способ окисления органических соединений в присутствии пероксида водорода (варианты)

Классы МПК:C07B33/00 Окисление вообще
C02F1/72 окислением
B01J23/745 железо
B01J21/12 диоксид кремния и оксид алюминия
Автор(ы):, , ,
Патентообладатель(и):Институт катализа им. Г.К. Борескова Сибирского отделения Российской Академии наук (RU)
Приоритеты:
подача заявки:
2005-12-21
публикация патента:

Изобретение относится к способам окисления органических соединений, в том числе токсичных, в водных средах в присутствии пероксида водорода и может быть использовано для очистки сточных вод различных производств или химических лабораторий. Описан способ окисления органических соединений в водных растворах в присутствии пероксида водорода и катализатора на основе твердофазных железосодержащих алюмосиликатов, в котором катализатор в виде порошка (размер частиц от 20 нм до 0.1 мм), гранул (размер частиц не менее 0.1 мм), или порошка, нанесенного на пористый носитель или на гранулы активированного угля, предварительно активируют путем обработки его водными растворами органических или неорганических кислот. Раствор пероксида водорода можно добавлять в водный раствор органических соединений порциями через определенные промежутки времени в процессе реакции. Технический результат - полное окисление органических веществ пероксидом водорода в воде и интенсификация процесса окисления. 2 н. и 17 з.п. ф-лы.

(56) (продолжение):

CLASS="b560m"61, Issue 7, November 2005, Pages 909-922. RU 2202532 C2, 20.04.2003. G.Calleja, J.A.Melero, F.Martinez and R.Molina. Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol. Water Research, Volume 39, Issue 9, May 2005, Pages 1741-1750. RU 2256498 C1, 20.07.2005. Gabriele Centi, Siglinda Perathoner, Teresa Torre and Maria Grazia Verduna. Catalytic wet oxidation with H2O2 of carboxylic acids on homogeneous and heterogeneous Fenton-type catalysts. Catalysis Today, Volume 55, Issues 1-2, 5 January 2000, Pages 61-69. N.Al-Hayek and M.Dore. Oxydation des phenols par le peroxyde d'hydrogene en milieu aqueux en presence de fer supporte sur alumine: en Oxidation of phenols in water by hydrogen peroxide on alumine supported iron. Water Research, Volume 24, Issue 8, August 1990, Pages 973-982. WO 9422772 A1, 13.10.1994. GB 1140913 A, 22.01.1969.

Формула изобретения

1. Способ окисления органических соединений в водных растворах в присутствии пероксида водорода и катализатора на основе твердофазных железосодержащих алюмосиликатов, отличающийся тем, что катализатор в виде порошка, гранул, или порошка, нанесенного на пористый носитель или на гранулы активированного угля предварительно активируют путем обработки его водными растворами органических или неорганических кислот.

2. Способ по п.1, отличающийся тем, что в качестве кислоты для активации катализатора может быть использована щавелевая, муравьиная, уксусная, хлороводородная, азотная или серная кислоты или любая их смесь.

3. Способ по п.2, отличающийся тем, что суммарная концентрация кислот в обрабатываемом растворе может быть от 10-7 до 102 моль/л.

4. Способ по любому из пп.1 и 2, отличающийся тем, что обработку катализатора раствором кислоты проводят при температуре от 0 до 100°С.

5. Способ по любому из пп.1 и 2, отличающийся тем, что обработку катализатора раствором кислоты проводят в течение от 1 мин до 100 ч.

6. Способ по любому из пп.1 и 2, отличающийся тем, что обработку катализатора раствором кислоты проводят при соотношении масса катализатора (г):объем раствора (мл) = 10-5÷100.

7. Способ по п.1, отличающийся тем, что в качестве пористого носителя могут быть использованы пористая керамика с открытым типом пор, стеклоткань, пористые металлы.

8. Способ по п.8, отличающийся тем, что размер пор в пористом носителе может быть от 0,1 до 10 мм.

9. Способ по п.1, отличающийся тем, что размер гранул активированного угля может быть от 1 до 50 мм.

10. Способ по 1, отличающийся тем, что в качестве связующего вещества для изготовления гранул активированного угля с цеолитом можно использовать глину, оксид алюминия, оксид титана, оксид кремния.

11. Способ по п.1, отличающийся, тем, что массовое содержание катализатора в гранулах варьируется от 1 до 100%.

12. Способ окисления органических соединений в водных растворах в присутствии пероксида водорода и катализатора на основе твердофазных железосодержащих алюмосиликатов, отличающийся тем, что катализатор в виде порошка, гранул, порошка, нанесенного на пористый носитель, предварительно активируют путем обработки его водными растворами органических или неорганических кислот, а раствор пероксида водорода добавляют в водный раствор органических соединений порциями через определенные промежутки времени в процессе реакции.

13. Способ по п.12, отличающийся тем, что раствор пероксида водорода добавляют в водный раствор органических соединений через каждые 0.1÷24 ч окислительной реакции.

14. Способ по п.12, отличающийся тем, что в водный раствор органических соединений добавляют раствор пероксида водорода с концентрацией от 10 -5 до 15 Моль/л.

15. Способ по п.12, отличающийся тем, что в качестве кислоты для активации катализатора может быть использована щавелевая, муравьиная, уксусная, хлороводородная, азотная или серная кислоты или любая их смесь.

16. Способ по п.12, отличающийся тем, что суммарная концентрация кислот в обрабатываемом растворе может быть от 10-7 до 102 моль/л.

17. Способ по п.12, отличающийся тем, что обработку катализатора раствором кислоты проводят при температуре от 0 до 100°С.

18. Способ по п.12, отличающийся тем, что обработку катализатора раствором кислоты проводят в течение от 1 мин до 100 ч.

19. Способ по п.12, отличающийся тем, что обработку катализатора раствором кислоты проводят при соотношении масса катализатора (г):объем раствора (мл) = 10-5÷100.

Описание изобретения к патенту

Изобретение относится к способам окисления органических соединений в водных средах в присутствии пероксида водорода. Использование данного способа в процессах очистки водных растворов является хорошей альтернативой традиционным способам очистки, т.к. не требует высоких температур и давлений, а окисляющий агент - пероксид водорода - не дает вредных побочных продуктов и является "экологически чистым" реагентом. Изобретение может быть использовано для очистки сточных вод производства и базисных складов хранения боевых отравляющих веществ, химических средств защиты растений, а также сточных вод химико-фармацевтической промышленности или сливов токсичных растворов химических лабораторий.

В большинстве случаев для данного процесса применяют гомогенные катализаторы (соли железа или т.н. реактив Фентона) (Fenton H.J.H., Oxidation of tartaric acid in presence of iron. J. Chem. Soc., 1894, 65, 899-910), ускоряющие реакции разложения пероксида водорода и окисления органических веществ. Однако на гомогенных катализаторах данные реакции можно осуществлять только в кислых средах (pHспособ окисления органических соединений в присутствии пероксида   водорода (варианты), патент № 2301790 3), нельзя достичь полной минерализации и избавиться от ионов железа в растворе после реакции. Кроме того, в ряде случаев каталитически активные ионы железа подвергаются комплексообразованию образующимися продуктами окисления, в результате чего происходит дезактивация катализатора, и процесс окисления прекращается.

Многие описанные проблемы реакции Фентона могут быть решены при использовании твердофазных железосодержащих катализаторов, например: металлического железа (F.Lucking, H.Kozer, M.Jank, A.Ritter. Iron powder, graphite and activated carbon as catalysts for oxidation of 4-chlorophenol with hudrogen peroxide in aqueous solution. Water Research, 32, 9, 2607-2614, 1998), оксидов железа (S.Chou, C.Huang. Application of a supported iron oxyhydroxide catalyst in oxidation of benzoic acid by hydrogen peroxide. Chemosphere, 38, 12, 2719-2131, 1999) и ионов железа, нанесенных на алюмосиликаты (J.Barrault, J.M.Tatibouet, N.Papayannakos. Catalytic wet peroxide oxidation of phenol over pillared clays containing iron or copper species. C.R. Acad. Sci. Paris, Serie Iic., Chimie/Chemistry, 3, 777-783, 2000) или на углерод (T.Yuranova, O.Enea, E.Mielczarski, J.Mielczarski, P.Albers, J.Kiwi. Fenton immobilized photo-assisted catalysis through a Fe/C structured fabrics. Applied Catalysis B: Environmental, 49, 39-50, 2004). Однако металлическое железо активно в реакции разложения Н2О 2 и окисления органических веществ только в результате окисления металла и смывания ионов железа в раствор. При этом концентрация гомогенных ионов железа при pH 3 достигает 7·10 -3 Моль/л, что более чем на два порядка превышает допустимую концентрацию железа в сливных очищаемых растворах. В случае оксидов железа смывание ионов железа значительно ниже, однако процесс разрушения катализатора заметно ускоряется при увеличении кислотности и концентрации пероксида водорода. Система Fe/углерод хороша тем, что совмещает в себе большую адсорбционную емкость и способность разлагать пероксид водорода с образованием активных ОН-радикалов, однако в действительности ее активность недостаточно высока. Так, при окислении 4-хлорфенола с концентрацией 1 г/л его 30-40%-ная минерализация в системе Fe/углерод происходит за 100-200 ч.

Наиболее близким является способ окисления органических соединений в присутствии твердофазного железосодержащего цеолита FeZSM-5 (K.Fajerwerg, H.Debellefontaine. Wet oxidation of phenol by hydrogen peroxide using heterogeneous catalysis. A promising catalyst: "FeZSM-5". Applied Catalysis B: Environmental, 10, L229-L235, 1996). Твердофазные цеолиты, содержащие в своем составе ионы железа, позволяют проводить реакции окисления при комнатных температурах, в широком диапазоне pH, при любых концентрациях пероксида водорода и не загрязняют очищаемый раствор ионами железа.

Недостатком метода является неполное окисление органического вещества и недостаточная интенсивность процесса. Данный недостаток связан, во-первых, с малой активностью катализатора и, во-вторых, с особенностью использования пероксида водорода в реакциях окисления органических веществ. Особенность заключается в том, что скорость разложения пероксида водорода на железосодержащих центрах катализатора значительно превышает скорость окисления органических соединений ОН-радикалами, которые образуются в процессе разложения Н 2O2. Это приводит к тому, что более 90% пероксида водорода подвергается разложению с образованием молекулярного кислорода и воды и только малая часть H 2O2 расходуется на целевую окислительную реакцию.

Кроме того, цеолитный катализатор FeZSM-5 представляет собой мелкокристаллический порошок с размером частиц в несколько микрон. В результате очистка воды в проточной системе с использованием порошкового цеолита без специальных приспособлений практически невозможна из-за трудности отделения взвеси катализатора от раствора.

Данное изобретение решает задачу интенсификации процесса окисления органических веществ пероксидом водорода в воде и их полного окисления в присутствии твердофазных железосодержащих алюмосиликатов, проводимых в статическом или проточном режимах.

Для решения задачи предлагается способ окисления органических соединений в водных растворах в присутствии пероксида водорода и катализатора на основе твердофазных железосодержащих алюмосиликатов, по которому катализатор в виде порошка, гранул или порошка, нанесенного на пористый носитель или на гранулы активированного угля, предварительно активируют путем обработки его водными растворами органических или неорганических кислот (первый вариант).

Используют следующие технические термины: порошок - частицы материала, имеющие характерный размер от 20 нм до 0.1 мм. Гранулы - частицы размером не менее 0.1 мм.

Процесс активации катализатора кислотой, по-видимому, состоит в формировании мелкодисперсных железосодержащих частиц (размером 2-6 нм) в составе алюмосиликата, имеющих большую каталитическую активность, под воздействием кислоты на алюмосиликат. Важными для активации параметрами являются отношение количества кислоты к количеству содержащегося в алюмосиликате железа, температура и время обработки. Т.к. в различных алюмосиликатах содержание железа варьируется, то данные параметры также могут быть различными.

В качестве кислоты для активации катализатора может быть использована щавелевая, муравьиная, уксусная, хлороводородная, азотная или серная кислоты или любая их смесь, суммарная концентрация кислот в обрабатываемом растворе может быть от 10-7 до 102 моль/л.

Обработку катализатора раствором кислоты проводят при температуре от 0 до 100°С в течение от 1 мин до 100 ч.

Обработку катализатора раствором кислоты проводят при соотношении масса катализатора (г):объем раствора (миллилитры) = 10-5÷100.

Для использования катализатора в проточной системе предлагается фиксировать катализатор в рабочем слое путем нанесения порошкового катализатора на основе железосодержащего алюмосиликата на пористый носитель, на гранулы активированного угля или гранулировать порошок с использованием, например, глины или оксида алюминия.

В качестве пористого носителя могут быть использованы пористая керамика с открытым типом пор, стеклоткань, пористые металлы, размер пор в пористом носителе может быть от 0.1 до 10 мм.

Размер гранул активированного угля может быть от 1 до 50 мм. В качестве связующего вещества для изготовления гранул активированного угля с цеолитом можно использовать глину, оксид алюминия, оксид титана, оксид кремния.

Массовое содержание катализатора в гранулах варьируется от 1 до 100%.

Предложен также способ окисления органических соединений в водных растворах в присутствии пероксида водорода и катализатора на основе твердофазных железосодержащих алюмосиликатов, по которому катализатор в виде порошка, гранул, порошка, нанесенного на пористый носитель, предварительно активируют путем обработки его водными растворами органических или неорганических кислот, а раствор пероксида водорода добавляют в очищаемый раствор порциями через определенные промежутки времени в процессе реакции (второй вариант).

Раствор пероксида водорода добавляют в очищаемый раствор через каждые 0.1÷24 ч окислительной реакции с концентрацией от 10-5 до 15 Моль/л.

Обработку кислотой проводят как описано выше.

Примеры 2-20 иллюстрируют первый вариант способа окисления.

Примеры 21-23 иллюстрируют второй вариант способа окисления.

Пример 1 (сравнительный). Неактивированный железосодержащий цеолит готовят гидротермальным способом при температуре 165°С с использованием частично деалюминированного силикагеля (молотая крошка), щелочи, соли железа и тетрабутиламмония бромида в качестве органического темплата. Расчетное мольное соотношение смеси в пересчете на оксиды соответствует формуле 0.10 Na2O·0.11ТВАBr·1SiO 2·25Н2O·0.014Fe 2O3. Продолжительность кристаллизации 3 суток. После синтеза образец отфильтровывают, промывают дистиллированной водой до pH 8.0, просушивают на воздухе и прокаливают при 550°С в течение 3-3.5 ч. Полученный таким образом образец содержит согласно химическому анализу, мас.%: 1.2 Na2 O, 0.15 Al2О3, 71.3 SiO2, 4.65 Fe2O 3. По данным рентгенограммы получаемый катализатор содержит чистую фазу цеолита типа ZSM-5.

Далее проводят реакцию окисления этилового спирта до CO2 и H 2O в водном растворе при 35°С и pH 5.5 с концентрацией этанола 5.8·10-3 Моль/л, пероксида водорода - 2.6·10-1 Моль/л и катализатора FeZSM-5 - 15 г/л.

Скорость выделения CO 2 составляет 2·10-5 МольСО 2/(л·мин), степень конверсии этанола после завершения реакции в данных условиях равна 70%. Скорость разложения пероксида водорода в тех же условиях, но в отсутствие этанола, составляет 3·10-4 МольО2 /(л·мин).

Пример 2. Аналогичен примеру 1, но катализатор перед испытаниями активируют обработкой раствором щавелевой кислоты. Обработку проводят в растворах кислоты с концентрацией 1.1 Моль/л, при 50°С, при соотношении катализатор (г):раствор (мл) = 0.1, в течение 3 ч.

Скорость выделения CO 2 равна 2.7·10-4 МольСО 2/(л·мин), в течение 90 мин происходит полная минерализация этанола. Скорость разложения пероксида водорода в тех же условиях, но в отсутствие этанола, составляет 3.3·10 -3 МольО2/(л·мин).

В процессе многократного использования данного катализатора концентрация железа в нем практически не изменяется: 1.52 мас.% Fe на исходном катализаторе и 1.45 мас.% после десяти повторных реакций окисления. Концентрация ионов железа в очищаемом растворе, как результат смывания железа с катализатора, не превышает 2·10 -5 Моль/л в течение всех десяти реакций.

Пример 3. Аналогичен примеру 2, но для обработки катализатора кислотой используют соотношение катализатор (г):раствор кислоты (мл) = 10.

Скорость выделения CO2 при окислении этанола составляет 2.5·10-4 МольСО 2/(л·мин).

Пример 4. Аналогичен примеру 2, но вместо щавелевой кислоты для обработки катализатора используют муравьиную кислоту.

Скорость выделения CO 2 при окислении этанола составляет 2·10 -4 МольСО2/(л·мин), время полной минерализации 100 мин.

Пример 5. Аналогичен примеру 2, но вместо щавелевой кислоты для обработки катализатора используют хлороводородную кислоту.

Скорость выделения CO 2 при окислении этанола составляет 1.5·10 -4 МольСО2/(л·мин), время полной минерализации 2 ч.

Пример 6. Аналогичен примеру 2, но вместо этанола в качестве окисляемого субстрата используют бензол с концентрацией 4.5·10-3 Моль/л.

Скорость выделения CO2 при окислении бензола составляет 3.0·10-4 МольСО 2/(л·мин)

Пример 7. Аналогичен примеру 2, но вместо цеолита в качестве катализатора используют диоксид титана (имеющего фазу анатаз).

Скорость выделения CO 2 при окислении этанола составляет менее 1.0·10 -6 МольСО2/(л·мин).

Пример 8. Аналогичен примеру 2, но вместо этанола в качестве окисляемого субстрата используют 1,1-диметилгидразин (НДМГ), или т.н. гептил, который является компонентом жидкого ракетного топлива. Очистку раствора осуществляют в следующих условиях: комнатная температура, pH 7.4, концентрация пероксида водорода - 1.86 Моль/л, начальная концентрация НДМГ - 1.5·10-2 Моль/л и катализатора FeZSM-5 - 15 г/л.

Скорость выделения CO 2 составляет 2.4·10-4 МольСО 2/(л·мин), 93%-ная минерализация НДМГ происходит за 2.5 ч.

Пример 9. Аналогичен примеру 8, но начальное значение pH раствора составляет 9.3. За 1.5 ч окислительной реакции происходит 25%-ная минерализация НДМГ.

Пример 10. Аналогичен примеру 8, но начальное значение pH раствора равно 1. Скорость выделения CO2 составляет 5.6·10 -5 МольСО2/(л·мин), за 1.5 ч окислительной реакции происходит 27%-ная минерализация НДМГ.

Пример 11. Аналогичен примеру 2, но в качестве катализатора вместо FeZSM-5 используют FeZSM-11, содержащий 1.18 мас.% Fe 2O3.

Скорость окисления этанола составляет 9.3·10-6 МольСО 2/(л·мин), скорость разложения пероксида водорода в отсутствие этанола составляет 3.7·10-4 МольО2/(л·мин).

Пример 12. Аналогичен примеру 2, но в качестве катализатора вместо FeZSM-5 используют железосодержащую глину.

Скорость окисления этанола составляет 7.0·10-6 МольСО 2/(л·мин), скорость разложения пероксида водорода в отсутствие этанола составляет 2.1·10-4 МольО2/(л·мин).

Пример 13. Катализатор, представляющий собой порошок FeZSM-5, после предварительной активации по способу, описанному в примере 2, наносят на пористую керамику, которую помещают в проточно-циркуляционный реактор. Далее проводят окисление этилового спирта до CO 2 и Н2O в водном растворе при комнатной температуре в данном реакторе с концентрацией этанола 1·10 -2 Моль/л (что соответствует 2.4·10 -1 г/л растворенного органического углерода) и пероксида водорода - 1 Моль/л. Раствор окисляемого вещества и пероксида водорода подают в реактор с помощью перистальтического насоса, из реактора смесь попадает в стакан, из которого раствор вновь перекачивают в реактор. Общий объем раствора составляет 0.3 л, масса керамики с нанесенным катализатором - 7 г. Через 8 ч работы реактора концентрация растворенного органического углерода составляет 3·10-2 г/л, т.е. степень минерализации за это время равна 88%.

Данная проточно-циркуляционная система не теряет своей активности при повторных загрузках в нее загрязненного раствора, например, после 6-ти загрузок раствора этанола с концентрацией 1·10-2 Моль/л (2.4·10-1 гC /л) скорость очистки смеси от растворенного органического углерода не уменьшается и составляет 2.6·10-2 г/(л·ч).

Пример 14. Аналогичен примеру 13, но катализатор в виде порошка FeZSM-5, предварительно активированного по способу, описанному в примере 2, наносят на стеклоткань, которую помещают в проточно-циркуляционный реактор. Общий объем очищаемого раствора составляет 0.3 л, масса стеклоткани с катализатором - 10 г. Через 8 ч работы реактора концентрация растворенного органического углерода составляет 4·10-2 г/л, т.е. степень минерализации за это время равна 83%.

Пример 15. Аналогичен примеру 13, но катализатор в виде порошка FeZSM-5, предварительно активированного по способу, описанному в примере 2, наносят на пористый никель, который помещают в проточно-циркуляционный реактор. Общий объем очищаемого раствора составляет 0.3 л, масса пористого металла с катализатором - 30 г.

Через 8 ч работы реактора концентрация растворенного органического углерода составляет 4.5·10-2 г/л, т.е. степень минерализации за это время равна 81%.

Пример 16. Аналогичен примеру 13, но катализатор в виде порошка FeZSM-5, предварительно активированного по способу, описанному в примере 2, смешивается с глиной и подвергают гранулированию с последующей прокалкой при 550°С в течение 3 ч. Характерный размер гранул 2×5 мм, толщина реакционного слоя 7 см, массовое содержание катализатора 50%, масса гранул с катализатором - 26 г, начальная концентрация этанола - 1·10 -2 Моль/л (2.4·10-1 г C/л), общий объем раствора - 300 мл.

Через 7 ч работы реактора концентрация растворенного органического углерода составляет 2·10-2 г/л, т.е. степень минерализации за это время равна 92%. Данная проточно-циркуляционная система также не теряет своей активности при повторных загрузках в нее загрязненного раствора. Например, после 6-ти загрузок раствора этанола с концентрацией 1·10-2 Моль/л (2.4·10-1 гC /л) 92%-ная минерализация этанола происходит за 7 ч.

Пример 17. Аналогичен примеру 16, но в качестве окисляемого субстрата используют НДМГ. Через 5.5 ч реакции степень минерализации НДМГ составляет 90%.

Пример 18. Аналогичен примеру 13, но катализатор в виде порошка FeZSM-5, предварительно активированного по способу, описанному в примере 2, наносят на активированный уголь марки АР-Б, представляющий собой цилиндрические гранулы с размером 3-4 мм. Толщина реакционного слоя 7 см, массовое содержание катализатора 20%, масса гранул с катализатором - 20 г, начальная концентрация этанола - 1·10-2 Моль/л (2.4·10 -1 гC/л), общий объем раствора - 300 мл.

Через 7 ч работы реактора концентрация растворенного органического углерода составляет 1·10-2 г/л, т.е. степень минерализации за это время равна 96%.

Пример 19. Аналогичен примеру 16, но катализатор активируют после гранулирования путем обработки гранул раствором щавелевой кислоты с концентрацией 1.1 Моль/л, при 50°С, при соотношении гранулы (г):раствор (мл) = 0.1, в течение 3 ч. За 5 ч работы реактора степень минерализации этанола составляет 90%.

Пример 20. Аналогичен примеру 16, но катализатор активируют при соотношении гранулы (г):раствор (мл) = 50. За 5 ч работы реактора степень минерализации этанола составляет 90%.

Пример 21. Аналогичен примеру 16, но пероксид водорода подают в стакан порциями (по 7 мл 9.8 М раствора H2O 2): через 1 ч после подачи раствора в реактор, затем 4 раза каждый час.

Через 5 ч реакции степень минерализации этанола составляет 95%.

Пример 22. Аналогичен примеру 2, но пероксид водорода подают в статической реактор с порошковым катализатором порциями: по 1 мл 9.8 М раствора Н 2О2 каждые 10 мин 5 раз.

Скорость выделения CO2 составляет 1.8·10 -5 МольСО2/(л·мин), степень минерализации этанола после завершения реакции в данных условиях равна 80%.

Пример 23. Аналогичен примеру 13, но пероксид водорода подают в стакан порциями (по 7 мл 9.8 М раствора Н 2O2): через 1 ч после подачи раствора в реактор, затем 6 раз каждый час.

Через 8 ч работы реактора концентрация растворенного органического углерода составляет 2·10-2 г/л, т.е. степень минерализации этанола за это время равна 92%.

Таким образом, данное изобретение позволяет проводить реакции окисления органических соединений в широком диапазоне pH без потери активности и стабильности катализатора, избежать дополнительного загрязнения очищаемых растворов ионами железа и кислотами, увеличивать эффективность использования пероксида водорода, а также позволяет фиксировать алюмосиликатный катализатор в потоке очищаемого раствора, что значительно облегчает процесс очистки воды и приводит к интенсификации процесса и полной минерализации органических соединений.

Класс C07B33/00 Окисление вообще

оптимизированное жидкофазное окисление -  патент 2388738 (10.05.2010)
способ окисления циклических алканов -  патент 2346920 (20.02.2009)
способ получения органических кислот и устройство для его осуществления -  патент 2342359 (27.12.2008)
окислительная колонна -  патент 2341506 (20.12.2008)
способ приготовления нанесенных полиметаллических катализаторов (варианты) -  патент 2294240 (27.02.2007)
способ приготовления титан-силикатного катализатора и способ жидкофазного окисления органических соединений -  патент 2229930 (10.06.2004)
способ (варианты) и установка для получения ароматических карбоновых кислот -  патент 2171798 (10.08.2001)
устройство автоматического поддержания технологического режима процесса окисления диацетон-l-сорбозы гипохлоритом натрия -  патент 2080649 (27.05.1997)
катализатор для окисления органических соединений и олигомеризации олефинов и способ его получения -  патент 2012396 (15.05.1994)

Класс C02F1/72 окислением

способ обеззараживания воды -  патент 2524944 (10.08.2014)
установка безреагентной очистки и обеззараживания воды -  патент 2524601 (27.07.2014)
способ очистки природной воды -  патент 2514963 (10.05.2014)
способ очистки воды -  патент 2502682 (27.12.2013)
способ разрушения аниона 1-гидроксиэтан-1,1-дифосфоновой кислоты в отходах производства -  патент 2500629 (10.12.2013)
способ обезвреживания отходов, содержащих углеводороды, с одновременным осаждением растворенных солей металлов и устройство для его осуществления -  патент 2485400 (20.06.2013)
способ глубокой очистки сточных вод от красителей -  патент 2480424 (27.04.2013)
способ очистки сточных вод от фенолов -  патент 2476384 (27.02.2013)
способ получения гранулы покрытого окисляющего вещества, полученная гранула и ее применение -  патент 2471848 (10.01.2013)
способ каталитического окисления аниона 1-гидроксиэтан-1,1-дифосфоновой кислоты в водном растворе -  патент 2460693 (10.09.2012)

Класс B01J23/745 железо

каталитическая система в процессе термолиза тяжелого нефтяного сырья и отходов добычи и переработки нефти -  патент 2524211 (27.07.2014)
катализатор для избирательного окисления монооксида углерода в смеси с аммиаком и способ его получения (варианты) -  патент 2515529 (10.05.2014)
катализатор для дегидрирования алкилароматических углеводородов -  патент 2509604 (20.03.2014)
способ получения каталитически активных магниторазделяемых наночастиц -  патент 2506998 (20.02.2014)
способ извлечения молибдена и церия из отработанных железооксидных катализаторов дегидрирования олефиновых и алкилароматических углеводородов -  патент 2504594 (20.01.2014)
мобильный катализатор удаления nox -  патент 2503498 (10.01.2014)
способ получения катализатора синтеза углеводородов и его применение в процессе синтеза углеводородов -  патент 2502559 (27.12.2013)
применение твердых веществ на основе феррита цинка в способе глубокого обессеривания кислородсодержащего сырья -  патент 2500791 (10.12.2013)
способ изготовления каталитически активных геометрических формованных изделий -  патент 2495719 (20.10.2013)
способ изготовления каталитически активных геометрических формованных изделий -  патент 2495718 (20.10.2013)

Класс B01J21/12 диоксид кремния и оксид алюминия

носители катализатора на основе силикагеля -  патент 2522595 (20.07.2014)
объединенный способ каталитичеcкого крекинга в псевдоожиженном слое катализатора для получения высококачественных углеводородных смесей в качестве топлива -  патент 2518119 (10.06.2014)
каталитическая добавка для повышения октанового числа бензина каталитического крекинга и способ ее приготовления -  патент 2516847 (20.05.2014)
катализатор для получения бутадиена превращением этанола -  патент 2514425 (27.04.2014)
катализатор окисления для оснащенных дизельным двигателем транспортных средств для перевозки пассажиров, грузов и для нетранспортных работ -  патент 2489206 (10.08.2013)
комплексный способ крекинга с псевдоожиженным катализатором для получения смесей углеводородов, обладающих высоким топливным качеством -  патент 2481388 (10.05.2013)
катализаторы гидрирования со связующими, имеющими низкую площадь поверхности -  патент 2480279 (27.04.2013)
катализатор синтеза фишера-тропша, способ его приготовления и применения -  патент 2478006 (27.03.2013)
катализатор синтеза фишера-тропша, его изготовление и применение -  патент 2477654 (20.03.2013)
катализатор, способ его приготовления и способ получения -пиколина -  патент 2474473 (10.02.2013)
Наверх