поглотитель хлористого водорода

Классы МПК:B01J20/04 содержащие соединения щелочных металлов, щелочноземельных металлов или магния
B01J20/08 содержащие оксид или гидроксид алюминия, содержащие боксит
B01D53/02 адсорбцией, например препаративной газовой хроматографией 
Автор(ы):, , , , , ,
Патентообладатель(и):Открытое акционерное общество "Ангарский завод катализаторов и органического синтеза" (ОАО "АЗКиОС") (RU)
Приоритеты:
подача заявки:
2012-06-01
публикация патента:

Изобретение относится к очистке газов от галогеносодержащих соединений. Предложен поглотитель хлористого водорода, содержащий 40,0-80,0% оксида цинка, 2,0-10,0 % оксида кальция и оксид алюминия. Источником оксидов цинка, кальция и алюминия является реакционная смесь, содержащая оксид цинка, термоактивированный гидроксид алюминия, гидроксид алюминия псевдобемитной структуры и карбонат кальция. Технический результат заключается в предотвращении размягчения и разрушения поглотителя в процессе сорбции в течение длительного времени. 2 з.п. ф-лы, 2 табл.

Формула изобретения

1. Поглотитель хлористого водорода, содержащий оксиды цинка, кальция и алюминия, отличающийся тем, что компоненты содержатся при следующем соотношении (мас.%):

Оксид цинка40,0-80,0
Оксид кальция 2,0-10,0
Оксид алюминия Остальное до 100%,


при этом поглотитель получают из реакционной смеси, содержащей оксид цинка, термоактивированный гидроксид алюминия, гидроксид алюминия псевдобемитной структуры и карбонат кальция.

2. Поглотитель хлористого водорода по п.1, отличающийся тем, что оксид цинка, термоактивированный гидроксид алюминия, гидроксид алюминия псевдобемитной структуры и карбонат кальция содержатся при следующем соотношении, мас.%:

Термоактивированный гидроксид алюминия 11,0-12,0
Гидроксид алюминия псевдобемитной структуры41,0-44,0
Карбонат кальция 2,0-8,0
Оксид цинка Остальное до 100%

3. Поглотитель хлористого водорода по п.1, отличающийся тем, что используемый в сырье термоактивированный гидроксид алюминия представляет собой тонкодисперсный порошок прокаленного оксида алюминия с удельной поверхностью 180-250 м2/г и масс. долей фракции менее 50 мкм более 95%, а оксид цинка имеет удельную поверхность 3-10 м2/г.

Описание изобретения к патенту

Изобретение относится к очистке газов от галогеносодержащих соединений и может быть использовано в нефтеперерабатывающей, нефтехимической, химической промышленности, в частности в процессе очистки инертного и водородсодержащего газа от хлористого водорода.

Известна (RU 2141371 МПК6 B01D 5368, B01D 5314, опубл. 20.11.1999 г.) поглотительная суспензия для очистки и обезвреживания отходящих газов от хлора и/или хлористого водорода. Газ очищают путем циркуляции поглотительной жидкости в системе скруббер - циркуляционный бак. В качестве химического реагента используют брусит или обожженный магнезит. Изобретение позволяет снизить капиталовложения на газоочистку.

Из патента № 2108139 (RU МПК6 B01D 53/34, C01B 17/60, опубл. 10.04.1998 г.) известно использование извести для поглощения хлористого водорода из отходящего газа. Процесс осуществляют в устройстве для мокрой очистки. После ввода извести поток газа направляют в мешочный фильтр для отделения извести и любых других твердых включений. При этом содержание HCl составляет менее 1 мг.

В результате очистки газов названными реагентами наблюдается низкая эффективность процесса, унос жидкости, коррозия производственного оборудования, сложное аппаратурное оформление процесса, наличие неутилизируемых отходов.

Из патента Франции № 2776536 (опубл. 01.10.1999 г.) известен поглотитель, содержащий металлы VIII группы (железо, никель), металл IB группы (медь) на носителе оксиде или гидроксиде алюминия, который используют для очистки газов и жидкостей от хлорсодержащих примесей. Поглотитель готовят смешением соединений указанных металлов с гидроксидом алюминия с последующей формовкой и термообработкой (сушкой и прокаливанием). Приготовление аналога сопряжено со сложной технологией, сложным составом сырья и большими затратами материальных и энергетических средств.

В патенте США 5378444 (опубл. 03.01.1995) описан поглотитель, содержащий оксид цинка, оксид алюминия и соединение щелочного металла, такое как карбонат или гидрокарбонат калия и/или натрия, натрий гидроксид, который применяют для очистки газов от хлористого водорода и хлора. При этом отношение оксида алюминия к оксиду цинка, выраженное в числе атомов алюминия на один атом цинка, находится в пределах 0,05-0,60, а отношение атомов натрия или калия на один атом цинка составляет 0,05-0,50. Кроме соединений щелочных металлов может быть использован гидроксид аммония. Поглотитель готовят смешением оксида цинка или соединения, которое разлагается с образованием оксида цинка, гидроксида или оксида алюминия и соединения щелочного металла; в смесь, если необходимо, добавляют воду для получения лепешки. Далее ее формуют в экструдере с получением экструдатов, либо лепешку сушат, измельчают в порошок и таблетируют с добавлением графита. Массу можно формовать в виде шариков или частиц неправильной формы, после чего подвергают термообработке: сушке и прокаливанию при температурах 110°C и 350°C. Данному аналогу характерна относительно невысокая емкость по поглощаемому галогениду и низкая механическая прочность.

В патенте № 2211085 (RU МПК7 B01J 20/08, B01J 20/30, опубл. 27.08.2003 г.) описан поглотитель для очистки газов от хлористого водорода, содержащий оксид цинка в пределах 50-80 мас.% и оксид алюминия (остальное). Способ его приготовления включает смешение оксида цинка или соединения цинка, разлагающегося при нагревании с образованием оксида цинка, с гидроксидом и/или оксидом алюминия, последующую формовку массы, сушку и прокаливание. Смешение соединений цинка и алюминия проводят с добавлением уксусной и азотной кислот в количестве 0,5-8,0 мас.% и 0,5-2,0 мас.% соответственно от массы оксида цинка (в расчете на концентрацию кислот 100%). Смесь перемешивают, добавляя указанные кислоты и при необходимости воду, для получения пластичной массы и формуют в экструдаты или получают в форме шариков. Термообработку осуществляют путем сушки при температурах 50-150°C и прокалки при температурах 400-650°C. Полученный поглотитель обладает хлороемкостью в пределах 29,5-45,2 и механической прочностью в пределах 1,1-1,6. Оба показателя известного поглотителя изменяются в широком диапазоне. Отмечено, что при содержании цинка 50 мас.% (нижняя граница предпочтительного значения) хлороемкость понижается до 28,0 мас.%, 80 мас.% цинка (верхняя граница предпочтительного значения) хотя и обеспечивает максимальную хлороемкость, но приводит к снижению механической прочности до 1,1 мас.%. Кроме того, приготовление поглотителя сопряжено с использованием в качестве пептизатора не только азотной, но и уксусной кислоты. Последнее увеличивает затраты материальных средств.

Наиболее близким (прототип) по технической сущности является известный из (JP 09-225296, 02.09.1997 г.) поглотитель для удаления хлористого водорода из промышленных потоков (прямогонной нафты и газов каталитического риформинга), содержащий (мас.%): оксид цинка 25-45, оксид кальция 25-45 и оксид алюминия - инертный связующий (остальное). Поглотитель получен из сырья, источником кальция в котором является гидроксид кальция (предпочтительно) или карбонат кальция. В качестве инертного связующего используют оксид алюминия или диоксид кремния.

Техническим результатом прототипа является предотвращение размягчения и разрушения поглотителя и обеспечение абсорбции хлора в течение длительного времени.

Задачей изобретения является расширение ассортимента поглотителей хлористого водорода из газов с сохранением при этом хороших физико-химических свойств (стабильно высокая хлороемкость как при низком, так и при высоком содержании активного компонента - оксида цинка, повышенная прочность, не снижающая пористость гранулы и обеспечивающая доступность внутренней поверхности гранулы для адсорбции хлористого водорода).

Технический результат, достижение которого обеспечивает реализация заявляемого изобретения, заключается в:

- повышении хлороемкости поглотителя,

- повышении механической прочности гранул поглотителя,

- в сокращении материальных затрат.

Устранение недостатков аналогов и достижение указанного технического результата от реализации поглотителя хлористого водорода из газов, содержащего оксиды цинка, кальция и алюминия, осуществляют за счет того, что компоненты содержатся при следующем соотношении, мас.%:

Оксид цинка40,0-80,0
Оксид кальция 2,0-10,0
Оксид алюминия Остальное до 100%

Пептизацию компонентов сырья осуществляют азотной кислотой.

При этом оксиды цинка, кальция и алюминия получают из реакционной смеси, содержащей оксид цинка, термоактивированный гидроксид алюминия, гидроксид алюминия псевдобемитной структуры и карбонат кальция при следующем соотношении компонентов, мас.%:

Термоактивированный гидроксид алюминия 11,0-12,0
Гидроксид алюминия псевдобемитной структуры41,0-44,0
Карбонат кальция2,0-8,0
Оксид цинка Остальное до 100%,

а термоактивированный гидроксид алюминия представляет собой тонкодисперсный порошок прокаленного оксида алюминия с удельной поверхностью 180-250 м2/г и масс. долей фракции менее 50 мкм более 95%, а оксид цинка имеет удельную поверхность 3-10 м2/г.

Сопоставительный анализ прототипа и заявляемого изобретения показывает, что оба поглотителя содержат оксиды цинка, кальция и алюминия.

Отличительной особенностью патентуемого изобретения является то, что компоненты содержатся при следующем соотношении, мас.%:

Оксид цинка40,0-80,0
Оксид кальция 2,0-10,0
Оксид алюминия Остальное до 100%

При этом оксиды цинка, кальция и алюминия получают из реакционной смеси, содержащей оксид цинка, термоактивированный гидроксид алюминия, гидроксид алюминия псевдобемитной структуры и карбонат кальция при следующем соотношении компонентов, мас.%:

Термоактивированный гидроксид алюминия 11,0-12,0
Гидроксид алюминия псевдобемитной структуры41,0-44,0
Карбонат кальция 2,0-8,0
Оксид цинка Остальное до 100%.

Термоактивированный гидроксид алюминия представляет собой тонкодисперсный порошок прокаленного оксида алюминия с удельной поверхностью 180-250 м2/г и масс. долей фракции менее 50 мкм более 95%, а оксид цинка имеет удельную поверхность 3-10 м2/г.

Технические характеристики используемых для приготовления поглотителя реагентов:

1. Термоактивированный гидроксид алюминия (ТГА) представляет собой тонкодисперсный порошок прокаленного оксида алюминия с удельной поверхностью 180-250 м2/г, масс. долей фракции менее 50 мкм более 95%.

2. Гидроксид алюминия псевдобемитной структуры представляет собой пастообразную массу гидроксида алюминия, содержащую 70,0-75,0 масс.% воды и 25,0-30,0 масс.% оксида алюминия с удельной поверхностью 250-300 м2/г;

3. Оксид цинка представляет собой тонкодисперсный порошок, содержащий 98,2-99,2 масс.% оксида цинка с удельной поверхностью 3-10 м2/г.

Процесс приготовления поглотителя осуществляют следующим образом. Расчетные количества оксида цинка, гидроксида алюминия псевдобемитной структуры, термоактивированного гидроксида алюминия и карбоната кальция смешивают в различном процентном соотношении до получения однородной массы. Смесь пептизируют азотной кислотой с концентрацией 46 об.%. При необходимости в смесь добавляют воду. Полученную пластичную массу формуют в гранулы либо таблетируют. Сформованные экструдаты провяливают в течение 24 часов, затем сушат при 100-120°C и прокаливают при 450-550°C в течение 3 часов (с подъемом температуры по 50-100°C в час).

Хлороемкость поглотителя определяют в динамических условиях следующим образом. В аппарат загружают 10 см3 измельченного поглотителя, фракция 1,00 мм. Затем при атмосферном давлении пропускают подогретый до температуры 25°C осушенный хлорсодержащий газ. Фиксируют время проскока и определяют хлороемкость поглотителя в процентах поглощенного хлора в расчете на вес исходного поглотителя.

Промышленную применимость заявляемого изобретения, его сущность и достижение технического результата поясняют приведенные ниже примеры. В таблице 1 представлены расходные показатели реагентов и температура прокаливания поглотителя. В таблице 2 приведен состав и физико-химические характеристики патентуемого поглотителя в сравнении с поглотителем по прототипу.

Реализация заявляемого изобретения обеспечивает высокую хлороемкость и механическую прочность поглотителя при более низком содержании активного компонента - оксида кальция. Термоактивированный гидроксид алюминия является структурообразующей добавкой, а оксид кальция повышает механическую прочность заявляемого поглотителя. При этом заявляемый технический результат достигают не аддитивным вкладом каждого компонента, а за счет совокупного синергетического эффекта.

Технологические параметры приготовления поглотителя
Таблица 1
Наименование показателя Примеры
123
Термоактивированный гидроксид алюминия (ТГА), г27,818,9 10,0
Гидроксид алюминия псевдобемитной структуры, г100,0 68,036,0
Оксид цинка, г41,0 60,881,0
Карбонат кальция, г 17,910,71,6
Азотная кислота, см3 1,61,6 1,6
Температура прокаливания поглотителя, °C500500 500

Состав и физико-химические свойства поглотителей
Таблица 2
Наименование показателяСодержание компонентов в поглотителе, мас.%
ПатентуемыйПо прототипу
Оксид цинка 40,060,080,0 2545
Оксид кальция10,0 6,02,0 2545
Оксид алюминия50,034,0 18,050 10
Коэффициент прочности, кг/мм 2,01,8 1,31,00,8
Хлороемкость (в динамических условиях), %:33,042,0 47,028 49

Класс B01J20/04 содержащие соединения щелочных металлов, щелочноземельных металлов или магния

способ получения гранулированной фильтрующей загрузки производственно-технологических фильтров для очистки скважинной воды -  патент 2528253 (10.09.2014)
адсорбент для очистки газов от хлора и хлористого водорода и способ его приготовления -  патент 2527091 (27.08.2014)
способ получения фильтрующей гранулированной загрузки производственно-технологических фильтров для очистки воды открытых источников водоснабжения -  патент 2524953 (10.08.2014)
способ получения сорбента на основе сульфата кальция на носителе из целлюлозных волокон -  патент 2523465 (20.07.2014)
способ получения сорбента с магнитными свойствами для сбора нефтепродуктов с водной поверхности -  патент 2518586 (10.06.2014)
способ определения содержания труднолетучих органических соединений в газообразной среде, композиция в качестве сорбента, применение сорбента -  патент 2510501 (27.03.2014)
способ получения адсорбента диоксида углерода и устройство для его осуществления -  патент 2502558 (27.12.2013)
способ получения композиционного сорбента на основе карбоната и гидроксида магния -  патент 2498850 (20.11.2013)
способ сжигания ртутьсодержащего топлива (варианты), способ снижения количества выброса ртути, способ сжигания угля с уменьшенным уровнем выброса вредных элементов в окружающую среду, способ уменьшения содержания ртути в дымовых газах -  патент 2494793 (10.10.2013)
карбонат кальция с обработанной поверхностью и его применение при обработке сточных вод -  патент 2482068 (20.05.2013)

Класс B01J20/08 содержащие оксид или гидроксид алюминия, содержащие боксит

способ получения углеродминерального сорбента -  патент 2529535 (27.09.2014)
адсорбент для очистки газов от хлора и хлористого водорода и способ его приготовления -  патент 2527091 (27.08.2014)
способ очистки воды от силикатов -  патент 2526986 (27.08.2014)
способ сорбционного извлечения молибдена -  патент 2525127 (10.08.2014)
способ получения гранулированного сорбента -  патент 2503619 (10.01.2014)
обессеривающий адсорбент, способ его приготовления и использования -  патент 2498849 (20.11.2013)
способ сжигания ртутьсодержащего топлива (варианты), способ снижения количества выброса ртути, способ сжигания угля с уменьшенным уровнем выброса вредных элементов в окружающую среду, способ уменьшения содержания ртути в дымовых газах -  патент 2494793 (10.10.2013)
способ очистки сточных вод -  патент 2479493 (20.04.2013)
способ очистки сточных вод -  патент 2479492 (20.04.2013)
способ очистки сточных вод от ионов меди -  патент 2455238 (10.07.2012)

Класс B01D53/02 адсорбцией, например препаративной газовой хроматографией 

модульная установка очистки воздуха от газовых выбросов промышленных предприятий -  патент 2529218 (27.09.2014)
способ очистки природного газа и регенерации одного или большего числа адсорберов -  патент 2525126 (10.08.2014)
способ адсорбции кочетова -  патент 2524972 (10.08.2014)
горизонтальный адсорбер кочетова -  патент 2524229 (27.07.2014)
адсорбер для очистки воздуха от паров ртутьсодержащих веществ -  патент 2523803 (27.07.2014)
горизонтальный адсорбер кочетова -  патент 2521928 (10.07.2014)
сорбент на основе сшитого полимера-углерода для удаления тяжелых металлов, токсичных материалов и диоксида углерода -  патент 2520444 (27.06.2014)
способ определения содержания труднолетучих органических соединений в газообразной среде, композиция в качестве сорбента, применение сорбента -  патент 2510501 (27.03.2014)
вертикальный адсорбер кочетова -  патент 2508932 (10.03.2014)
способ разделения многокомпонентной парогазовой смеси -  патент 2508156 (27.02.2014)
Наверх