способ получения метанола
Классы МПК: | C07C31/04 метиловый спирт C07C29/151 водородом или водородсодержащими газами |
Автор(ы): | Тимербаев Наиль Фарилович (RU), Зиатдинова Диляра Фариловна (RU), Сафин Руслан Рушанович (RU), Сафин Рушан Гареевич (RU), Хисамеева Альбина Рашидовна (RU), Садртдинов Алмаз Ринатович (RU), Ахметова Дина Анасовна (RU), Бадрутдинов Марсель Булатович (RU), Шабаева Гузель Анасовна (RU), Ширяева Лилиана Викторовна (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технологический университет" (RU) |
Приоритеты: |
подача заявки:
2012-02-28 публикация патента:
10.04.2013 |
Настоящее изобретение относится к способу получения метанола путем контактирования питающего потока, обогащенного водородом и монооксидом углерода, в реакторе с катализатором синтеза метанола с получением технологического потока, с последующим его охлаждением, конденсацией и сепарацией на газовую фазу и жидкую фазу с сырым метанолом. При этом в качестве питающего потока используют очищенный газ, полученный прямоточной газификацией отходов деревообработки, обогащение питающего потока водородом осуществляют за счет регулируемого электролиза оборотной воды, перед контактированием питающего потока с катализатором, содержащим в мас.%: оксид меди 62, оксид цинка 31, оксид алюминия 7, осуществляют его компримирование до давления 4,5÷5 МПа и разделение на два потока, при этом один поток направляют в реактор на катализатор для контактирования через теплообменник, который одновременно охлаждает технологический поток, а другой поток направляют на катализатор для контактирования и поддержания температуры реакции 250÷270°С, после окончательного охлаждения технологического потока в кубовом остатке дистиллятора ведут его сепарацию дросселированием на газовую и жидкую фазы, газовую фазу после сепарации делят на два потока, при этом один поток направляют на окисление в прямоточный газификатор, а второй поток смешивают с питающим потоком перед компримированием. Предлагаемое изобретение позволяет безотходным способом получить целевой продукт при использовании одного легкодоступного катализатора. 1 ил.
Формула изобретения
Способ получения метанола путем контактирования питающего потока, обогащенного водородом и монооксидом углерода, в реакторе с катализатором синтеза метанола с получением технологического потока, с последующим его охлаждением, конденсацией и сепарацией на газовую фазу и жидкую фазу с сырым метанолом, отличающийся тем, что в качестве питающего потока используют очищенный газ, полученный прямоточной газификацией отходов деревообработки, обогащение питающего потока водородом осуществляют за счет регулируемого электролиза оборотной воды, перед контактированием питающего потока с катализатором, содержащим, мас.%: оксид меди 62, оксид цинка 31, оксид алюминия 7, осуществляют его компримирование до давления 4,5÷5 МПа и разделение на два потока, при этом один поток направляют в реактор на катализатор для контактирования через теплообменник, который одновременно охлаждает технологический поток, а другой поток направляют на катализатор для контактирования и поддержания температуры реакции 250÷270°С, после окончательного охлаждения технологического потока в кубовом остатке дистиллятора ведут его сепарацию дросселированием на газовую и жидкую фазы, газовую фазу после сепарации делят на два потока, при этом один поток направляют на окисление в прямоточный газификатор, а второй поток смешивают с питающим потоком перед компримированием.
Описание изобретения к патенту
Изобретение относится к способу получения метанола из водорода и монооксида углерода и может быть использовано в химической промышленности.
Известен способ производства метанола, в котором смешивают синтез-газ с циркуляционным газом, полученную газовую смесь нагревают в рекуперативном теплообменнике, пропускают через дополнительно установленный предварительный адиабатический реактор для частичного синтеза метанола с повышением температуры, полученную реакционную смесь охлаждают в утилизационном теплообменнике до температуры начала реакции в первом слое основного реактора синтеза метанола, прореагировавший газ охлаждают, выделяют сконденсированный метанол-сырец и ведут разделение несконденсированного газового потока на возвратный и продувочный, возвратный поток сжимают в циркуляционном компрессоре и подают на смешение с синтез-газом, продувочный газ выводят из системы, см. Патент RU № 2289566, МПК С07С 29/151 (2006.01), С07С 31/04 (2006.01), B07J 8/06 (2006.01), 2005.
Описанный способ требует больших материальных затрат из-за наличия двух дорогостоящих реакторов: адиабатического и основного, и двух теплообменников: рекуперативного и утилизационного, также недостатком является вывод из системы продувочного газа.
Известен также способ производства метанола, включающий смешение основного потока синтез-газа с циркуляционным газом, деление полученной смеси на два потока, нагревание одного из потоков до начальной температуры синтеза. Нагретый поток подают на вход первого слоя катализатора, а холодный поток разделяют на потоки и направляют в реактор в виде холодных байпасов между слоями катализатора. Далее прореагировавший газ охлаждают, выделяют сконденсированный метанол-сырец, а несконденсированный газовый поток разделяют на продувочный газ, который выводится из системы, и поток газа, который сжимают в компрессоре и направляют на циркуляцию. В существующие байпасы двух последних слоев катализатора дополнительно вводят поток синтез-газа, см. Патент RU № 2291851, МПК С07С 31/04 (2006.01), С07С 29/151 (2006.01), 2005.
Недостатками данного способа является сложность технологического процесса за счет наличия большого количества операций по разделению потоков, а также выделение из системы продувочного газа.
Наиболее близким к предлагаемому способу является способ получения метанола путем контактирования питающего потока, обогащенного водородом и монооксидом углерода, с катализатором с получением технологического потока с последующим его охлаждением, конденсацией, сепарацией на газовую и жидкую фазу с сырым метанолом, в котором технологический поток, содержащий побочные продукты и полученный в результате контактирования питающего потока с катализатором, являющимся активным в реакции превращения водорода и монооксида углерода в метанол, охлаждают в холодильнике до температуры между 20 и 200°С, затем ведут его контактирование с катализатором гидрогенизации на основе благородного металла или содержащего 10-95 мас.% меди, являющимся активным в реакции гидрогенизации таких побочных продуктов как альдегиды и кетоны, а после контактирования технологический поток охлаждают водным охладителем или во втором холодильнике, ведут его конденсацию и сепарацию с последующим разделением на газовую фазу и жидкую фазу с сырым метанолом, см. Патент RU № 2345056, МПК С07С 31/04 (2006.01), С07С 29/151 (2006.01), С07С 27/06 (2006.01), С07С 29/145 (2006.01), 2003.
Недостатками данного способа являются сложность технологического процесса за счет использования дополнительного катализатора гидрогенизации, возможно, с использованием благородных металлов, который может катализировать дополнительные реакции образования метана, и высокая стоимость за счет наличия двух холодильников, к тому же после отделения метанола газовую фазу, возможно, выводят в атмосферу.
Задачей изобретения является создание безотходного способа получения метанола при использовании одного легкодоступного катализатора.
Техническая задача решается способом получения метанола путем контактирования питающего потока, обогащенного водородом и монооксидом углерода, в реакторе с катализатором синтеза метанола с получением технологического потока, с последующим его охлаждением, конденсацией и сепарацией на газовую фазу и жидкую фазу с сырым метанолом, в котором в качестве питающего потока используют очищенный газ, полученный прямоточной газификацией отходов деревообработки, а обогащение питающего потока водородом осуществляют за счет регулируемого электролиза оборотной воды, перед контактированием питающего потока с катализатором, содержащим в мас.%: оксид меди 62, оксид цинка 31, оксид алюминия 7, осуществляют его компримирование до давления 4,5-5 МПа и разделение на два потока, при этом один поток направляют в реактор на катализатор для контактирования через теплообменник, который одновременно охлаждает технологический поток, а другой поток направляют на катализатор для контактирования и поддержания температуры реакции 250-270°С, после окончательного охлаждения технологического потока в кубовом остатке дистиллятора ведут его сепарацию дросселированием на газовую и жидкую фазы, газовую фазу после сепарации делят на два потока, при этом один поток направляют на окисление в прямоточный газификатор, а второй поток смешивают с питающим потоком перед компримированием.
Решение технологической задачи позволит получать метанол в процессе безотходного производства при использовании одного легкодоступного катализатора.
Способ осуществляют следующим образом, см. Фиг.1: питающий поток, полученный прямоточной газификацией отходов деревообработки в газогенераторе 1, очищенный от золы и частиц углерода сначала в циклоне 2, а затем в скруббере 3 и обогащенный водородом за счет регулируемого электролиза оборотной воды из сборника 17 и монооксидом углерода в смесителе 4, с помощью газодувки 5 накапливают в газгольдере 6, на выходе из которого компримируют до давления 4,5-5 МПа (см. поз. 7 - компрессор), и разделяют на два потока: при этом один поток направляют в реактор 11 для контактирования на катализатор 10, содержащий в мас.%: оксид меди 62, оксид цинка 31, оксид алюминия 7, через теплообменник, который одновременно охлаждает технологический поток, а другой поток направляют на катализатор 10 для контактирования и поддержания температуры реакции 250-270°С. Перегрев реактора контролируют датчиком температуры 9, а подачу одного из потоков фиксируют регулятором 8. После окончательного охлаждения технологического потока в кубовом остатке дистиллятора 14 ведут его сепарацию на газовую фазу и жидкую фазу с сырым метанолом с помощью дросселирующего устройства 16.
После сепарации газовую фазу делят на два потока: при этом один поток поступает на окисление в прямоточный газификатор 1, а второй поток смешивают с питающим потоком перед компримированием.
Жидкую фазу с сырым метанолом из сепаратора 15 подают в дистиллятор 14, где разделяют на метанол и воду. Пары, поднимающиеся в верхнюю часть колонны, охлаждаются и конденсируются, попадая обратно на верхнюю тарелку колонны в качестве орошения. Таким образом, в верхней части колонны 14 противотоком движутся пары (снизу вверх) и стекает жидкость (сверху вниз). Продукт, отводимый с верха колонны, направляют в конденсатор 12, откуда жидкий метанол поступает в сборник метанола 13, а образовавшиеся пары подают обратно в колонну 14.
Воду из кубового остатка колонны 14 направляют в сборник оборотной воды 17, откуда насосом 18 подают в электролизер 20, где происходит разделение на водород и кислород. Кислород подают в смеситель 23 для подачи в газогенератор 1, а водород - в смеситель 4 к питающему потоку. Соотношение водорода и легких углеводородов в питающем потоке контролируют с помощью газоанализатора 21, данные которого взаимосвязаны с регулятором производительности электролизера 19. Подачу легких углеводородов фиксируют регулятором 24.
Для осуществления процесса прямоточной газификации в качестве газифицирующего агента используют воздух, обогащенный кислородом, подаваемый газодувкой через сепаратор воздуха (обогатитель воздуха кислородом) 22.
Зола из газогенератора 1 и циклона 2 поступает в золосборник.
Процесс прямоточной газификации отходов деревообработки и дальнейшая очистка синтез-газа от значительной доли фракций побочных продуктов, таких как вода, легкие углеводороды и высшие спирты, существенно упрощает дистилляцию исходящего потока для получения химически чистого метанола.
Таким образом, заявляемый объект позволяет получать метанол в процессе безотходного производства при использовании одного легкодоступного катализатора с использованием собственной энергии, при этом побочные продукты вновь возвращаются в технологический процесс.
Класс C07C31/04 метиловый спирт
Класс C07C29/151 водородом или водородсодержащими газами