синтетический цеолитный адсорбент структуры АХ готовят в смесителе по следующей рецептуре, мас.%:
- компонент № 1 - цеолит 0,92CaO·0,08Na2O·2,0SiO 2·Al2O3·H2O - 78,0;
- компонент № 2 - цеолит 0,84CaO·0,16Na2O·2,5SiO 2·Al2O3·H2O - 22,0.
Таким образом, получен адсорбент структуры AX общей формулы 0,90CaO·0,10Na2O·2,11SiO 2·Al2O3·H2O, у которого 72% кристаллов имеют стереорегулярные поры, равные 0,5 нм, 18% кристаллов имеют стереорегулярные поры, равные 0,8 нм, 6% кристаллов имеют стереорегулярные поры, равные 0,4 нм, и 4% кристаллов имеют стереорегулярные поры, равные 1,0 нм.
Содержание кальция в адсорбенте структуры AX составляет 12,0 мас.% (определено методом атомно-абсорбционной спектроскопии).
Пояснения к лабораторным испытаниям образцов адсорбента структуры AX, полученных согласно примерам 1-14:
1. Перед ионным обменом в гранулах цеолитов A и X определяют массовое содержание кристаллической фазы методом дифференциальной рентгеновской спектроскопии на аппарате ДРОН-4.
2. После ионного обмена в полученном адсорбенте структуры AX, определяют содержание кристаллической фазы методом дифференциальной рентгеновской спектроскопии на аппарате ДРОН-4.
3. Динамическую активность по диоксиду углерода определяют на лабораторной установке из среды атмосферного воздуха (содержание диоксида углерода в воздухе около 400 ppm). Концентрацию диоксида углерода регистрировали газоанализаторами Гамма.
4. Динамическую активность по сероводороду определяют на лабораторной установке из газовой смеси (содержание сероводорода в смеси 500 ppm). Концентрацию сероводорода регистрировали газоанализатором Анкат-7631М и с помощью системы KITAGAWA с применением газоанализаторных трубок.
Примеры результатов лабораторных испытаний заявленного изобретения приведены в таблице 1.
Таблица 1 | |||||
Результаты лабораторных испытаний заявленного изобретения | |||||
№ примера | Механическая прочность, кг/мм2 | Адсорбционная емкость по парам воды, мг/г | Динамическая емкость по CO2, см3/г | Динамическая емкость по H2S, г/100 г | Содержание кальция, мас.% |
1 | 2,8 | 231 | 1,2 | 1,1 | 6,4 |
2 | 2,1 | 237 | 3,7 | 1,5 | 9,5 |
3 | 2,0 | 241 | 8,8 | 2,0 | 11,2 |
4 | 2,5 | 234 | 2,1 | 1,2 | 6,8 |
5 | 2,1 | 231 | 6,5 | 1,7 | 10,1 |
6 | 1,8 | 246 | 9,1 | 1,9 | 11,5 |
7 | 1,7 | 287 | 9,4 | 1,8 | 11,8 |
8 | 1,9 | 303 | 11,5 | 1,5 | 11,6 |
9 | 1,8 | 310 | 12,0 | 1,8 | 11,5 |
10 | 2,5 | 247 | 12,1 | 1,5 | 10,1 |
11 | - | 241 | - | - | 11,7 |
12 | - | 237 | - | - | 12,0 |
13 | 2,2 | 291 | 11,9 | 1,7 | 11,2 |
14 | 1,9 | 248 | 8,8 | 2,1 | 11,9 |
Прототип | 1,2 | 271 | 2,1 | 0,7 | 8,7 |
Достигаемый технический результат по способу
Преимуществом заявляемого способа перед прототипом являются:
- использование в качестве материала для получения адсорбента структуры AX цеолитов NaA и NaX, синтезированных в каолиновых гранулах;
- применение для модификации цеолитов типов A и X 0,5-0,7 N раствора хлорида кальция с концентрацией 3-4% (прототип 15%);
- точное регулирование содержания в адсорбенте соотношения кристаллических фаз А и X;
- получение сорбента структуры AX с увеличенным спектром стереорегулярных пор в 0,4 нм; 0,5 нм; 0,8 нм, 1,0 нм (прототип 0,4 нм и 0,5 нм);
- регулирование соотношения стереорегулярных пор в широких пределах.
Предшествующий уровень техники по синтетическому цеолитному сорбенту структуры AX, получаемому методом модификации цеолитов с кристаллами A и X
В уровне техники до настоящего времени не обнаружено синтетических сорбентов структуры AX, включающих смесь синтетических цеолитов типов СаА и СаХ, кристаллические решетки которых содержат катионы кальция в количестве 6-12 мас.% при следующем соотношении указанных компонентов, мас.%:
синтетический цеолит mCaO·nNa2O·2,0SiO 2·Al2O3·H2O - 5,0-95,0,
синтетический цеолит mCaO·nNa 2O·2,5SiO2·Al2O3 ·H2O - 95,0-5,0 при m, равном 0,08-0,92, и n, равном 0,92-0,08.
Синтетические цеолиты типов СаА и СаХ получаются многостадийной обработкой промышленных синтетических цеолитов типов NaA и NaX, в смеси или раздельно, раствором хлористого кальция согласно примерам 1-14 способа получения цеолитного сорбента структуры AX.
В изобретениях [1] и [2] указаны способы получения синтетических цеолитных сорбентов структуры A и X, включающих смесь синтетических цеолитов типов NaA и NaX.
В изобретении [3] - прототип сорбент CA в кристаллической фазе содержит катионы кальция. Содержание кальция 4-5%. Формула сорбента mCaO·nNa2O·2,0SiO2Al 2O3·H2O.
В изобретении [4] приведеннвй ниже гемостатический агент из кальциевого цеолита СаА также содержит в кристаллической фазе катионы кальция. Содержание кальция 8-11%.
Согласно изобретению [4] [выложенная заявка US № 2005/074505 A1, дата публикации 07.04.2005 г.] сорбционный материал, представляющий собой цеолит, сформованный со связующим веществом - глиной, причем цеолитная композиция имеет отрегулированное содержание кальция - собственно на цеолит приходится 75-83% и на связующее вещество 13-25% кальция (в расчете на общее количество кальциевых и натриевых катионов или около 6 ат.% в композиции). Отрегулированное содержание кальция получают добавлением к исходному цеолиту соединения, содержащего кальций, при этом кальцийсодержащее соединение выбирают из оксидов, сульфатов или хлоридов кальция.
Задачей предлагаемого изобретения по адсорбенту, пригодному для использования в осушке, очистке газов и в получении компонентов для кровоостанавливающих средств, является цеолитный адсорбент структуры AX, состоящий из кристаллических фаз A и X, с регулируемым соотношением стереорегулярных пор 0,5 и 0,8 нм.
Раскрытие изобретения по цеолитному адсорбенту структуры AX
Поставленная задача достигается тем, что адсорбент структуры AX, полученный по способу в примерах 1-14, содержит в узлах кристаллической решетки катионы кальция в количестве 6-12 мас.%, представляет композицию, состоящую из смеси синтетических цеолитов СаА и СаХ, полученную модифицированием хлористым кальцием цеолитов с кристаллами A и X.
Таким образом, из приведенных выше в таблице 1 результатов лабораторных испытаний адсорбентов структуры AX, полученных согласно примерам 1-14, следует, что полученные вещества являются синтетическими цеолитными адсорбентами структуры AX с регулируемым содержанием цеолитных фаз СаА и СаХ. Максимальное массовое содержание кальция в полученном сорбенте структуры AX равно 12%. Механическая прочность гранул сорбентов, определенная на приборе ИПГ-1М, составляет не менее 1,7 кг/мм2 сечения гранулы. Высокая адсорбционная емкость адсорбента AX по парам воды, достигающая 31%, позволяет использовать его для осушки природных газов. Высокая динамическая активность адсорбента AX по диоксиду углерода, составляющая 6,5-12,1 см3/г, позволяет успешно очищать воздух в криогенных процессах. Активность по сероводороду 1,5 г/100 г и более позволяет очищать кислые газы. В примере 14 получена фракция 0,25-0,8 мм с высоким содержанием активного кальция в узлах кристаллической решетки (12%). Полученная в примерах 13 и 14 мелкодисперсная фракция адсорбента структуры AX позволяет использовать его для приготовления композиции местного гемостатического средства, применяемого при остановках кровотечений различного генеза.
Класс C01B39/18 из реакционной смеси, содержащей по меньшей мере один силикат алюминия или алюмосиликат типа глины, например каолин или метакаолин или его экзотермическую модификацию или аллофан
Класс B01J20/18 синтетические цеолитные молекулярные сита