катализатор для гидроформилирования олефинов c 6+, способ его получения и способ получения альдегидов c7+

Классы МПК:B01J37/04 смешивание
B01J31/06 содержащие полимеры
B01J31/18 содержащие азот, фосфор, мышьяк или сурьму
C07C47/02 насыщенные соединения, содержащие -CHO группы, связанные с ациклическими атомами углерода или водородом 
C07C45/50 реакциями оксосинтеза
Автор(ы):, ,
Патентообладатель(и):ООО "Объединенный центр исследования и разработок" (RU)
Приоритеты:
подача заявки:
2006-12-27
публикация патента:

Изобретение относится к основному органическому, тонкому органическому и нефтехимическому синтезу и касается катализатора синтеза альдегидов С7+ из олефинов С6+ , окиси углерода и водорода методом гидроформилирования, способа получения указанного катализатора и способа получения альдегидов С7+ с использованием указанного катализатора. Описан катализатор гидроформилирования олефинов С 6+, содержащий комплексное соединение родия с полимерным азотсодержащим, включающим фосфорсодержащие фрагменты лигандом, при этом каждый указанный фрагмент содержит органические радикалы, по меньшей мере, один из которых связан с атомом азота полимерного азотсодержащего лиганда, а атом фосфора находится в степени окисления (III); способ получения катализатора гидроформилирования олефинов С6+, заключающийся в том, что азотсодержащий полимер подвергают взаимодействию в органическом растворителе с соединением фосфора в степени окисления (III), включающим органические радикалы, по меньшей мере, в одном из которых имеется группа - С(O)ОН, затем полученный продукт подвергают взаимодействию с соединением родия и удаляют органический растворитель; а также способ получения альдегидов С7+. Технический результат - повышение и сохранение удельной активности и региоселективности катализатора при рециркуляции, а также использование более низкого давления при получении альдегидов С7+. 3 н. и 8 з.п. ф-лы, 1 табл.

Формула изобретения

1. Катализатор гидроформилирования олефинов С 6+, содержащий комплексное соединение родия с полимерным азотсодержащим лигандом, включающим фосфорсодержащие фрагменты, при этом каждый указанный фрагмент содержит органические радикалы, по меньшей мере, один из которых связан с атомом азота полимерного азотсодержащего лиганда, а атом фосфора находится в степени окисления (III).

2. Катализатор по п.1, отличающийся тем, что фосфорсодержащий фрагмент имеет общую формулу

катализатор для гидроформилирования олефинов c<sub pos= 6+, способ его получения и способ получения альдегидов c7+, патент № 2320412" SRC="/images/patents/145/2320412/2320412-2.gif" BORDER="0" TI="CF" HE="17" WI="18">

где А, В, С - органические радикалы, по меньшей мере, один из которых связан с атомом азота полимерного азотсодержащего лиганда.

3. Способ получения катализатора гидроформилирования олефинов С6+, заключающийся в том, что азотсодержащий полимер подвергают взаимодействию в органическом растворителе с соединением фосфора в степени окисления (III), включающим органические радикалы, по меньшей мере, в одном из которых имеется группа -С(O)ОН, затем полученный продукт подвергают взаимодействию с соединением родия и удаляют органический растворитель.

4. Способ получения катализатора по п.3, отличающийся тем, что в качестве азотсодержащего полимера используют полиэтиленимин (ПЭИ) разветвленного строения с молекулярной массой приблизительно 10000 г/моль.

5. Способ получения катализатора по п.3, отличающийся тем, что соединение фосфора в степени окисления (III) имеет общую формулу

катализатор для гидроформилирования олефинов c<sub pos= 6+, способ его получения и способ получения альдегидов c7+, патент № 2320412" SRC="/images/patents/145/2320412/2320412-2.gif" BORDER="0" TI="CF" HE="17" WI="18">

где А, В, С - органические радикалы, по меньшей мере, в одном из которых имеется группа -С(O)ОН.

6. Способ получения катализатора по п.4, отличающийся тем, что массовое отношение ПЭИ/соединение фосфора составляет 20/1-10/1.

7. Способ получения катализатора по п.3, отличающийся тем, что в качестве соединения родия использован ацетилацетонат дикарбонил родия (I).

8. Способ получения катализатора по п.3, отличающийся тем, что мольное отношение фосфор/родий составляет 5/1-15/1.

9. Способ получения альдегидов С7+, включающий гидроформилирование олефинов С6+ окисью углерода и водорода при повышенных температуре и давлении в присутствии водного раствора катализатора, содержащего комплексное соединение родия с полимерным азотсодержащим, включающим фосфорсодержащие фрагменты лигандом, при этом каждый указанный фрагмент содержит органические радикалы, по меньшей мере, один из которых связан с атомом азота указанного лиганда, а атом фосфора находится в степени окисления (III).

10. Способ получения альдегидов С7+ по п.9, отличающийся тем, что в водном растворе родиевого катализатора массовое отношение воды к катализатору находится в интервале 200:1-100:1.

11. Способ получения альдегидов С7+ по п.9 или 10, отличающийся тем, что объемное отношение фаз - водная эмульсия/смесь олефинов С6+, альдегидов С7+ и органического растворителя составляет 2/1-4/1.

Описание изобретения к патенту

Область техники, к которой относится изобретение

Изобретение относится к основному органическому, тонкому органическому и нефтехимическому синтезу и касается катализатора синтеза альдегидов С7+ из олефинов С6+ , окиси углерода и водорода методом гидроформилирования, способа получения указанного катализатора и способа получения альдегидов С7+ с использованием указанного катализатора.

Уровень техники

Синтез высокомолекулярных (С 7+) алифатических альдегидов в основном проводится посредством гидроформилирования олефинов (С6+) с использованием кобальтовых катализаторов. Выбор кобальтовых катализаторов обусловлен их термостабильностью, что позволяет отделить от него продукты гидроформилирования простой дистилляцией. Недостатками данного катализатора являются: существенное гидрирование олефинов в парафины (3-10%), низкая региоселективность относительно продуктов линейного строения (<75%), а также необходимость использования «жестких» условий гидроформилирования (Ркатализатор для гидроформилирования олефинов c<sub pos= 6+, способ его получения и способ получения альдегидов c7+, патент № 2320412" SRC="" height=100 BORDER="0" ALIGN="absmiddle"> 20 МПа, Ткатализатор для гидроформилирования олефинов c<sub pos= 6+, способ его получения и способ получения альдегидов c7+, патент № 2320412" SRC="" height=100 BORDER="0" ALIGN="absmiddle"> 150°C).

Применение в промышленном масштабе родий-фосфиновых катализаторов гидроформилирования олефинов (С 6+), отличающихся от кобальтовых большей активностью и региоселективностью в отношении продуктов линейного строения, а также более «мягкими» условиями гидроформилирования (Ркатализатор для гидроформилирования олефинов c<sub pos= 6+, способ его получения и способ получения альдегидов c7+, патент № 2320412" SRC="" height=100 BORDER="0" ALIGN="absmiddle"> 2 МПа, Ткатализатор для гидроформилирования олефинов c<sub pos= 6+, способ его получения и способ получения альдегидов c7+, патент № 2320412" SRC="" height=100 BORDER="0" ALIGN="absmiddle"> 100°C), затруднено, поскольку родий-фосфиновые катализаторы гораздо менее термостабильны, что делает дистилляционные методы малопригодными для отделения продуктов реакции (альдегидов и спиртов С7+) от катализатора.

Для отделения продуктов гидроформилирования от родий-фосфиновых катализаторов гидроформилирования, кроме дистилляции, применяются так называемые «бифазные системы» - системы, состоящие из двух или более жидких фаз или становящиеся такими при определенных условиях, позволяющие отделить продукты гидроформилирования декантацией.

Известен водорастворимый рециркулируемый катализатор (Пат. США. № 4248802), состоящий из соединения родия и соли сульфированного фосфинового лиганда, позволяющий проводить синтез альдегидов в двухфазной системе и отделять декантацией водводный раствор катализатора от продуктов реакции. Однако такой катализатор малоприменим для гидроформилирования олефинов С6+ из-за их низкой растворимости в водной фазе.

Известен катализатор гидроформилирования олефинов С6+ (Патент РФ № 2059598 - прототип). Катализатор состоит из соединения родия и водорастворимого макролиганда - сополимера диметилдиаллиламмонийхлорида и диметилдиаллиламмонийдигидрофосфата и дополнительного модификатора Na3PO4 или Na 2SO4. Данная каталитическая система позволяет проводить двухфазный синтез альдегидов с последующим рециклом катализатора простой декантацией. Недостатком данного рециркулируемого катализатора является значительное падение активности при проведении рециклов катализатора, а также необходимость поддержания повышенного давления (не менее 5 МПа).

Известен способ получения катализатора гидроформилирования олефинов С 6+ (Патент РФ № 2059598 - прототип). Данный способ состоит во взаимодействии соединения родия с азотсодержащим соединением - сополимером диметилдиаллиламмонийхлорида и диметилдиаллиламмонийхлорида в присутствии n-ксилола и воды.

Данный способ не позволяет получить катализатор, обладающий требуемой активностью и рециркулируемостью в реакциях гидроформилирования.

Известен способ получения альдегидов С7+ (Патент РФ № 2059598 - прототип), заключающийся в том, что гидроформилирование олефинов С 6+ окисью углерода и водородом осуществляют при температуре 90°C и давлении 6 МПа в присутствии родиевого катализатора, содержащего полимерный азотсодержащий водорастворимый лиганд в виде сополимера диметилдиаллиламмонийхлорида и диметилдиаллиламмонийхлорида и диметилдиаллимаммонийдигидрофосфата. Однако такой способ обладает низкой скоростью гидроформилирования, требует повышенного давления, а также не позволяет достичь требуемой активности, региоселективности и рециркулируемости катализатора.

Раскрытие изобретения

Задачей изобретения является создание высокоэффективного и технологически простого в рециркуляции катализатора гидроформилирования олефинов С6+, способа его получения и способа получения альдегидов С7+ с использованием указанного катализатора.

Технический результат состоит в повышении и сохранении удельной активности и региоселективности катализатора при рециркуляции, возможности использования простой технологии его отделения от продуктов реакции при рециркуляции, а также катализатор обеспечивает возможность использования более низкого давления при получении альдегидов С7+ .

Технический результат достигается тем, что катализатор гидроформилирования олефинов С6+ содержит комплексное соединение родия с полимерным азотсодержащим лигандом, включающим фосфорсодержащие фрагменты, при этом каждый указанный фрагмент содержит органические радикалы, по меньшей мере, один из которых связан с атомом азота полимерного азотсодержащего лиганда, а атом фосфора находится в степени окисления (III).

Водный раствор катализатора обеспечивает создание устойчивой фазы - водной эмульсии, расслаивающейся с органической фазой субстрата и/или продукта, что позволяет проводить отделение продукта реакции после ее завершения от катализатора декантацией и повысить рециркулируемость катализатора (сохранить его удельную активность при проведении рециклов катализатора). Наличие эмульсионной фазы, в которой находится каталитический комплекс, обуславливает высокие значения скоростей гидроформилирования из-за развитой поверхности раздела фаз катализатора и субстрата, что снимает ограничения, связанные с транспортом субстрата к каталитически активному центру металла.

Введение в состав катализатора указанного фосфорсодержащего фрагмента, в котором атом фосфора находится в степени окисления (III), позволяет увеличить активность и региоселективность, а также значительно снизить давление, требуемое для получения альдегидов С7+ (до 1,5-3,5 МПа). Фосфорсодержащий фрагмент может иметь общую формулу:

катализатор для гидроформилирования олефинов c<sub pos= 6+, способ его получения и способ получения альдегидов c7+, патент № 2320412" SRC="" height=100 BORDER="0" TI="CF" HE="18" WI="16">

где А, В, С - органические радикалы, по меньшей мере, один из которых связан с атомом азота полимерного азотсодержащего лиганда.

В качестве комплексного соединения родия может быть использован ацетилацетонат дикарбонил родия (I) (Rh(acac)(CO) 2).

Технический результат достигается также реализацией способа получения катализатора гидроформилирования олефинов С 6+, заключающегося в том, что азотсодержащий полимер подвергают взаимодействию в органическом растворителе с соединением фосфора в степени окисления (III), включающим органические радикалы, по меньшей мере, в одном из которых имеется группа -С(O)ОН, затем полученный продукт подвергают взаимодействию с соединением родия и удаляют органический растворитель.

При осуществлении данного способа происходит химическое связывание азотсодержащего полимера с фосфорсодержащим соединением, в котором фосфор имеет степень окисления (III), включающим органические радикалы, по меньшей мере, в одном из которых имеется группа -С(O)ОН, что обеспечивает получение катализатора, обладающего повышенной удельной активностью и селективностью, технологическую простоту его отделения от продуктов реакции при рециркуляции, а также обеспечивает возможность использования более низкого давления при получении альдегидов С7+.

В качестве азотсодержащего полимера может использоваться полиэтиленимин (ПЭИ) разветвленного строения с молекулярной массой 10000 г/моль.

Фосфорсодержащее соединение может иметь общую формулу:

катализатор для гидроформилирования олефинов c<sub pos= 6+, способ его получения и способ получения альдегидов c7+, патент № 2320412" SRC="" height=100 BORDER="0" TI="CF" HE="18" WI="16">

где А, В, С - органические радикалы, по меньшей мере, в одном из которых имеется группа -С(O)ОН.

В частном случае массовое отношении ПЭИ/фосфорсодержащее соединение составляет 20/1-10/1 или массовое отношение азот/фосфор=142/1-70/1.

В качестве соединения родия может использоваться ацетилацетонат дикарбонил родия (I), нитрат родия, хлорид родия, иодид родия, сульфат родия.

В частном случае мольное отношении P/Rh составляет 5/1-15/1 (предпочтительно 10/1).

Технический результат достигается также реализацией способа получения альдегидов С7+, включающего гидроформилирование олефинов С6+ окисью углерода и водорода при повышенных температуре и давлении в присутствии водного раствора катализатора, содержащего комплексное соединение родия с полимерным азотсодержащим, включающим фосфорсодержащие фрагменты лигандом, при этом каждый указанный фрагмент содержит органические радикалы, по меньшей мере, один из которых связан с атомом азота указанного лиганда, а атом фосфора находится в степени окисления (III).

Водный раствор родиевого катализатора может применяться при массовом отношении воды к катализатору в интервале 200:1-100:1

Объемное отношение водной фазы (водный раствор катализатора) и органической фазы может составлять 2/1-4/1, при этом органической фазой служат смесь олефинов С6+, альдегидов С 7+ и органического растворителя. В данном диапазоне соотношений формируется оптимальная эмульсия, что позволяет достичь более высокой скорости процесса.

Осуществление изобретения

Способ получения катализатора гидроформилирования олефинов С6+ включает последовательность операций:

- химическое связывание азотсодержащего полимера с фосфорсодержащим соединением, имеющим общую формулу

катализатор для гидроформилирования олефинов c<sub pos= 6+, способ его получения и способ получения альдегидов c7+, патент № 2320412" SRC="" height=100 BORDER="0" TI="CF" HE="18" WI="16">

где А, В, С - органические радикалы, по меньшей мере, в одном из которых имеется группа -С(O)ОН;

Примером такого связывания является взаимодействие ПЭИ (полиэтиленимин) с n-дифенифосфинбензойной кислотой, с образованием полимерного азотсодержащего лиганда, включающего фосфорсодержащие фрагменты, проводят при мольном соотношении азот/фосфор=142/1-70/1 (предпочтительно 70/1), предпочтительно в атмосфере инертного газа;

- химическое взаимодействие полученного полимерного азотсодержащего лиганда, включающего фосфорсодержащие фрагменты, с соединением родия в среде органического растворителя, которое может осуществляться при мольном отношении P/Rh=5/1-15/1 (предпочтительно 10/1);

- удаление органического растворителя при температуре 30-50°С с получением катализатора в виде кубового остатка;

- растворение полученного катализатора в воде с получением катализатора в виде водного раствора, например, при массовом отношении Н 2O/ПЭИ=200:1-100:1 (предпочтительно 150:1).

Способ гидроформилирования олефинов С6+ с использованием вышеописанного катализатора включает последовательность операций:

- последовательное или совместное введение в реактор водного каталитического раствора, индивидуального или смеси олефинов С6+ и органического растворителя; при этом объемное отношении водная фаза/органическая фаза может составлять 2/1-4/1 (предпочтительно 2/1), где органической фазой могут служить смеси субстрата, продукта и ароматического растворителя;

- перемешивание полученной смеси в атмосфере моноксида углерода и водорода при повышенной температуре и давлении;

- декантацию органической фазы, содержащую продукт, от водной эмульсии, содержащей катализатор.

Предложенную каталитическую систему используют в гидроформилировании олефинов С6+, которое ведут при температуре реакции 70-130°С (предпочтительно 80°С), давлении синтез-газа 1,5-3,5 МПа и отношении Н 2/СО=1/1.

Процесс может протекать и при более высоком давлении, например 6 МПа.

Способ получения катализатора

ПЭИ растворили в минимальном количестве хлористого метилена, n-ДФФБК (n-дифенилфосфинобензойная кислота) также растворили в хлористом метилене, после чего медленно добавляли к раствору ПЭИ при перемешивании до полного растворения. Затем к полученному раствору медленно добавили раствор Rh(CO)2 (acac) в хлористом метилене. После этого хлористый метилен упарили с помощью роторного испарителя и образовавшийся в результате сухой остаток растворили в воде.

Способ получения альдегидов С7+ в двухфазной системе

Водный раствор катализатора и олефин залили в реактор. После загрузки каталитического раствора и олефина автоклав трижды продули азотом для удаления кислорода воздуха. Далее осуществили нагрев реакционной смеси при постоянном перемешивании и избыточном давлении азота 0,5 МПа. После нагрева до температуры 80°С, подали синтез-газ до достижения в реакторе заданного давления. Этот момент считался началом реакции. В ходе эксперимента регистрировали падение давления синтез-газа.. О завершении реакции судили по прекращению падения давления. После завершения реакции реакционную смесь анализировали с помощью ГЖХ.

Способ осуществления рецикла катализатора

Для осуществления рецикла каталитический продукты реакции (органическая фаза) отделяли от водной эмульсии, преимущественно содержащей катализатор, при помощи декантации. Далее добавляли к каталитическому раствору свежую порцию олефина и проводили процесс гидроформилирования.

Осуществление настоящего изобретения иллюстрируют приведенные ниже примеры, которые не ограничивают объем притязаний, представленный в формуле изобретения.

Пример 1

ПЭИ (0,023 г) растворили в минимальном количестве хлористого метилена. n-ДФФБК - (0,061 г) растворили в хлористом метилене, затем медленно, по каплям, добавили к раствору ПЭИ при перемешивании, до образования полностью гомогенного раствора. Далее к полученному раствору медленно при промешивании добавили раствор Rh(CO)2(acac) (0.005 г) в хлористом метилене. Раствор упарили на роторном испарителе до сухого состояния. Сухой остаток растворили в 10 мл воды.

Раствор катализатора в воде и -гексен-1 (10 мл) поместили в реактор-автоклав емкостью 0,075 л, выполненный из Hastalloy, снабженный перемешивающим устройством. Далее реактор три раза продули азотом, нагрели при перемешивании и избыточном давлении азота 0,5 МПа до температуры 80°С, затем подали синтез-газ (1СО:1Н2 ) до достижения давления 3,5 МПа. Этот момент считался началом реакции. В ходе опыта регистрировали падение давления синтез-газа. При падении давления до 0,5-1,0 МПа реактор заполняли синтез-газом до первоначального значения. По полученным зависимостям определяли начальное значение скорости поглощения синтез-газа и суммарное падение давления синтез-газа за время реакции. О завершении реакции судили по прекращению падения давления. После завершения реакции содержимое реактора охлаждали, сбрасывали давление синтез-газа и получали реакционную смесь, представляющую собой две расслаивающиеся жидкие фазы: фазу водной эмульсии, в которой находится каталитический комплекс, и органическую фазу продукта. Последнюю анализировали на содержание продуктов гидроформилирования и непрореагировавшего олефина с помощью ГЖХ.

Для осуществления рецикла каталитический раствор отделяли от продуктов реакции при помощи декантации. Далее добавляли к каталитическому раствору свежую порцию гексена-1 и снова проводили процесс гидроформилирования.

Пример 2

Синтез катализатора, процесс гидроформилирования и рецикл катализатора проводили по примеру 1, на первом этапе загрузили ПЭИ (0,064 г).

Пример 3

Синтез катализатора, процесс гидроформидирования и рецикл катализатора проводили по примеру 1, на первом этапе загрузили ПЭИ (0,148 г).

Пример 4

Синтез катализатора, процесс гидроформилирования и рецикл катализатора проводили по примеру 1, на первом этапе загрузили ПЭИ (0,221 г).

Пример 5

Синтез катализатора, процесс гидроформилирования и рецикл катализатора проводили по примеру 1, на первом этапе загрузили ПЭИ (0,64 г) и n-ДФФБК (0,031 г).

Пример 6

Синтез катализатора, процесс гидроформилирования и рецикл катализатора проводили по примеру 1, на первом этапе загрузили ПЭИ (0,64 г) и n-ДФФБК (0,0613 г).

Пример 7

Синтез катализатора, процесс гидроформилирования и рецикл катализатора проводили по примеру 1, на первом этапе загрузили ПЭИ (0,64 г) и n-ДФФБК (0,104 г).

Для всех опытов, приведенных в примере, проведено четыре рецикла катализатора (Табл.1).

Пример 8

Синтез катализатора и рецикл катализатора проводили по примеру 1, на первом этапе загрузили ПЭИ (0,64 г) и n-ДФФБК (0,0613 г), процесс гидроформилирования проводили при 1.5 МПа.

Таблица 1.

Показатели процесса гидроформилирования гексена-1, полученные в примерах 1-8.
№ примера TOF, ч-1 (SR, %)
 1 цикл 2 цикл3 цикл 4 цикл5 цикл
1388 (77)641 (74) 416 (73)Нет данных Нет данных
2 457 (72)706 (74) 1318 (69)848 (68) 413 (68)
3 498 (69)580 (72)1407 (68)1278 (63)1143 (61)
4462 (70)660 (71)1159 (64)987 (60)614 (56)
5465 (73) 525 (72)496 (66) нет данныхНет данных
6457 (72)706 (74) 1318 (69)848 (68) 413 (68)
7 414 (72)552 (74) 759 (37)603 (67)518 (67)
8212 (72)320 (74)Нет данных Нет данныхНет данных
TOF - удельная активность катализатора, моль альдегида/(моль Rh*4);

SR - региоселективность относительно продуктового альдегида линейного строения, моль н-гептаналя/(моль н-гептаналя+моль изо-гептаналя).

Приведенные в таблице результаты показывают, что предложенный способ приготовления катализатора позволяет достичь активности TOF до 1000 час -1, что отличает эту каталитическую систему от лучших из известных, используемых в водном бифазном каталитическом гидроформилировании олефинов С6+, характеризующихся TOF<700 ч-1.

Предложенный рециркулируемый катализатор обеспечивает образование соответствующих альдегидов с селективностью, близкой к 100%, и региоселективностью по нормальному изомеру 68%. Предложенный катализатор может быть многократно использован в рециклах без существенной потери активности и селективности после декантации органического слоя продуктов реакции.

Промышленная применимость

Изобретение предназначено для использования в основном органическом и нефтехимическом синтезе кислородсодержащих продуктов методом гидроформилирования олефинов С6+, в частности, при проведении синтезов альдегидов С7+.

Класс B01J37/04 смешивание

способ получения сольвата хлорида неодима с изопропиловым спиртом для неодимового катализатора полимеризации изопрена -  патент 2526981 (27.08.2014)
способ карбонилирования с использованием связанных содержащих серебро и/или медь морденитных катализаторов -  патент 2525916 (20.08.2014)
микросферический катализатор крекинга "октифайн" и способ его приготовления -  патент 2522438 (10.07.2014)
способ получения наноструктурного фталоцианинового катализатора демеркаптанизации нефти и газоконденсата -  патент 2517188 (27.05.2014)
катализатор на основе меди, нанесенный на мезопористый уголь, способ его получения и применения -  патент 2517108 (27.05.2014)
каталитическая добавка для повышения октанового числа бензина каталитического крекинга и способ ее приготовления -  патент 2516847 (20.05.2014)
способ приготовления катализатора для получения ароматических углеводородов, катализатор, приготовленный по этому способу, и способ получения ароматических углеводородов с использованием полученного катализатора -  патент 2515511 (10.05.2014)
способ приготовления катализатора для окислительной конденсации метана, катализатор, приготовленный по этому способу, и способ окислительной конденсации метана с использованием полученного катализатора -  патент 2515497 (10.05.2014)
способ переработки биомассы в целлюлозу и раствор низкомолекулярных продуктов окисления (варианты) -  патент 2515319 (10.05.2014)
каталитическая добавка для окисления оксида углерода в процессе регенерации катализаторов крекинга и способ ее приготовления -  патент 2513106 (20.04.2014)

Класс B01J31/06 содержащие полимеры

катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
твердый катализатор, используемый для превращения алкиленоксида в алкиленгликоль -  патент 2470706 (27.12.2012)
катализатор для олигомеризации альфа-олефинов, способ его получения и способ олигомеризации альфа-олефинов -  патент 2462310 (27.09.2012)
способ переэтерификации -  патент 2452725 (10.06.2012)
экструдаты неорганических оксидов -  патент 2451545 (27.05.2012)
способ биохимической очистки сточных вод -  патент 2448056 (20.04.2012)
катализатор на углеродной основе для десульфуризации дымовых газов, и способ его получения, и его использование для удаления ртути в дымовых газах -  патент 2447936 (20.04.2012)
способ удаления йодидного соединения из органической кислоты -  патент 2440968 (27.01.2012)
нанокатализатор на основе переходного металла, способ его приготовления и использование в реакции синтеза фишера-тропша -  патент 2430780 (10.10.2011)
способ получения катализатора отверждения -  патент 2424848 (27.07.2011)

Класс B01J31/18 содержащие азот, фосфор, мышьяк или сурьму

способ получения тонкодисперсной жидкой формы фталоцианинового катализатора демеркаптанизации нефти и газоконденсата -  патент 2529492 (27.09.2014)
каталитическая композиция и способ олигомеризации этилена -  патент 2525917 (20.08.2014)
способ приготовления гетерогенного фталоцианинового катализатора для окисления серосодержащих соединений -  патент 2523459 (20.07.2014)
способ аддитивной полимеризации норборнена -  патент 2487896 (20.07.2013)
способ аддитивной полимеризации норборнена -  патент 2487895 (20.07.2013)
комплексы металлов -  патент 2470028 (20.12.2012)
каталитическая композиция и способ олигомеризации этилена -  патент 2467797 (27.11.2012)
катализатор олигомеризации этилена, способ его получения и способ олигомеризации с его использованием -  патент 2467796 (27.11.2012)
способ получения соединений, содержащих нитрильные функциональные группы -  патент 2463293 (10.10.2012)
катализатор полимеризации дициклопентадиена и способ его получения -  патент 2462308 (27.09.2012)

Класс C07C47/02 насыщенные соединения, содержащие -CHO группы, связанные с ациклическими атомами углерода или водородом 

способ получения альдегидов -  патент 2527455 (27.08.2014)
способ переработки жидкого потока после гидроформилирования -  патент 2486171 (27.06.2013)
способ прямой конверсии низших парафинов c1-c4 в оксигенаты -  патент 2485088 (20.06.2013)
способ гидроформилирования с усовершенствованным контролем над изомерами продуктов -  патент 2458906 (20.08.2012)
способ карбонилирования с добавлением пространственно-затрудненных вторичных аминов -  патент 2440325 (20.01.2012)
способ введения и регенерации кобальта в процессе гидроформилирования пропилена -  патент 2424224 (20.07.2011)
способ получения масляных альдегидов в присутствии немодифицированного кобальтового катализатора -  патент 2393145 (27.06.2010)
стабилизация процесса гидроформилирования -  патент 2388742 (10.05.2010)
способы радиофторирования биологически активных векторов -  патент 2363704 (10.08.2009)
способ регенерации кобальта из кобальтового шлама -  патент 2363539 (10.08.2009)

Класс C07C45/50 реакциями оксосинтеза

способ получения альдегидов -  патент 2527455 (27.08.2014)
способ переработки жидкого потока после гидроформилирования -  патент 2486171 (27.06.2013)
способ гидроформилирования с усовершенствованным контролем над изомерами продуктов -  патент 2458906 (20.08.2012)
способ переработки бутанольно-бутилформиатной фракции -  патент 2454392 (27.06.2012)
способ карбонилирования с добавлением пространственно-затрудненных вторичных аминов -  патент 2440325 (20.01.2012)
способ введения и регенерации кобальта в процессе гидроформилирования пропилена -  патент 2424224 (20.07.2011)
новые душистые соединения, метод их синтеза и применения -  патент 2412149 (20.02.2011)
способ получения масляных альдегидов в присутствии немодифицированного кобальтового катализатора -  патент 2393145 (27.06.2010)
способ дезактивации металлоорганического катализатора и реакторная система для его осуществления -  патент 2389715 (20.05.2010)
стабилизация процесса гидроформилирования -  патент 2388742 (10.05.2010)