применение бис(2,4,7,8,9-пентаметилдипирролилметен-3-ил)метана дигидробромида в качестве флуоресцентного сенсора на катион цинка(ii)
Классы МПК: | G01N21/64 флуоресценция; фосфоресценция C09K11/06 содержащие органические люминесцентные вещества C07D403/14 содержащие три или более гетероциклических кольца |
Автор(ы): | Гусева Галина Борисовна (RU), Дудина Наталья Анатольевна (RU), Антина Елена Владимировна (RU), Вьюгин Анатолий Иванович (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное учреждение науки Институт химии растворов им. Г.А. Крестова Российской академии наук (ИХР РАН) (RU) |
Приоритеты: |
подача заявки:
2012-12-14 публикация патента:
27.08.2014 |
Изобретение относится к применению бис(2,4,7,8,9-пентаметилдипирролилметен-3-ил)метана дигидробромида в качестве флуоресцентного сенсора на катион цинка(II). Изобретение позволяет повысить флуоресцентную активность гетероциклического органического соединения по отношению к иону цинка(II) в присутствии других ионов металлов. 1 табл., 40 пр.
Формула изобретения
Применение бис(2,4,7,8,9-пентаметилдипирролилметен-3-ил)метана дигидробромида в качестве флуоресцентного сенсора на катион цинка(II).
Описание изобретения к патенту
Изобретение относится к области создания флуоресцентных индикаторов и сенсорных систем на основе гетероциклических органических соединений и может быть использовано в аналитической химии, нанотехнологии и оптической промышленности.
Известно применение гетероциклического органического соединения - 4-метил-2,6-бис{[(фенилметил)имино]метил}фенола формулы
в качестве флуоресцентного сенсора на катион цинка(II) [1]. Недостатком данного флуоресцентного сенсора является относительно низкий уровень флуоресцентной активности по отношению к указанному иону металла в неполярных органических растворителях, содержащих в качестве основного компонента циклогексан, особенно в присутствии других ионов металлов. Кроме того, получение данного соединения требует использования в качестве исходных веществ относительно дорогих химических реагентов.
Известно также применение гетероциклического органического соединения - бензоильного замещенного дипирролилметена с пентафторбензольным кольцом в метиленовом спейсере формулы
в качестве флуоресцентного сенсора на катион цинка(II) [2]. Недостатком данного флуоресцентного сенсора также является относительно низкий уровень флуоресцентной активности по отношению к указанному иону металла в неполярных органических растворителях, содержащих в качестве основного компонента циклогексан, в присутствии других ионов металлов.
Наиболее близким к заявляемому объекту по совокупности признаков и достигаемому техническому эффекту является применение гетероциклического органического соединения - 5-(пирен-1-ил)-4,6-дипиррина формулы
в качестве флуоресцентного сенсора на катион цинка(II) [3]. Недостатком данного флуоресцентного сенсора, выбранного в качестве прототипа, также является относительно низкий уровень его флуоресцентной активности по отношению к указанному иону металла в неполярных органических растворителях, содержащих в качестве основного компонента циклогексан, в присутствии других ионов металлов.
Целью настоящего изобретения является повышение флуоресцентной активности гетероциклического органического соединения по отношению к иону цинка(II) в присутствии других ионов металлов в неполярных органических растворителях, содержащих в качестве основного компонента циклогексан.
Указанная цель достигается применением гетероциклического органического соединения - бис(2,4,7,8,9-пентаметилдипирролилметен-3-ил)метан дигидробромида со структурной формулой ( )
В результате этого имеет место повышение флуоресцентной активности гетероциклического органического соединения по отношению к иону цинка(II) в присутствии других ионов металлов по сравнению с таковым в случае применения вещества-прототипа [3] в 1.5-2.0 раза.
Синтез данного гетероциклического соединения был описан ранее в [4]. До настоящего времени его применение в качестве флуоресцентного сенсора на катионы Zn 2+ в каких-либо органических растворителях в присутствии других ионов металлов в литературе не описывалось. Известно, однако, применение этого соединения в качестве хелатообразующего лиганда для связывания ряда ионов d-элементов [4] в прочные металлокомплексы. Эти обстоятельства, с одной стороны, позволяют отнести его к категории защищаемых в рамках патентного законодательства РФ «применение», с другой - дают основания утверждать, что заявляемый нами объект соответствует первому установленному патентным законодательством РФ критериальному признаку изобретения - новизна. Сопоставление известных признаков объекта-прототипа [3] и отличительных признаков, характеризующих заявляемый нами объект (а именно - изменение его химического состава), не позволяет предсказать априори появления у него новых по сравнению с прототипом свойств, а именно усиления флуоресцентной активности по отношению именно и лишь к катионам Zn(II) в присутствии других ионов металлов. Только что указанное обстоятельство позволяет сделать заключение, что заявляемый объект явным образом не следует из известного в данной отрасли техники уровня и, стало быть, соответствует второму установленному патентным законодательством РФ критериальному признаку изобретения - изобретательский уровень. Предлагаемое нами применение гетероциклического органического соединения в качестве флуоресцентного сенсора вполне осуществимо как в лабораторных условиях, так и в высокотехнологических отраслях промышленности, в частности нанотехнологии, а значит, ему присущ и третий установленный патентным законодательством РФ критериальный признак изобретения - промышленная применимость.
Заявляемый на предмет изобретения объект может быть продемонстрирован посредством ниже следующих примеров.
Пример 1 (синтез соединения формулы )
Синтез соединения формулы осуществляют по следующей брутто-схеме:
Исходное соединение 1 - 2,2 ,4,4 -тетраметил-5,5 -бис(этоксикарбонил)дипирролилметан-3,3 в количестве 1.0 г смешивают с 1.0 г гидроксида калия, гомогенизируют смесь в 30 мл этиленгликоля и кипятят ее в течение 1 час. Получившуюся реакционную массу выливают в 200 мл воды и отфильтровывают образовавшийся осадок 2,2 ,4,4 -тетраметил-дипирролилметана-3,3 (соединение 2), после чего промывают его дистиллированной водой и высушивают на воздухе при комнатной температуре. Выход вещества 2 составляет 0.51 г (87% от теоретически рассчитанного количества). Вещество 2 без какой-либо предварительной очистки растворяют в 20 мл метанола, добавляют к получившемуся раствору 0.7 г 3,4,5-триметил-2-формилпиррола (соединение 3) и после его перехода в раствор прибавляют 1 мл концентрированной бромоводородной кислоты. Затем смесь перемешивают в течение 2 час при комнатной температуре, в результате чего имеет место образование целевого вещества формулы ( ). Этот продукт отделяют фильтрованием от маточного раствора, промывают метанолом, эфиром и высушивают при комнатной температуре на воздухе. Выход 1.12 г (74% от теоретически рассчитанного количества). Строение полученного соединения доказывают с использованием элементного анализа, спектроскопии в УФ, видимой и ИК областях спектра, ПМР спектроскопии. Данные элементного анализа: Найдено, %: C 57.96; H 6.40; N 9.35. Валовая формула соединения ( ) C29H38Br2N4 , вычислено, %: C 57.82; H 6.36; N 9.30. Полосы поглощения в УФ- и видимой области спектра в хлороформенном растворе max [нм] (lg max): 364 (4.15) (полоса переноса заряда); 461 (5.01); 502 (5.43). Полоса в ИК спектре: vNH=3480 см-1. Полосы в спектре ПМР в растворе дейтерированного хлороформа раствора (внешний стандарт ТМС), сдвиг , d м.д.: 13.11 с (2H, NH), 12.99 с (2H, NH), 7.02 с (2H, ms-CH), 3.55 с (2H, ms-CH2), 2.67 с (6H, 9-CH 3), 2.59 с (6H, 7-CH3), 2.25 с (6H, 2-CH 3), 2.15 с (6H, 4-CH3), 1.98 с (6H, 8-CH 3).
Пример 2
Приготавливают раствор бис(2,4,7,8,9-пентаметилдипирролилметен-3-ил)метана дигидробромида ( ) с концентрацией C=5.0·10-7 моль/л в циклогексане с добавлением небольшого количества пропанол-1 (молярное соотношение пропанол-1:циклогексан=1:30). (Пропанол-1 в указанном количестве добавляют в циклогексан лишь с целью обеспечения необходимого минимального уровня растворимости как вводимых в раствор солей металлов, так и самого соединения ( ), поскольку растворимость бис(2,4,7,8,9-пентаметилдипирролилметен-3-ил)метана дигидробромида крайне мала и явно недостаточна для наблюдения флуоресценции в чистом циклогексане). Приготавливают также аналогичный раствор (т.е. с тем же самым соотношением пропанол-1:циклогексан=1:30), содержащий наряду с бис(2,4,7,8,9-пентаметилдипирролилметен-3-ил)метаном дигидробромидом расчетный по отношению к его количеству 5-кратный молярный избыток ацетата цинка(II) и 10-кратный молярный избыток ацетата натрия. С использованием спектрофлуориметра СМ 2203 проводят регистрацию спектров флуоресценции обоих вышеуказанных растворов путем возбуждения монохроматическим излучением с возб=495 нм в координатах [интенсивность флуоресценции (I) - длина волны ( , нм)]. По данным этих спектров рассчитывают относительное изменение интенсивности флуоресценции (ОИИФ) по формуле ОИИФ=I/I 0, где I0 - интенсивность флуоресценции соединения формулы ( ) в вышеуказанном растворителе (пропанол-1:циклогексан=1:30) при длине волны максимума его флуоресценции флуор=518 нм, I - интенсивность флуоресценции раствора, содержащего наряду с ( ) катионы поименованных выше ионов металлов при длине волны максимума его флуоресценции при наличии в нем катионов цинка(II) флуор=545 нм. Результаты определения ОИИФ для данного случая представлены в Таблице 1.
Пример 3
Выполняют по общей схеме Примера 2, но при наличии во втором из указанных в нем растворов 10-кратного молярного избытка ацетата цинка(II) и 10-кратного молярного избытка ацетата натрия. Результаты определения ОИИФ для этого случая также представлены в Таблице 1.
Пример 4
Осуществляют по типу Примера 2, но при наличии во втором из указанных в нем растворов 40-кратного молярного избытка ацетата цинка(II) и 10-кратного молярного избытка ацетата натрия. Результаты определения ОИИФ для этого случая даны в Таблице 1.
Пример 5
Проводят по общей схеме Примера 2, но при наличии во втором из указанных в нем растворов 5-кратного молярного избытка ацетата цинка(II) и 10-кратного молярного избытка ацетата кальция. Показатели для ОИИФ для этого случая показаны в Таблице 1.
Пример 6
Выполняют по образу и подобию Примера 2, но при наличии во втором из указанных в нем растворов 10-кратного молярного избытка ацетата цинка(II) и 10-кратного молярного избытка ацетата кальция. Данные по ОИИФ для этого случая см. в Таблице 1.
Пример 7
Осуществляют, как и Пример 2, но при наличии во втором из указанных в нем растворов 40-кратного молярного избытка ацетата цинка(II) и 10-кратного молярного избытка ацетата кальция. Данные по ОИИФ для этого случая см. в Таблице 1.
Пример 8
Проводят по общей схеме Примера 2, но при наличии во втором из указанных в нем растворов 5-кратного молярного избытка ацетата цинка(II) и 10-кратного молярного избытка ацетата марганца(II). Сведения о значениях ОИИФ для данного случая приведены в Таблице 1.
Пример 9
Выполняют по типу Примера 2, но при наличии во втором из указанных в нем растворов 10-кратного молярного избытка ацетата цинка(II) и 10-кратного молярного избытка ацетата марганца(II). Результаты определения ОИИФ для этого случая см. в Таблице 1.
Пример 10
Осуществляют по общей схеме Примера 2, но при наличии во втором из указанных в нем растворов 40-кратного молярного избытка ацетата цинка(II) и 10-кратного молярного избытка ацетата марганца(II). Данные по ОИИФ для этого случая см. в Таблице 1.
Пример 11
Проводят по образу и подобию Примера 2, но при наличии во втором из указанных в нем растворов 5-кратного молярного избытка ацетата цинка(II) и 10-кратного молярного избытка ацетата никеля(II). Показатели ОИИФ для данного случая указаны в Таблице 1.
Пример 12
Выполняют, как и Пример 2, но при наличии во втором из указанных в нем растворов 10-кратного молярного избытка ацетата цинка(II) и 10-кратного молярного избытка ацетата никеля(II). Значения ОИИФ для такого случая представлены в Таблице 1.
Пример 13
Проводят таким же образом, что и Пример 2, но при наличии во втором из указанных в нем растворов 40-кратного молярного избытка ацетата цинка(II) и 10-кратного молярного избытка ацетата никеля(II). Величины ОИИФ для указанного случая показаны в Таблице 1.
Пример 14
Проводят по общей схеме Примера 2, но при наличии во втором из указанных в нем растворов 5-кратного молярного избытка ацетата цинка(II) и 10-кратного молярного избытка ацетата свинца(II). Данные ОИИФ для отмеченного случая см. в Таблице 1.
Пример 15
Выполняют, как и Пример 2, но при наличии во втором из указанных в нем растворов 10-кратного молярного избытка ацетата цинка(II) и 10-кратного молярного избытка ацетата свинца(II). Сведения о величинах ОИИФ для данного случая приведены в Таблице 1.
Пример 16
Проводят аналогично Примеру 2, но при наличии во втором из указанных в нем растворов 40-кратного молярного избытка ацетата цинка(II) и 10-кратного молярного избытка ацетата свинца(II). Результаты по определению ОИИФ для рассматриваемого случая представлены в Таблице 1.
Пример 17
Осуществляют по общей схеме Примера 2, но при наличии во втором из указанных в нем растворов 10-кратного молярного избытка ацетата цинка(II), 10-кратного молярного избытка ацетата натрия и 10-кратного молярного избытка ацетата никеля(II). Данные ОИИФ для отмеченного случая см. в Таблице 1.
Пример 18
Выполняют по типу Примера 2, но при наличии во втором из указанных в нем растворов 10-кратного молярного избытка ацетата цинка(II), 10-кратного молярного избытка ацетата кальция и 10-кратного молярного избытка ацетата марганца(II). Сведения о величинах ОИИФ для данного случая приведены в Таблице 1.
Пример 19
Проводят по типу Примера 2, но при наличии во втором из указанных в нем растворов 10-кратного молярного избытка ацетата цинка(II), 10-кратного молярного избытка ацетата натрия и 10-кратного молярного избытка ацетата никеля(II). Данные ОИИФ для отмеченного случая см. в Таблице 1.
Пример 20
Осуществляют по общей схеме Примера 2, но при наличии во втором из указанных в нем растворов 10-кратного молярного избытка ацетата цинка(II), 10-кратного молярного избытка ацетата натрия, 10-кратного молярного избытка ацетата никеля(II) и 10-кратного молярного избытка ацетата свинца(II). Результаты определения ОИИФ в отмеченном случае см. в Таблице 1.
Пример 21
Осуществляют по общей схеме Примера 2, но при наличии во втором из указанных в нем растворов 10-кратного молярного избытка ацетата кобальта(II). Результаты определения ОИИФ в отмеченном случае см. в Таблице 1.
Пример 22
Осуществляют по общей схеме Примера 2, но при наличии во втором из указанных в нем растворов 10-кратного молярного избытка ацетата никеля(II). Результаты определения ОИИФ в отмеченном случае см. в Таблице 1.
Пример 23
Осуществляют по общей схеме Примера 2, но при наличии во втором из указанных в нем растворов 10-кратного молярного избытка ацетата меди(II). Результаты определения ОИИФ в отмеченном случае см. в Таблице 1.
Пример 24
Осуществляют по общей схеме Примера 2, но при наличии во втором из указанных в нем растворов 10-кратного молярного избытка ацетата кадмия(II). Результаты определения ОИИФ в отмеченном случае см. в Таблице 1.
Пример 25
Осуществляют по общей схеме Примера 2, но при наличии во втором из указанных в нем растворов 10-кратного молярного избытка ацетата ртути(II). Результаты определения ОИИФ в отмеченном случае см. в Таблице 1.
Пример 26
Осуществляют по общей схеме Примера 2, но при наличии во втором из указанных в нем растворов 10-кратного молярного избытка ацетата цинка(II), кобальта(II), 10-кратного молярного избытка ацетата кадмия(II) и 10-кратного молярного избытка хлорида железа(III). Результаты определения ОИИФ в отмеченном случае см. в Таблице 1.
Пример 27 (по прототипу [3])
Приготавливают раствор 5-(пирен-1-ил)-4,6-дипиррина в ацетонитриле с концентрацией С=1.0·10-4 моль/л. Приготавливают также аналогичный раствор, содержащий наряду с 5-(пирен-1-ил)-4,6-дипиррином расчетный по отношению к его количеству 50-кратный молярный избыток ацетата цинка(II) и 50-кратный молярный избыток ацетата натрия. С использованием спектрофлуориметра СМ 2203 проводят регистрацию спектров флуоресценции обоих вышеуказанных растворов путем возбуждения монохроматическим излучением с возб=520 нм в координатах интенсивность флуоресценции (I) - длина волны ( , нм). По данным этих спектров рассчитывают относительное изменение интенсивности флуоресценции (ОИИФ) по формуле ОИИФ=I/I 0, где I0 - интенсивность флуоресценции 5-(пирен-1-ил)-4,6-дипиррина в вышеуказанном растворителе при длине волны максимума его флуоресценции флуор=563 нм, I - интенсивность флуоресценции раствора, содержащего наряду с ним катионы поименованных выше ионов металлов при длине волны максимума его флуоресценции при наличии в нем катионов цинка(II) флуор=563 нм. Результаты определения ОИИФ для данного случая также представлены в Таблице 1.
Пример 28 (по прототипу [3])
Проводят по общей технологии Примера 27, но в качестве фоновой соли берут ацетат кальция в 50-кратном избытке по отношению 5-(пирен-1-ил)-4,6-дипиррину. Показатели ОИИФ для данного случая также показаны в Таблице 1.
Пример 29 (по прототипу [3])
Выполняют по типу Примера 27, но в качестве фоновой соли берут ацетат никеля(II) в 50-кратном избытке по отношению 5-(пирен-1-ил)-4,6-дипиррину. Показатели ОИИФ для данного случая также показаны в Таблице 1.
Пример 30 (по прототипу [3])
Осуществляют по образу и подобию Примера 27, но в качестве фоновой соли берут смесь ацетатов натрия и никеля(II) в 50-кратном избытке по отношению 5-(пирен-1-ил)-4,6-дипиррину для каждого из них. Показатели ОИИФ для данного случая также показаны в Таблице 1.
Пример 31 (сравнительный, по прототипу [3])
Выполняют как и Пример 27, но концентрацию 5-(пирен-1-ил)-4,6-дипиррина задают равной С=5.0·10-7 моль/л, в качестве растворителя используют смесь циклогексана и пропанола-1, указанную в Примере 2, а молярный избыток ацетата цинка(II) и ацетата натрия устанавливают 10-кратными по отношению к 5-(пирен-1-ил)-4,6-дипиррину. Показатели ОИИФ для данного случая приведены в Таблице 1.
Пример 32 (сравнительный, по прототипу [3])
Проводят аналогично Примеру 31, но вместо ацетата натрия используют ацетат марганца(II). Показатели ОИИФ для данного случая см. в Таблице 1.
Пример 33 (сравнительный, по прототипу [3])
Выполняют таким же образом, как и Пример 31, но в качестве фоновых солей используют ацетат кальция и ацетат марганца(II) в 10-кратном избытке по отношению к 5-(пирен-1-ил)-4,6-дипиррину каждого из них. Показатели ОИИФ для данного случая даны в Таблице 1.
Пример 34 (сравнительный, по прототипу [3])
Осуществляют по образу и подобию Примера 31, но в качестве фоновых солей используют ацетат натрия, ацетат никеля(II) и ацетат свинца(II) в 10-кратном избытке по отношению к 5-(пирен-1-ил)-4,6-дипиррину каждого из них. Показатели ОИИФ для данного случая также показаны в Таблице 1.
Пример 35 (сравнительный, по прототипу [3])
Проводят аналогично Примеру 31, но в качестве фоновых солей используют ацетат кобальта(II) в 10-кратном избытке по отношению к 5-(пирен-1-ил)-4,6-дипиррину. Показатели ОИИФ для данного случая также показаны в Таблице 1.
Пример 36 (сравнительный, по прототипу [3])
Проводят аналогично Примеру 31, но в качестве фоновых солей используют ацетат никеля(II) в 10-кратном избытке по отношению к 5-(пирен-1-ил)-4,6-дипиррину. Показатели ОИИФ для данного случая также показаны в Таблице 1.
Пример 37 (сравнительный, по прототипу [3])
Проводят аналогично Примеру 31, но в качестве фоновых солей используют ацетат меди(II) в 10-кратном избытке по отношению к 5-(пирен-1-ил)-4,6-дипиррину. Показатели ОИИФ для данного случая также показаны в Таблице 1.
Пример 38 (сравнительный, по прототипу [3])
Проводят аналогично Примеру 31, но в качестве фоновых солей используют ацетат кадмия(II) в 10-кратном избытке по отношению к 5-(пирен-1-ил)-4,6-дипиррину. Показатели ОИИФ для данного случая также показаны в Таблице 1.
Пример 39 (сравнительный, по прототипу [3])
Проводят аналогично Примеру 31, но в качестве фоновых солей используют ацетат ртути(II) в 10-кратном избытке по отношению к 5-(пирен-1-ил)-4,6-дипиррину. Показатели ОИИФ для данного случая также показаны в Таблице 1.
Пример 40 (сравнительный, по прототипу [3])
Проводят аналогично Примеру 31, но в качестве фоновых солей используют ацетат кобальта(II), ацетат кадмия(II) и хлорид железа(II) в 10-кратном избытке по отношению к 5-(пирен-1-ил)-4,6-дипиррину каждого из них. Показатели ОИИФ для данного случая также показаны в Таблице 1.
Таблица 1 | ||||
№ примера | Компоненты бинарной смеси (растворителя) и их молярное соотношение | Молярное соотношение [катион Zn2+/( )] | Катион Mz+ (молярное соотношение [катион Mz+/( )]) | ОИИФ |
2 | Пропанол-1:циклогексан=1:30 | 5 | Na+, (10) | 106 |
3 | Пропанол-1:циклогексан=1:30 | 10 | Na+, (10) | 267 |
4 | Пропанол-1:циклогексан=1:30 | 40 | Na+, (10) | 266 |
5 | Пропанол-1:циклогексан=1:30 | 5 | Ca2+, (10) | 109 |
6 | Пропанол-1:циклогексан=1:30 | 10 | Ca2+, (10) | 265 |
7 | Пропанол-1:циклогексан=1:30 | 40 | Ca2+, (10) | 267 |
8 | Пропанол-1:циклогексан=1:30 | 5 | Mn2+, (10) | 107 |
9 | Пропанол-1:циклогексан=1:30 | 10 | Mn2+, (10) | 266 |
10 | Пропанол-1:циклогексан=1:30 | 40 | Mn2+, (10) | 265 |
11 | Пропанол-1:циклогексан=1:30 | 5 | Ni2+, (10) | 106 |
12 | Пропанол-1:циклогексан=1:30 | 10 | Ni2+, (10) | 265 |
13 | Пропанол-1:циклогексан=1:30 | 40 | Ni2+, (10) | 264 |
14 | Пропанол-1:циклогексан=1:30 | 5 | Pb2+, (10) | 108 |
15 | Пропанол-1:циклогексан=1:30 | 10 | Pb2+, (10) | 267 |
16 | Пропанол-1:циклогексан=1:30 | 40 | Pb2+, (10) | 266 |
17 | Пропанол-1:циклогексан=1:30 | 10 | Na+, (10) Ni2+, (10) | 266 |
18 | Пропанол-1:циклогексан=1:30 | 10 | Ca2+, (10) Mn2+, (10) | 265 |
19 | Пропанол-1:циклогексан=1:30 | 10 | Ni2+, (10) Pb2+, (10) | 267 |
20 | Пропанол-1:циклогексан=1:30 | 10 | Na+, (10) Ni2+, (10) Pb2+, (10) | 266 |
21 | Пропанол-1:циклогексан=1:30 | - | Co2+, (10) | 0.0 |
22 | Пропанол-1:циклогексан=1:30 | - | Ni2+, (10) | 0.0 |
23 | Пропанол-1:циклогексан=1:30 | - | Cu2+, (10) | 0.0 |
24 | Пропанол-1:циклогексан=1:30 | - | Cd2+, (10) | 1.7 |
25 | Пропанол-1:циклогексан=1:30 | - | Hg2+, (10) | 0.6 |
26 | Пропанол-1:циклогексан=1:30 | 10 | Co2+, (10) Cd2+ , (10) Fe3+, (10) | 265 |
27 (прототип) | Ацетонитрил | - | Na+, (-) | 2.0 |
28 (прототип) | Ацетонитрил | - | Ca2+, (-) | 1.5 |
29 (прототип) | Ацетонитрил | - | Ni2+, (-) | 1.7 |
30 (прототип) | Ацетонитрил | - | Na+, (-) Ni2+, (-) | 1.9 |
31 (сравнит.) | Пропанол-1:циклогексан=1:30 | - | Na+, (-) | 138 |
32 (сравнит.) | Пропанол-1:циклогексан=1:30 | - | Mn2+, (-) | 139 |
33 (сравнит.) | Пропанол-1:циклогексан=1:30 | - | Ca2+, (-) Mn2+, (-) | 142 |
34 (сравнит.) | Пропанол-1:циклогексан=1:30 | - | Ni2+, (-) Pb2+, (-) | 140 |
35 (сравнит.) | Пропанол-1:циклогексан=1:30 | - | Co2+, (-) | 131 |
36 (сравнит.) | Пропанол-1:циклогексан=1:30 | - | Ni2+, (-) | 132 |
37 (сравнит.) | Пропанол-1:циклогексан=1:30 | - | Cu2+, (-) | 136 |
38 (сравнит.) | Пропанол-1:циклогексан=1:30 | - | Cd2+, (-) | 133 |
39 (сравнит.) | Пропанол-1:циклогексан=1:30 | - | Hg2+, (-) | 137 |
40 (сравнит.) | Пропанол-1:циклогексан=1:30 | - | Co2+, (10) Cd2+, (10) Fe3+, (10) | 139 |
Как можно видеть из приведенных в Табл. 1 данных, применение заявляемого соединения формулы ( ) в циклогексане позволяет существенно (в 1.5-2.0 раза) повысить флуоресцентную активность гетероциклического органического соединения по отношению к иону цинка(II) в присутствии других ионов металлов. При этом, что весьма важно, указанная активность ( ) проявляется при гораздо более низких концентрациях, нежели у вещества-прототипа [3] (почти на три порядка).
ЛИТЕРАТУРА
[1] Partha Roy, Koushik Dhara, Mario Manassero, Jagnyeswar Ratha, and Pradyot Banerjee. Selective Fluorescence Zinc Ion Sensing and Binding Behavior of 4-Methyl-2,6-bis(((phenylmethyl)imino)methyl)phenol: Biological Application. Inorganic Chemistry, 2007, v.46, pp.6405-6412.
[2] Y. Ding, Y. Xie, X. Li, J.P. Hill, W. Zhang, W. Zhu. Selective and sensitive "turn-on" fluorescent Zn2+ sensors based on di- and tripyrrins with readily modulated emission wavelengths. Chemical Communications, 2011, v.47, pp.5431-5433.
[3] Y. Mei, CJ. Frederickson, LJ. Giblin, J.H. Weiss, Y. Medvedeva, P.A. Bentley. Sensitive and selective detection of zinc ions in neuronal vesicles using PYDPY1, a simple turn-on dipyrrin. Chemical Communications, 2011, v.47, pp.7107-7109 (ПРОТОТИП).
[4] Г.Б. Гусева, H.A. Дудина, E.B. Антина, А.И. Вьюгин, А.С. Семейкин. Новые хелатные лиганды - 3,3 -бис(дипирролилметены): синтез, спектральные свойства. Журнал общей химии, 2008, т.78, c.987-996.
Класс G01N21/64 флуоресценция; фосфоресценция
Класс C09K11/06 содержащие органические люминесцентные вещества
Класс C07D403/14 содержащие три или более гетероциклических кольца