катализатор и способ получения уксусной кислоты или смеси уксусной кислоты и этилацетата

Классы МПК:B01J23/16 мышьяка, сурьмы, висмута, ванадия, ниобия, тантала, полония, хрома, молибдена, вольфрама, марганца, технеция или рения
B01J23/02 щелочных или щелочноземельных металлов или бериллия
B01J21/00 Катализаторы, содержащие элементы, оксиды или гидроксиды магния, бора, алюминия, углерода, кремния, титана, циркония или гафния
C07C51/235 -CHO или первичных спиртовых групп
Автор(ы):, , , ,
Патентообладатель(и):Учреждение Российской Академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН (RU)
Приоритеты:
подача заявки:
2011-05-30
публикация патента:

Изобретение относится к многокомпонентным оксидным ванадий-молибденовым катализаторам, используемым для селективного получения уксусной кислоты или смеси уксусной кислоты и этилацетата. Описаны катализатор и способ получения уксусной кислоты или смеси уксусной кислоты и этилацетата путем окисления этанола кислородсодержащим газом в каталитическом реакторе в его присутствии, при этом катализатор имеет общую формулу: MoaVbNbc TedXeOn, где X - один из следующих элементов либо их смесь: Al, Р, В, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Zr, Pb, Bi, щелочные и щелочноземельные металлы, редкоземельные элементы а=1; b = от 0.01 до 1.0; с = от 0.01 до 1.0; d = от 0 до 1.0; е = от 0 до 1.0; n = числу, которое определяется валентностью и количеством отличных от кислорода элементов в формуле. Технический результат - высокая эффективность катализатора и высокий, до 97%, выход уксусной кислоты или, в зависимости от условий реакции, - высокий, до 94%, суммарный выход смеси уксусной кислоты и этилацетата (мольное соотношение 1÷2:1 соответственно). 2 н. и 7 з.п. ф-лы, 38 пр., 1 табл.

Формула изобретения

1. Катализатор получения уксусной кислоты или смеси уксусной кислоты и этилацетата путем окисления этанола кислородсодержащим газом в каталитическом реакторе на основе оксидов ванадия, отличающийся тем, что катализатор имеет общую формулу MOaV bNbcTedXeOn , где Х - один из следующих элементов либо их смесь:

Al, Р, В, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Zr, Pb, Bi, щелочные и щелочноземельные металлы, редкоземельные элементы;

a=1;

b = от 0,01 до 1,0;

с = от 0,01 до 1,0;

d = от 0 до 1,0;

е = от 0 до 1,0;

n = числу, которое определяется валентностью и количеством отличных от кислорода элементов в формуле.

2. Способ по п.1, отличающийся тем, что катализатор нанесен на твердый носитель.

3. Способ по п.2, отличающийся тем, что твердый носитель выбран из группы:

оксид кремния, оксид алюминия, оксид титана либо их смесь.

4. Способ по п.2, отличающийся тем, что твердый носитель составляет от 20 до 80% от общего веса катализатора.

5. Способ получения уксусной кислоты или смеси уксусной кислоты и этилацетата путем окисления этанола кислородсодержащим газом в каталитическом реакторе, отличающийся тем, что процесс проводят в присутствии катализатора по любому из пп.1-4.

6. Способ по п.5, отличающийся тем, что каталитический реактор - это реактор с неподвижным слоем катализатора.

7. Способ по п.5, отличающийся тем, что каталитический реактор - это реактор с псевдоожиженным слоем катализатора.

8. Способ по п.5, отличающийся тем, что в качестве кислородсодержащего газа используется воздух.

9. Способ по п.5, отличающийся тем, что процесс проводят в присутствии паров воды.

Описание изобретения к патенту

Изобретение относится к области органического синтеза, а именно к способу получения уксусной кислоты либо смеси уксусной кислоты и этилацетата газофазным каталитическим окислением этанола кислородом воздуха, а также катализаторам для его осуществления.

Уксусная кислота является одним из важнейших продуктов химической промышленности. Общемировые мощности по ее производству достигают 16 млн тонн в год. Она широко используется в качестве растворителя, например, при получении ацетатов целлюлозы и ацетатных волокон, как реагент для получения сложных эфиров, как реакционная среда для проведения окисления различных органических веществ (например, в промышленности - окисление параксилола кислородом в терефталевую кислоту), в качестве сырья для производства уксусного ангидрида, для получения таких мономеров, как винилацетат и др., а также в пищевой промышленности, технике, книгопечатании, крашении и т.д.

До 1950-х годов техническая уксусная кислота производилась путем сухой перегонки древесины. Затем основными методами получения синтетической уксусной кислоты стали окисление ацетальдегида и н-бутана. Ацетальдегид, обычно получаемый из этилена (Вакер-процесс), окисляют в присутствии ацетата марганца при повышенной температуре и давлении. Окисление н-бутана проводят при температуре 150-200°С и давлении 150 атм. Катализатором этого процесса является ацетат кобальта. Разрабатывается также новый метод прямого газофазного окисления этилена в уксусную кислоту кислородом на гетерогенном палладиевом катализаторе (Applied Catalysis A: General, 2008, 350, p.103-110). Однако указанные способы базируются на окислении продуктов крекинга нефти. При повышении цен на углеводородное сырье они становятся экономически невыгодными и вытесняются каталитическим карбонилированием метанола монооксидом углерода. В последнем способе в качестве исходного сырья используют синтез-газ, получаемый из угля или метана. Согласно методике компании Monsanto, это гомогенный жидкофазный процесс, в котором используются комплексы родия в качестве катализатора, а также йодид-ионы в качестве промотора. Реакцию проводят при температуре 170-200°С и давлении 30 атм. В настоящее время карбонилированием метанола получают более половины всей производимой в мире уксусной кислоты.

Альтернативно в пищевой промышленности применяют биохимический способ получения уксусной кислоты (уксуснокислое брожение). В качестве сырья используют этанолсодержащие жидкости (вино, забродившие соки). Однако себестоимость такой уксусной кислоты намного выше синтетической.

В связи с наметившейся тенденцией широкого использования биоэтанола, производимого в промышленных масштабах (в мире около 50 млн тонн в год) из возобновляемого растительного сырья, в качестве перспективного альтернативного сырья для получения уксусной кислоты следует рассматривать этанол. Поскольку биохимический метод (см. выше) для химической промышленности нерентабелен, многообещающим является каталитическое окисление этанола кислородом до уксусной кислоты в жидкофазном или газофазном режиме. Проблемой является поиск высокоэффективных катализаторов.

Прототипом предлагаемого способа получения уксусной кислоты являются процессы превращения этанола в уксусную кислоту в газофазном режиме на гетерогенных катализаторах [US 5840971, С07С 51/235, 24.11.1998; заявка WO 2008110468 A1, С07С 51/235, 29.02.2008]. В качестве катализатора используют ванадий-титановые катализаторы (V2O 5-TiO2) или их аналоги - V2O 5-ZrO2, V2O5-SnO2 , V2O5-Al2O3, с допирующими добавками или без таковых. К допирующим добавкам относятся Na, K, Rb, Cs, Mg, Са, а также оксиды В, Si, Hf, Nb, W, Ce, Mo, Sb, Cr и др. элементов. Катализаторы синтезируют путем пропитки твердого носителя - TiO2 (ZrO2, SnO2, Al2O3) оксалатом ванадила с последующим добавлением допирующих элементов путем пропитки растворами соответствующих солей или осаждением. После этого сырой катализатор высушивают со связующим или без него и прокаливают при 500°С. Реакцию окисления этанола проводят при несколько повышенном давлении (1,7-6 атм) при температуре 180-200°С. Выход уксусной кислоты в лучших примерах достигает 89%.

Недостатком приведенного выше способа является неполная конверсия этанола (85-92%) при достижении максимального выхода уксусной кислоты. Это приводит к необходимости разделения реакционной смеси на исходный спирт и уксусную кислоту. Попытка увеличить конверсию этанола приводит к заметному понижению выхода уксусной кислоты вследствие образования продуктов глубокого окисления или деструкции (СО2, СО, H2O, CH4).

Данное изобретение относится к технологии производства уксусной кислоты и этилацетата, более конкретно к катализатору и способу получения уксусной кислоты и этилацетата методом газофазного селективного окисления этанола кислородом с использованием в качестве катализаторов ванадий-молибденовых оксидов с модифицирующими добавками.

В первую очередь изобретение решает задачу увеличения эффективности получения уксусной кислоты. При полной конверсии этанола селективность реакции по уксусной кислоте достигает более 90% (выход >90%). При этом в качестве побочных образуются лишь легко отделяемые газообразные продукты (CH4, CO, СО2, в некоторых случаях С2Н4) и вода. Более того, в зависимости от условий реакции, а именно от температуры проведения процесса, основным продуктом может быть смесь этилацетата и уксусной кислоты. Это представляет самостоятельный интерес, поскольку этилацетат относится к продуктам крупнотоннажного химического производства, который получают этерификацией уксусной кислоты этиловым спиртом. К тому же в химическом производстве его часто используют в смеси с уксусной кислотой, например при получении ацетатов целлюлозы. При необходимости смесь этилацетата и уксусной кислоты может быть разделена простой перегонкой, причем в этом случае легко выделяется безводная уксусная кислота, т.к. этилацетат и вода образуют более низкокипящую азеотропную смесь.

Данная задача решается с проведением процесса селективного окисления этанола кислородом на многокомпонентном оксидном катализаторе общей формулы:

MoaVbNb cTedXeOn,

где Х - один из следующих элементов либо их смесь:

Al, Р, В, Ti, Cr, Mn, Fe, Co, Ni, Сu, Zn, Ga, Zr, Pb, Bi, щелочные и щелочноземельные металлы, редкоземельные элементы;

а=1;

b = от 0.01 до 1.0;

с = от 0.01 до 1.0;

d = от 0 до 1.0;

е = от 0 до 1.0;

n = число, которое определяется валентностью и количеством отличных от кислорода элементов в формуле.

Задача решается также способом получения уксусной кислоты или смеси уксусной кислоты и этилацетата путем окисления этанола молекулярным кислородом в проточном реакторе в присутствии описанного выше катализатора.

Согласно настоящему изобретению в реактор подают газообразную смесь этанола с кислородсодержащим газом. Таким газом может быть воздух либо смесь кислорода с такими газами, как азот, гелий, углекислый газ, водяной пар.

Реакцию окисления этанола проводят при температуре 100-500°С, предпочтительно при 150-350°С, при давлении от 1 до 50 атм, предпочтительно от 1 до 10 атм.

Концентрация этанола в исходной смеси может варьироваться от 0.5 до 25%, предпочтительно от 1 до 20%.

Существенным является создание оптимальной структуры активного компонента катализатора. Задача повышения эффективности многокомпонентного оксидного катализатора решается созданием необходимой активной фазы в процессе его приготовления. Этот факт был проверен экспериментально - наиболее активные катализаторы получают при соблюдении определенных методик, характерных для приготовления многокомпонентных ванадий-молибденовых катализаторов, используемых, например, в окислительном аммонолизе пропана [US 5380933, С07С 51/215, 10.01.1995], см. также Applied Catalysis A: General, 2007, 328, p.195-200.

В данном изобретении каталитическая активность характеризуется селективностью по уксусной кислоте, этилацетату, а также степенью превращения (конверсией) этанола и выходом уксусной кислоты или смеси уксусной кислоты и этилацетата. Условное время контакта (сек·г/мл) определяется как отношение веса катализатора в граммах к расходу исходной газообразной реакционной смеси в мл/сек.

Каталитическую активность образцов в реакции окисления этанола определяют в реакторе проточного типа в интервале температур 150-350°С при содержании в исходной реакционной смеси этанола от 1 до 20 об.%, кислорода 2-40%, водяного пара 0-40%, остальное - гелий или азот при различных временах контакта. В зависимости от температуры проведения реакции, основными продуктами окисления этанола и сопутствующих превращений являются 1,1-диэтоксиэтан, ацетальдегид, этилацетат, уксусная кислота, оксиды углерода (СО, CO2), этилен и метан.

Приготовление многокомпонентных ванадий-молибденовых катализаторов осуществляют согласно следующей стандартной методике. Катализаторы готовят используя коммерчески доступные (NH4)6Mo 7O24·4H2O, NH4VO 3, Н6ТеО6, NbCl5 и модифицирующие элементы из соответствующих оксидов, гидроксидов или солей. Водные суспензии сушат на распылительной сушилке и затем прокаливают последовательно в потоке воздуха и инертного газа.

Катализатор может быть нанесен на твердый носитель (от 20 до 80% от общего веса катализатора), который может быть выбран из группы: оксид кремния, оксид алюминия, оксид титана либо их смесь.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1

Катализатор состава MoV 0.3Te0.23Nb0.12On готовят следующим образом: парамолибдат аммония (34.3 г) растворяют в 300 мл дистиллированной воды при температуре 80°С и интенсивном перемешивании. При растворении получают прозрачный бесцветный раствор с рН 5.3. В водный раствор парамолибдата аммония добавляют 10.25 г Н6ТеО6. В прозрачный бесцветный бинарный раствор (рН 5.0) добавляют 6.8 г метаванадата аммония. Полученную суспензию перемешивают при нагревании до полного растворения метаванадата аммония. Тройной прозрачный раствор оранжевого цвета охлаждают до 40°С (рН 6.4). К тройному раствору прибавляют 50.7 мл раствора оксалата Nb с концентрацией 42.7 мг Nb/мл, который готовят по следующей методике. 50 г NbCl5 растворяют в 600 мл дистиллированной воды. К полученной суспензии добавляют 70 мл концентрированного водного раствора аммиака NH4 OH до достижения рН 7. Осадок белого цвета отфильтровывают и отмывают от ионов хлора до отрицательной пробы на хлорид-ион с нитратом серебра. Отмытый осадок количественно переносят в стакан, добавляют 400 мл воды, 70 г щавелевой кислоты (H 2C2O4·2H2O) и перемешивают полученную смесь при комнатной температуре до получения прозрачного раствора. Концентрация ниобия 42.7 мг/мл.

Полученный четырехкомпонентный гель (рН 3) распыляют на распылительной сушилке. Температура на входе 220°С, на выходе 110°С. Высушенный продукт таблетируют, дробят и отсеивают фракцию 0.5-0.25 мм. Сухой прекурсор сначала прокаливают в токе воздуха при 220-320°С, постепенно увеличивая температуру, затем в токе азота при 600°С в течение двух часов. В итоге получают около 50 г катализатора состава MoV0.3Те0.23Nb0.12O n.

Полученный катализатор в количестве 0.5 г загружают в проточный реактор с неподвижным слоем катализатора, через который пропускают реакционную смесь, содержащую, об.%: 2 этанола, 18 кислорода, остальное - азот. Условное время контакта 0.5 сек·г/мл, температура в реакторе 260°С. Конверсия этанола 100%, селективность по уксусной кислоте 92%, селективность по продуктам глубокого окисления и деструкции (СН4 , СО, СО2) ~ 8%.

Выход уксусной кислоты составляет 92%.

Пример 2

Аналогичен примеру 1 с тем отличием, что температура в реакторе понижена до 220°С. Конверсия этанола 99%, селективность по уксусной кислоте 65%, селективность по этилацетату 30%, селективность по продуктам глубокого окисления и деструкции (СН4 , СО, CO2) ~ 5%. Выход уксусной кислоты составляет 64%.

Суммарный выход уксусной кислоты и этилацетата (~2:1 моль/моль) 94%.

Пример 3

Аналогичен примеру 1 с тем отличием, что температура в реакторе понижена до 205°С. Конверсия этанола 97%, селективность по уксусной кислоте 50%, селективность по этилацетату 42%, селективность по ацетальдегиду 1%, селективность по продуктам глубокого окисления и деструкции (CH4, СО, СО2) ~ 7%. Выход уксусной кислоты составляет 49%.

Суммарный выход уксусной кислоты и этилацетата (~1:1 моль/моль) 89%.

Пример 4

Аналогичен примеру 1 с тем отличием, что исходная реакционная смесь содержит, об.%: 2 этанола, 18 кислорода, 10 водяного пара, остальное - гелий. При температуре в реакторе 255°С конверсия этанола достигает 100%, селективность по уксусной кислоте 91%, селективность по продуктам глубокого окисления и деструкции (СН4, СО, CO2) ~ 9%.

Выход уксусной кислоты составляет 91%.

Пример 5

Аналогичен примеру 1 с тем отличием, что исходная реакционная смесь содержит, об.%: 15 этанола, 18 кислорода, остальное - гелий. При температуре в реакторе 288°С конверсия этанола 100%, селективность по уксусной кислоте 86%, селективность по этилацетату 7%, селективность по продуктам глубокого окисления и деструкции (C2H4, CR4 , СО, СО2) ~ 7%.

Выход уксусной кислоты составляет 86%.

Пример 6

Аналогичен примеру 1 с тем отличием, что катализатор нанесен на твердый носитель - оксид кремния. Состав катализатора: 50% (MoV0.3 Te0.23Nb0.12On)/50% SiO 2. Полученный катализатор в количестве 0.5 г загружают в проточный реактор, через который пропускают реакционную смесь, содержащую, об.%: 2 этанола, 18 кислорода, остальное - гелий. Условное время контакта 0.5 сек·г/мл, температура в реакторе 260°С. Конверсия этанола 99%, селективность по уксусной кислоте 92%, селективность по продуктам глубокого окисления и деструкции (CH4, CO, CO2) ~ 8%.

Выход уксусной кислоты составляет 91%.

Пример 7

Аналогичен примеру 1 с тем отличием, что катализатор нанесен на твердый носитель - оксид алюминия. Состав катализатора: 20% (MoV0.3Te0.23Nb0.12O n)/80% Al2O3. Полученный катализатор в количестве 0.5 г загружают в проточный реактор, через который пропускают реакционную смесь, содержащую, об.%: 2 этанола, 18 кислорода, остальное - гелий. Условное время контакта 0.5 сек·г/мл, температура в реакторе 260°С. Конверсия этанола 98%, селективность по уксусной кислоте 85%, селективность по продуктам глубокого окисления и деструкции (СН4, СО, CO2) ~ 15%.

Выход уксусной кислоты составляет 83.3%.

Пример 8

Аналогичен примеру 1 с тем отличием, что катализатор нанесен на твердый носитель - оксид титана. Состав катализатора: 80% (MoV0.3Te0.23 Nb0.12On)/20% TiO2. Полученный катализатор в количестве 0.5 г загружают в проточный реактор, через который пропускают реакционную смесь, содержащую, об.%: 2 этанола, 18 кислорода, остальное - гелий. Условное время контакта 0.5 сек·г/мл, температура в реакторе 260°С. Конверсия этанола 99%, селективность по уксусной кислоте 89%, селективность по продуктам глубокого окисления и деструкции (СН4 , СО, CO2) ~ 11%.

Выход уксусной кислоты составляет 88.1%.

Пример 9

Аналогичен примеру 1 с тем отличием, что реакцию проводят в реакторе с псевдоожиженным слоем катализатора. Температура в реакторе 290°С. Конверсия этанола 100%, селективность по уксусной кислоте 90%, селективность по продуктам глубокого окисления и деструкции (CH4 , CO, СО2) ~ 10%.

Выход уксусной кислоты составляет 90%.

Пример 10

Аналогичен примеру 1 с тем отличием, что реакцию проводят при давлении 30 атм. Температура в реакторе 295°С. Конверсия этанола 99%, селективность по уксусной кислоте 88%, селективность по продуктам глубокого окисления и деструкции (СН4, СО, CO 2) ~ 12%.

Выход уксусной кислоты составляет 87.1%.

Пример 11

Аналогичен примеру 1 с тем отличием, что используют катализатор состава MoV 0.2Te0.17Nb0.17On. Катализатор готовят аналогично процедуре, описанной в примере 1, смешивая раствор парамолибдата аммония (34.27 г в 300 мл воды) с 7.57 г Н6ТеО6 и затем с 4.54 г метаванадата аммония с последующим прибавлением 71.83 мл раствора оксалата Nb (концентрация Nb 42.7 мг/мл). При температуре в реакторе 260°С конверсия этанола достигает 100%, селективность по уксусной кислоте 90%, селективность по продуктам глубокого окисления и деструкции (СН4, СО, CO2) ~ 10%.

Выход уксусной кислоты составляет 90%.

Пример 12

Аналогичен примеру 1 с тем отличием, что используют катализатор состава MoV0.3Те0.23Nb 0.12Ca0.075On. Катализатор готовят так же, как в примере 1, но перед высушиванием добавляют к четырехкомпонентному гелю 3.44 г Са(NO3)2·4H2 O. При температуре в реакторе 305°С конверсия этанола достигает 100%, селективность по уксусной кислоте 94%, селективность по этилацетату 2%, селективность по продуктам глубокого окисления и деструкции (СН4, СО, CO2) ~ 4%.

Выход уксусной кислоты составляет 94%.

Пример 13

Аналогичен примеру 7 с тем отличием, что испытание катализатора осуществляют при времени контакта 2 сек·г/мл и температуре 250°С. Конверсия этанола 100%, селективность по уксусной кислоте 97%, селективность по продуктам глубокого окисления и деструкции (СН4, СО, СО2) ~ 3%.

Выход уксусной кислоты составляет 97%.

Пример 14

Аналогичен примеру 1 с тем отличием, что используют катализатор состава MoV0.3 Те0.23Nb0.12Ca0.1Bi0.01 On. Катализатор готовят так же, как в примере 1, но перед высушиванием добавляют к четырехкомпонентному гелю 4.58 г Ca(NO3)2·4H2O и 0.94 г Bi(NO3)3·5H2O. При температуре в реакторе 300°С конверсия этанола достигает 100%, селективность по уксусной кислоте 94%, селективность по этилацетату 2%, селективность по продуктам глубокого окисления и деструкции (СН4 , СО, СО2) ~ 4%.

Выход уксусной кислоты составляет 94%.

Пример 15

Аналогичен примеру 1 с тем отличием, что используют катализатор состава MoV0.3Nb0.37On. Катализатор готовят так же, как в примере 1, смешением растворов парамолибдата аммония (34.27 г в 300 мл воды) с 4.54 г метаванадата аммония и 156 мл раствора оксалата Nb. При температуре в реакторе 275°С конверсия этанола достигает 100%, селективность по уксусной кислоте 83%, селективность по этилацетату 3%, селективность по продуктам глубокого окисления и деструкции (CH4, С2 Н4, СО, СО2) ~ 14%.

Выход уксусной кислоты составляет 83%.

Пример 16

Аналогичен примеру 1 с тем отличием, что используют катализатор состава MoV0.43Nb0.24O n. Катализатор готовят так же, как в примере 1, смешением растворов парамолибдата аммония (34.27 г в 300 мл воды) с 9.76 г метаванадата аммония и 101.4 мл раствора оксалата Nb. При температуре в реакторе 315°С конверсия этанола достигает 100%, селективность по уксусной кислоте 66%, селективность по этилацетату 2%, селективность по продуктам глубокого окисления и деструкции (СН4 , СО, СО2) ~ 4%, селективность по этилену ~ 28%.

Выход уксусной кислоты составляет 66%.

Пример 17

Аналогичен примеру 1 с тем отличием, что используют катализатор состава MoV0.1Nb0.48 On. Катализатор готовят согласно методике, приведенной в примерах 1, 10 и 11, смешением растворов парамолибдата аммония, метаванадата аммония и раствора оксалата Nb в соответствующих пропорциях. При температуре 340°С конверсия этанола достигает 100%, селективность по уксусной кислоте 33%, селективность по ацетальдегиду, этилацетату и продуктам глубокого окисления и деструкции (СН4, С2Н4, СО, CO 2) ~ 67%.

Выход уксусной кислоты составляет 33%.

Примеры 18-38

Аналогичны примеру 1 с тем отличием, что используют катализаторы состава MoV 0.3Те0.23Nb0.12XeO n, где Х - один из следующих элементов либо их смесь: Al, P, В, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Zr, Pb, Bi, щелочные и щелочноземельные металлы, редкоземельные элементы. В таблице 1 приведены составы использующихся катализаторов и результаты их испытаний в реакции окисления этанола.

катализатор и способ получения уксусной кислоты или смеси уксусной   кислоты и этилацетата, патент № 2462307

Как видно из ряда примеров (особенно показательны примеры 1-9), заявляемые катализаторы характеризуются высокой эффективностью в реакции парциального окисления этанола до уксусной кислоты или смеси этилацетата и уксусной кислоты. При полном превращении этанола селективность реакции по уксусной кислоте достигает 97%, остаток - легко отделяемые газообразные СН4, СО и CO2. Более того, пример 5 характеризует высокую производительность работы многокомпонентного оксидного катализатора (2.5 г уксусной кислоты на 1 г катализатора в час) и возможность использования исходной реакционной смеси со значительным содержанием этанола, что важно как с точки зрения экономичности, так и безопасности проведения реакции. К тому же за счет понижения температуры реакции и незначительного понижения конверсии этанола до 97-99% может быть получена смесь этилацетата и уксусной кислоты (~1:1÷2 моль/моль соответственно) с суммарным выходом до 94%.

Класс B01J23/16 мышьяка, сурьмы, висмута, ванадия, ниобия, тантала, полония, хрома, молибдена, вольфрама, марганца, технеция или рения

способ получения ультранизкосернистых дизельных фракций -  патент 2528986 (20.09.2014)
катализатор для получения этилбензола из бензола и этана и способ получения этилбензола с его использованием -  патент 2514948 (10.05.2014)
способ изготовления каталитически активных геометрических формованных изделий -  патент 2495719 (20.10.2013)
способ изготовления каталитически активных геометрических формованных изделий -  патент 2495718 (20.10.2013)
способ окислительного аммонолиза или окисления пропана и изобутана -  патент 2495024 (10.10.2013)
улучшенный способ селективного удаления пропионовой кислоты из потоков (мет)акриловой кислоты -  патент 2491271 (27.08.2013)
селективный катализатор для конверсии ароматических углеводородов -  патент 2491121 (27.08.2013)
катализатор для непрерывного окислительного дегидрирования этана и способ непрерывного окислительного дегидрирования этана с его использованием -  патент 2488440 (27.07.2013)
способ получения фотокатализатора для разложения органических загрязнителей -  патент 2478430 (10.04.2013)
способ непрерывного получения металлооксидного катализатора и аппарат для его осуществления -  патент 2477653 (20.03.2013)

Класс B01J23/02 щелочных или щелочноземельных металлов или бериллия

способ дегидрирования циклогексанола в циклогексанон -  патент 2525551 (20.08.2014)
способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале -  патент 2525543 (20.08.2014)
фотокаталитические композиционные материалы, содержащие титан и известняк без диоксида титана -  патент 2516536 (20.05.2014)
катализатор для получения бутадиена превращением этанола -  патент 2514425 (27.04.2014)
способ одновременного получения ароматических углеводородов и дивинила в присутствии инициатора пероксида водорода -  патент 2509759 (20.03.2014)
катализатор, способ его приготовления (варианты) и способ очистки отходящих газов от оксидов азота -  патент 2480281 (27.04.2013)
катализатор риформинга углеводородов и способ получения синтез-газа с использованием такового -  патент 2475302 (20.02.2013)
способ получения алкоксилированных алкиламинов/алкиловых эфиров аминов с узким распределением -  патент 2460720 (10.09.2012)
катализатор, способ его получения (варианты) и способ жидкофазного алкилирования изобутана олефинами c2-c4 в его присутствии -  патент 2457902 (10.08.2012)
способ получения наноигольчатых катализаторов окислительно-восстановительных процессов на основе оксидных вольфрамовых бронз -  патент 2456079 (20.07.2012)

Класс B01J21/00 Катализаторы, содержащие элементы, оксиды или гидроксиды магния, бора, алюминия, углерода, кремния, титана, циркония или гафния

способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
способ получения ультранизкосернистых дизельных фракций -  патент 2528986 (20.09.2014)
способ получения этилена -  патент 2528830 (20.09.2014)
способ получения композиционных материалов на основе диоксида кремния -  патент 2528667 (20.09.2014)
катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
катализатор получения элементной серы по процессу клауса, способ его приготовления и способ проведения процесса клауса -  патент 2527259 (27.08.2014)
способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале -  патент 2525543 (20.08.2014)
состав шихты для высокопористого керамического материала с сетчато-ячеистой структурой -  патент 2525396 (10.08.2014)
катализатор для получения синтетических базовых масел и способ его приготовления -  патент 2525119 (10.08.2014)
способ конверсии оксидов углерода -  патент 2524951 (10.08.2014)

Класс C07C51/235 -CHO или первичных спиртовых групп

способ получения высокочистой метакриловой кислоты -  патент 2501782 (20.12.2013)
способ получения водного раствора глиоксиловой кислоты -  патент 2481322 (10.05.2013)
способ введения в эксплуатацию парциального газофазного окисления акролеина в акриловую кислоту или метакролеина в метакриловую кислоту на гетерогенном катализаторе -  патент 2479569 (20.04.2013)
катализатор и способ получения ненасыщенного альдегида и ненасыщенной карбоновой кислоты -  патент 2471554 (10.01.2013)
способ получения алкилполигликолькарбоновых кислот и полигликольдикарбоновых кислот путем прямого окисления -  патент 2464255 (20.10.2012)
способ получения, по меньшей мере, одного целевого продукта путем частичного окисления и/или окисления в аммиачной среде пропилена -  патент 2448946 (27.04.2012)
способ долговременного проведения гетерогенного каталитического частичного газофазного окисления исходного органического соединения -  патент 2447053 (10.04.2012)
способ получения лактобионовой кислоты -  патент 2439050 (10.01.2012)
способ получения по меньшей мере одного целевого органического соединения гетерогенно катализируемым парофазным частичным окислением -  патент 2430910 (10.10.2011)
способ селективного окисления d-глюкозы -  патент 2423344 (10.07.2011)
Наверх