способ получения оксида магния из природных рассолов
Классы МПК: | C01F5/06 термическим разложением соединений магния |
Автор(ы): | Рябцев А.Д., Вахромеев А.Г., Менжерес Л.Т., Мамылова Е.В., Коцупало Н.П. |
Патентообладатель(и): | Закрытое акционерное общество "Экостар-Наутех" |
Приоритеты: |
подача заявки:
2001-06-26 публикация патента:
10.09.2003 |
Изобретение относится к способу получения оксида магния из природных рассолов. Для получения оксида магния высокоминерализованный рассол охлаждают до +18
-25oС, отделяют кристаллы CaCl2
6Н2О. После отделения кристаллов рассол разбавляют, аэрируют, отделяют выпавший осадок гидроксида железа. Далее рассол обрабатывают известковым молоком, полученным после обжига доломита, известняка, сгущают пульпу в присутствии полиакриламида с образованием раствора хлорида кальция и осадка гидроксида магния. Осадок гидроксида магния фильтруют и промывают. Пульпу подвергают карбонизации с получением раствора бикарбоната магния и твердого осадка, последний отделяют. Раствор бикарбоната магния нагревают до кипения с выпадением в осадок магнезии углекислой, которую прокаливают. Раствор хлорида кальция направляют на растворение кристаллов CaCl2
6Н2О с получением тяжелых солевых растворов. Изобретение позволяет вовлечь в производство оксида магния подземные высокоминерализованные рассолы. 2 з.п.ф-лы, 5 ил., 3 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8



Формула изобретения
1. Способ получения оксида магния из рассола, включающий осаждение гидроксида магния обработкой рассола известковым молоком, полученным после обжига доломита, известняка, сгущение пульпы в присутствии полиакриламида с образованием раствора хлорида кальция и осадка гидроксида магния, фильтрацию и промывку осадка гидроксида магния, карбонизацию пульпы с получением раствора бикарбоната магния и твердого осадка, отделение последнего, нагревание до кипения раствора бикарбоната магния с выпадением в осадок магнезии углекислой, ее прокаливание, отличающийся тем, что используют высокоминерализованный рассол с содержанием хлорида кальция 60-350 г/л, который охлаждают до +18


Описание изобретения к патенту
Изобретение относится к способу получения оксида магния из природных рассолов и может быть использовано для получения жженой магнезии, а также периклаза и периклазовых порошков. Известен промышленный способ получения оксида магния из морской воды, по которому работает завод фирмы "Kaiser Refractories" (США) (М.Е. Позин, Технология минеральных солей. Изд-во "Химия", Л.О., 1970, с. 290-296). Морскую воду фильтруют через слой обожженного доломита, при этом удаляются карбонат и бикарбонат ионы. Осаждение Мg(ОН)2 производят в двух последовательно работающих реакторах, в первый вводят обожженный доломитизированный известняк. Суспензия Mg(OH)2 поддерживается мешалками во взвешенном состоянии и идет в слив, а пульпа поступает во второй реактор, где образуется добавочное количество Mg(OH)2, возвращаемого в первый реактор. Шлам из второго реактора (SiO2, Fe2O3) направляется в отвал. Суспензия Мg(ОН)2 поступает в сгустители, затем пульпу, содержащую 25 мас.% Мg(ОН)2 направляют на барабанные фильтры. Кек, содержащий 50% Mg(OH)2, используется для получения магнезии. Продукт после прокаливания содержит >98% МgО. В настоящее время известковая технология получения оксида магния из морской воды и рапы соляных озер достаточно хорошо отработана и широко внедрена не только в США, но и Великобритании, Германии, Мексике и др. странах. В России производство оксида магния по описанной технологии отсутствует, а оксид магния получают из магнезита содовым способом. Недостатками всех вариантов промышленных технологий является загрязнение атмосферы промышленными газами, содержащими СО2 и НСl, и сброс маточных растворов, обогащенных СаСl2. В книге Акчурин Т.К. Ананьина С.А., Никитин И.И. Перспективы освоения и технологии переработки бимофита Волгоградских месторождений, Волгоград: ВолгГАСА, с. 93-105, описана технология получения высококачественных магнезий из рассола бишофита известковым способом. В предлагаемой технологии для осаждения магния предпочтительным является использование доломитизированных известняков (доломита). Доломит измельчается и подвергается обжигу при 850-950oС. Доломитизированные извести требуют гашения в две стадии: в пушонку в барабанном гидраторе и в молоко - в термомеханической известегасилке при добавлении 2-3 частей воды на 1 часть извести. По массе концентрация известкового молока, идущего на осаждение магния, доводится до 10% СаОакт. Процесс осаждения магния осуществляют из раствора бишофита (~460 г/л MgCl2) после его разбавления в 4-5 раз. Причем в первый реактор подают четвертую часть известкового молока от нормы по стехиометрии реакции, а общее количество известкового молока составляет 95-100% СаОакт. Из второго реактора пульпа поступает в сгустители Дорра. Отработанный хлоркальциевый маточный раствор частично используется для обессульфачивания исходного раствора, остальное количество сбрасывается в накопитель. Для улучшения уплотнения пульпы и фильтрационных свойств пульпы в магнезиальную пульпу в конце осаждения вводят флокулянт (полиакриламид - ПАА или его заменители 0,25-0,50 кг/т МgО). Промывка осадка осуществляется репульпацией в воде с промежуточным отжимом на фильтре. Продуктом является отжатая на фильтре влажная паста Мg(ОН)2, предназначенная для производства различных сортов магнезии. Для получения основного карбоната магния пульпу после сгущения подвергают карбонизации диоксидом углерода. Для этого отходящие газы шахтных печей, содержащие 40-50% СО2, направляют в автоклав, и под давлением 0,5-0,6 МПа осадок Мg(ОН)2 переходит в раствор бикарбоната магния. Во избежание выделения в осадок карбоната магния при получении бикарбоната магния температура карбонизации не должна превышать 26oС. Бикарбонатный раствор отфильтровывают от твердых примесей и разлагают, нагревая его паром при перемешивании до 45-50oС (лучше до кипения). Продукт разложения выпадает в осадок в виде магнезии углекислой: 3МgСО3.Мg(OH)23Н2О. Полученный основной карбонат магния отделяют, высушивают в сушилке кипящего слоя с получением магнезии альба (плотность 0,25-0,28 г/см3). При прокаливании гидроксида магния или основного карбоната магния в печи кипящего слоя при 500-600oС получают жженую магнезию - МgО (насыпная плотность 0,55 г/см3). При прокаливании пасты гидроксида магния при 1650-1800oС во вращающихся печах в присутствии железа получают оксид магния (периклаз) для огнеупоров (насыпная плотность 1,9 г/см3). Побочный продукт производства - отработанный хлоркальциевый рассол из сгустителей предлагается использовать в производстве алинитового цемента. Применение каталитической добавки для синтеза цементного клинкера позволяет не только снизить температуру обжига на 300-400oС, но и увеличить производительность печных агрегатов. Недостатком способа является использование только растворов бишофита, не содержащего хлорид кальция, а также привязка его к цементному производству для организации безотходного производства. По технической сущности и достигаемому результату этот способ наиболее близок к заявляемому и принят нами в качестве прототипа. Техническим результатом способа является вовлечение в промышленный оборот нового вида сырья - подземных высокоминерализованных рассолов Сибири, обогащенных МgСl2 и СаСl2. Учитывая, что рассолы хлоридного кальциевого типа содержат кроме указанных солей уникальные количества брома и лития, комплексное освоение такого сырьевого источника позволит значительно сократить стоимость получаемых продуктов, в том числе и магниевых. Сырье указанного типа для получения магниевых продуктов предлагается впервые. Промышленно перерабатываемые рассолы для получения оксида магния, как правило, относятся к рассолам хлоридного или хлоридно-сульфатного натриевого типа, в которых содержания кальция невелики, от 0 до ~60 г/л. Для получения оксида магния добываемый из подземных горизонтов высокоминерализованный рассол (температура рассола в пласте 20-40oС с концентрацией хлорида кальция 60-350 г/л, общая минерализация 520-590 г/л), пересыщенный по содержанию СаСl2, охлаждают до +18oС


СаСО3-->СаО+СО2 (1);
СаМg(СО3)2-->СаО+МgО+2СО2 (2). Процесс гашения представляет собой взаимодействие извести и оксида магния с водой:
СаО+Н2О=Са(ОН)2 (3);
MgO+H2О=Mg(ОН)2 (4). Осаждение гидроксида магния обожженным доломитизированным известняком происходит по реакции:
MgCl2+Ca(OH)2+Mg(OH)2=2Mg(ОН)2+СаСl2 (5). Исходя из реакции 5, при осаждении магния обожженным доломитом количество гидроксида магния увеличивается в два раза, а содержание его в пульпе после осаждения магния из разбавленного рассола составит 2,3-2,5 кгэкв/м3, что является оптимальным при осаждении Mg(ОН)2 в процессе сгущения пульпы. Раствор после сгущения пульпы, представляющий собой практически чистый раствор хлорида кальция (до 95% СаСl2 от суммы солей), используется для растворения кристаллов СаСl2


Мg(ОН)2+2СО2=Мg(НСО3)2 (6). Эта операция кроме технологической несет еще и экологическую нагрузку, т. к. утилизируется углекислый газ обжиговых шахтных печей (реакции 1, 2) и СO2, образующийся в процессе осаждения магнезии углекислой:

Таким образом, основными отличительными признаками способа являются:
1. использование высокоминерализованных рассолов хлоридного кальциевого типа, обогащенных кальцием и магнием;
2. снижение содержания хлорида кальция в рассоле за счет самопроизвольной кристаллизации CaCl2

3. использование рассолов хлорида кальция, образовавшихся после осаждения Мg(ОН)2, для растворения кристаллов СаСl2

4. использование доломитизированного известняка (доломита), содержащего 5-9% недожога (карбонатов кальция и магния);
5. отделение недожога и других примесей в процессе карбонизации пульпы Мg(ОН)2, а именно после отделения магнезии углекислой, что позволяет получать оксид магния высокой чистоты (содержание СаО

Фиг.1 - технологическая схема реализации способа. Фиг.2 - политерма кристаллизации CaCl2

а - исходный рассол + обожженный известняк;
б - исходный рассол + обожженный известняк с введением ПАА;
в - разбавленный рассол ( 4) + обожженный известняк;
г - разбавленный рассол ( 4) + обожженный доломит;
д - разбавленный рассол ( 4) + обожженный доломит с введенным ПАА. Фиг. 5 - зависимость степени освоения CO2 (











1. СаО - 89,6; МgО - 1,6, примеси (недожог) СаСО3, МgСО3, SiO2, Fе2О3 - 8,9%;
2. СаО - 53,7; МgО - 41,2, примеси (недожог) СаСО3, МgСО3, SiO3, Fе2O3 - 5,1%. Гашение полученной извести проводили в две стадии: на первой продукт обжига заливали водой и выдерживали в течение 2-х часов, на второй стадии осуществляли растирание полученной пасты в ступке, крупные частицы отделяли через капроновую сетку. Полученную пасту доводили водой до получения известково-магнезиального молока с содержанием СаОакт. - 10%. Для каждой порции рассола готовили отдельную порцию известкового молока. Пример 3. Осаждение магния из порции рассола 4 в количестве 100 мл. Для осаждения использовали 14,1 г обожженного доломита (пример 2, состав 2), который заливали 66 мл воды и после 2-х часов выстаивания растирали в ступке, процеженную известково-магнезиальную смесь (10% СаОакт) медленно (в течение часа) вводили в рассол при перемешивании, после чего в реакционную смесь добавляли ПАА из расчета 6 мг/г Mg(OH)2. Полученный осадок сгущали в цилиндре, уплотнение пульпы


а - из рассола 1 с использованием известняка (табл. 2, состав 1);
б - из рассола 1 с использованием известняка при добавлении ПАА;
в - из рассола 4 с использованием известняка (табл. 2, состав 1);
г - из рассола 4 с использованием доломита (табл. 2, состав 2). На фиг.4 приведены кривые осаждения Mg(OH)2, полученного в разных условиях. Из сравнения кривых осаждения а, б, в, г с кривой д видно, что лучшие условия для седиментации осадка достигаются при использовании разбавленного рассола ( 4) и обожженного доломита при наличии в нем "недожога" в количестве ~ 5,6% (кривая г) или известняка при содержании его в составе "недожога" в количестве ~ 9% (кривая в). В рассолах без разбавления ( 1, табл. 1) седиментация осадков Mg(OH)2 чрезвычайно мала (кривая а) и уплотнение пульпы


3 МgСО3









1. Величина водородного показателя (рН) - 7,5;
2. Плотность, кг/м1 - 1302;
3. Условная вязкость, с - 84;
4. Статическое напряжение сдвига, gПас - 1,2 через 1 мин, 2,4 через 10 мин;
5. Вязкость пластическая, gПac - 0,45;
6. Показатель фильтрации, см3/за 30 мин - 11. По заключению специалистов рассол после осаждения Mg(ОН)2 и укрепления кристаллогидратом CaCl2

Предлагаемый способ получения оксида магния позволяет использовать подземные рассолы, обогащенные MgCl2 с высокой минерализацией и любым содержанием, хлорида кальция в их составе. Сырье такого типа широко распространено в пределах Сибирской платформы и содержит в своем составе уникальные концентрации хлорида лития (до 3 г/л) и брома (до 11 г/л). Комплексная переработка указанных рассолов позволит удешевить получение как оксида магния с содержанием оксида кальция 0,1-0,5%, так и остродефицитного брома и соединений лития. Учитывая, что после распада СССР практически все бромное и магниевое гидроминеральное сырье осталось за пределами России (Украина, Азербайджан, Туркмения), освоение предлагаемого вида сырья является весьма актуальным. Созданы промышленные технологии извлечения из них брома (патент 2108963, положительное решение по заявке 98123657) и лития (патенты 2050330, 2157338, 2157339). Предлагаемый способ получения оксида магния с одновременным получением тяжелых солевых растворов для бурения позволит осуществить комплексную переработку высокоминерализованных рассолов и обеспечить литиевыми, магниевыми и бромными продуктами не только восточные районы страны, но и закрыть дефицит по многим позициям в целом по стране. Буровые растворы на основе СаСl2 необходимы при бурении на нефть и газ, которое широко осуществляется в настоящее время в местах распространения рассолов (Восточная Сибирь).
Класс C01F5/06 термическим разложением соединений магния