линкер для твердофазного синтеза пептидов
Классы МПК: | C07K1/04 на носителях |
Автор(ы): | Семенов А.Н. |
Патентообладатель(и): | Российско-германское совместное предприятие "Константа" |
Приоритеты: |
подача заявки:
1993-10-20 публикация патента:
10.02.1997 |
Использование: в пептидной химии. Сущность изобретения: линкер для твердофазного синтеза пептидов:

где R1 - водород или Boc, X = связь или группа: - CO Gly-CO Gly-
-Ala.-Ala. 2 табл.
Рисунок 1, Рисунок 2

где R1 - водород или Boc, X = связь или группа: - CO Gly-CO Gly-

Формула изобретения
Линкер для твердофазного синтеза пептидов общей формулы
где R1 водород или Вос;
X связь или группа CO Gly-

Описание изобретения к патенту
Изобретение относится к органической химии, в частности, к области синтеза пептидов в гетерогенных системах жидкость/твердое тело (твердофазного синтеза пептидов). Основная идея твердофазного синтеза пептидов заключается в том, что синтезируемый пептид на всех этапах синтеза (присоединение аминокислот, деблокирование, удаление непрореагировавших компонентов и т.д.) остается присоединенным к нерастворимому носителю (обычно полимеру) через группу, называемую линкер (linker). К линкеру предъявляются требования, которые зачастую бывают взаимоисключающими. Например, высокая химическая устойчивость (на всех этапах синтеза) и в то же время лабильность (т.е. возможность его расщепления по окончании синтеза в мягких условиях, не затрагивающих лабильные аминокислоты и другие защитные группы, если требуется получить пептид с сохранением защитных групп). В настоящее время предложено большое количество вариантов линкеров [1,2] Тем не менее проблема не считается исчерпывающе решенной. Недавно нами был предложен способ мягкого и селективного удаления фенилгидразидной группы, блокирующей карбоксильную функцию [3-6] Способ включает каталитическое окисление фенилгидразидной группы до высокоактивной и неустойчивой фенилдиимидной с последующим самопроизвольным гидролитическим разложением последней:
Мы предположили, что фенилгидразидная группа также может защищать карбоксильную функцию, будучи присоединенной к нерастворимому полимеру, т.е. выполнять функцию линкера для твердофазного синтеза пептидов. На основании этого предположения был разработан новый линкер для твердофазного синтеза пептидов. В качестве нерастворимого полимера при этом может быть использован гидрофильный (сферон), гидрофобный (полистирол) или любой другой полимер, устойчивый в условиях твердофазного синтеза пептидов. Заявляемое техническое решение является новым, т.к. ранее не были описаны линкеры, расщепляемые в мягких окислительных условиях. Оно имеет изобретательский уровень, т.к. оно явным образом не следует из уровня техники. Кроме того, является промышленно применимым, т.к. фенилгидразидный линкер позволяет осуществлять препаративный твердофазный синтез пептидов. Пример 1. Получение носителя, содержащего фенилгидразин, на основе Сферона. Носитель, содержащий фенилгидразидные группы, был получен путем модификации гидроксиэтилметакрилатного геля Spheron ArA 1000, "La Chema", Брно, Чехословакия (0,25-0,40 ммк, диаметр пор 37-50 нм). Исходный полимер содержал связанные 2-(4-аминофенил)сульфэтоксильные группы (0,85


К охлажденной до 0oC суспензии 5 г сферона ArA 1000 в 250 мл 2 М HCl добавляли 200 мл охлажденного льдом 2%-ного раствора NaNO2 и интенсивно перемешивали в течение 4 ч при 0oC. Диазотированный полимер отделяли фильтрацией, промывали на фильтре 100 мл охлажденной льдом конц. HCl и переносили в колбу. К полимеру добавляли коллоидный раствор 5 г SnCl2 в 100 мл конц. HCl. Суспензию перемешивали 2 ч при комнатной температуре и затем нагревали в течение 1 ч до 50-60oC. Полимер отделяли фильтрацией горячего раствора, промывали 500 мл воды и сушили в вакууме. Выход: 4,87 г. Пример 2. Синтез пептида на полимерном носителе (сфероне). Синтез пептида проводили по стандартному протоколу, описанному в [7] изложенному в табл.1. Все стадии выполняли в стеклянном реакторе объемом 50 мл для твердофазного синтеза пептидов в ручном варианте. Использовали следующие реактивы: производные аминокислот ("Bachem", Швейцария), триэтиламин, диизопропилкарбодиимид, анизол, гидроксибензотриазол ("Fluka", Швейцария), трифторуксусная кислота и органические растворители ("Мосреактив", Россия). Пример 3. Удаление частично защищенного пептида BOC-Trp-Met-Cys(Asm)-OH с полимерного носителя (сферона). 1 г пептидил-полимера, полученного согласно Примера 2, суспендировали в 20 мл смеси, содержащей 8 мл DMF, 2 мл 1 М раствора пиридинацетатного буфера в DMF, 9 мл 20%-ного водного раствора уксусной кислоты и 1 мл 0,5 М водного раствора CuSO4. За протеканием реакции следили методом офВЭЖХ. Через 16 ч площадь пика, соответствующего целевому продукту, достигла максимального значения и составила 83% (от суммы площадей всех пиков, наблюдаемых методом офВЭЖХ). После этого полимер отфильтровали, промыли на фильтре DMF уксусной кислотой и водой. Объединенные фильтрат и промывные жидкости нанесли на препаративную колонку C18 2,5 x 25 см и элюировали градиентом метанола в 0,005 М аммоний-ацетатном буфере, рН 4,0. Фракции, содержащие целевой продукт, объединили, упарили до небольшого объема и лиофилизовали. Выход пептида 9 мг. Структуру пептида подтвердили методом 1H-ЯМР-спектроскопии (ЯМР-спектрометр Bruker, 500 MHz, DMSO-d6, стандарт тетраметилсилан), величины химических сдвигов протонов приведены ниже.



BOC-NHNH-C6H4-CONH-CH2-COOH. 2,52 г N-трет-бутилоксикарбонил-пара-карбоксифенилгидразина (коммерческий продукт научно-производственной фирмы "ДиОс") (10 ммоль) растворили в 10 мл диметилформамида, добавили 1,38 мл (10 ммоль) триэтиламина и раствор охладили до -10oC. При перемешивании добавили 1,3 мл (10 ммоль) изобутилхлорформиата. Через 2 мин к реакционной смеси добавили раствор 900 мг (12 ммоль) глицина в смеси 3 мл диметилформамида и 3 мл 4 н NaOH. Реакционную смесь перемешивали 24 ч, упарили, остаток растворили в 300 мл этилацетата и промыли последовательно 1 н серной кислотой и водой до нейтральной реакции. Этилацетат упарили досуха и остаток кристаллизовали из смеси этилацетат/гексан. Выход 2,47 г (80%). BOC-


