способ диспропорционирования изопропилбензола с использованием катализатора с микромезопористой структурой
Классы МПК: | C07C15/085 изопропилбензол B01J37/04 смешивание B01J29/064 содержащие металлы группы железа, благородные металлы или медь B01J29/87 галлийсиликаты; алюмогаллийсиликаты; галлийборосиликаты B01J29/89 силикаты, алюмосиликаты или боросиликаты титана, циркония или гафния B01J29/18 типа морденита B01J29/40 типа пентасила, например ZSM-5, ZSM-8 или ZSM-11, приведенные в патентных документах USA 3702886; GBA 1334243 и USA 3709979 соответственно |
Автор(ы): | Иванова Ирина Игоревна (RU), Ордомский Виталий Валерьевич (RU), Князева Елена Евгеньевна (RU), Монахова Юлия Викторовна (RU), Пономарева Ольга Александровна (RU) |
Патентообладатель(и): | Иванова Ирина Игоревна (RU) |
Приоритеты: |
подача заявки:
2006-11-10 публикация патента:
27.03.2008 |
Изобретение относится к способу диспропорционирования алкилароматических углеводородов. Описан способ диспропорционирования изопропилбензола, заключающийся в том, что процесс проводят в присутствии катализатора с микро-мезопористой структурой, характеризующейся долей микропор от 0,03 до 0,90 и долей мезопор от 0,97 до 0,10. Катализатор включает микропористые кристаллические силикаты с цеолитной структурой, имеющие состав анионного каркаса Т2О 3·(10-1000)SiO2, где Т - элементы, выбранные из группы, состоящей из р-элементов III группы или d-элементов IV-VIII группы, или их смеси. Технический результат - расширение арсенала технических средств для осуществления реакции диспропорционирования, высокие конверсия изопропилбензола и селективность образования продуктов диспропорционирования с низким содержанием о-изомера фракции ДИПБ. 5 з.п. ф-лы, 2 ил., 2 табл.
Формула изобретения
1. Способ диспропорционирования изопропилбензола, заключающийся в том, что процесс проводят в присутствии катализатора с микромезопористой структурой, характеризующейся долей микропор от 0,03 до 0,90 и долей мезопор от 0,97 до 0,10, включающего микропористые кристаллические силикаты с цеолитной структурой, имеющие состав анионного каркаса Т2O3·(10-1000)SiO 2, где Т - элементы, выбранные из группы, состоящей из р-элементов III группы или d-элементов IV-VIII группы, или их смеси.
2. Способ по п.1, отличающийся тем, что процесс осуществляют в непрерывном потоке в реакторе с неподвижным слоем катализатора в условиях жидкофазного либо газожидкофазного диспропорционирования.
3. Способ по любому из пп.1 и 2, отличающийся тем, что диспропорционирование проводят при температуре от 125 до 450°С, манометрическом давлении от 0,1 МПа до 5 МПа, скорости подачи сырья от 0,1 до 100 г/г·ч.
4. Способ по любому из пп.1 и 2, отличающийся тем, что процесс проводят при температуре от 150 до 200°С, давлении от 1 до 3 МПа, скорости подачи сырья от 1 до 5 г/г·ч в присутствии инертного газа-носителя.
5. Способ по п.2, отличающийся тем, что диспропорционирование проводят в присутствии Н2.
6. Способ по п.1, отличающийся тем, что используют названный катализатор с микромезопористой структурой, включающий микропористые кристаллические силикаты с цеолитной структурой типа FAU, MAZ, MOR, ВЕА, MFI, MEL.
Описание изобретения к патенту
Настоящее изобретение относится к способу диспропорционирования алкилароматических углеводородов. Изобретение найдет применение в процессах нефтехимии и органического синтеза.
Продукты диспропорционирования изопропилбензола (кумола) м-, п-диизопропилбензолы (ДИПБ) являются важным исходным органическим сырьем для нефтехимической индустрии, на основании которых получают продукты, использующиеся в фармацевтической, агрохимической, лакокрасочной, текстильной, автомобильной, фото-промышленности и др.
При получении смеси изомеров ДИПБ необходимо минимизировать образование о-изомера, так как он имеет температуру кипения очень близкую к м-изомеру, и поэтому не представляется возможным их разделение. Кроме того, м- и п-изомеры являются наиболее промышленно важными продуктами.
В настоящее время в промышленности ДИПБ получают алкилированием кумола пропиленом с использованием гомогенного катализатора AlCl 3. Недостатками этого способа является необходимость нейтрализации реакционной смеси, выделения использованного катализатора и невозможность его повторного использования, коррозия конструкционных материалов, а также загрязнение окружающей среды. Этих недостатков лишены твердые кислотные катализаторы, такие как цеолиты.
Известен способ диспропорционирования алкилароматических соединений, содержащих в боковой цепи от 1 до 6 атомов углерода на гетерогенном пористом кристаллическом МСМ-49. МСМ-49 может быть использован в Н-форме или модифицирован редкоземельными металлами, а также металлами IIA, IIIA, IVA, IB, IIB, IIIB, IVB, VIB, VIII групп Периодической системы. Он может быть также подвергнут термо- или термопарообработке (US 5,329,059). Реакция проводится при мольном отношении водород: углеводород от 0 до 10.
Известен способ диспропорционирования кумола на цеолитах МСМ-22, PSH-3, SSZ-25, МСМ-36, МСМ-56, ITQ-1 и ITQ-2 (US 6,753,453). Процесс может проводиться как в присутствии водорода при мольном отношении водород:углеводород от 0 до 50, так и без него. Катализатор может быть использован со связующим в виде оксидов алюминия, кремния, магния, циркония, титана, глин либо в виде их комбинации.
Недостатками этих способов являются необходимость использования высоких давлений, превышающих 60 атм, для достижения высоких конверсий, низкая селективность по продуктам диспропорционирования, не превышающая 95%, достаточно большое количество образующегося нежелательного изомера о-ДИПБ, а также сложность синтеза используемых катализаторов.
Наиболее близким к предлагаемому способу является диспропорционирование кумола на молекулярных ситах MOR, BEA, Y, МСМ-68, преимущественно цеолите ТЕА-MOR с SiO2/Al 2О3 от 25 до 50, синтезированном с использованием тетраэтиламмония (US 6,933,419). Процесс может проводиться как в присутствии водорода при мольном отношении водород:углеводород от 0 до 50, так и без него. Катализатор может быть использован со связующим в виде оксидов алюминия, кремния, магния, циркония, титана, глин либо в виде их комбинации.
Недостатками этих катализаторов являются необходимость использования высоких давлений, превышающих 60 атм, для достижения высоких конверсий, низшая селективность по продуктам диспропорционирования, не превышающая 95%, необходимость проведения реакции в токе водорода для достижения высоких выходов, а также сложность и плохая воспроизводимость синтеза катализаторов (R.Szostak, "Molecular Sieves. Principles of Synthesis and Identification". Van Nostrand Reinhold, New York, 1988).
Используемые в вышеперечисленных патентах катализаторы обладают системой микропор с диаметром менее 2 нм, что приводит к затруднению массопереноса молекул реагентов к активным центрам цеолита, расположенных внутри его каналов, а также продуктов реакции из зоны реакции, что приводит к быстрой дезактивации катализатора. Для повышения выхода целевого продукта и увеличения времени стабильной работы катализатора, как правило, реакцию проводят в токе водорода, что усложняет безопасность проведения процесса, либо используют сложные плохо воспроизводимые методы синтеза, позволяющие получать цеолиты с высоким отношением SiO2/Al2О 3, такие как TEA-MOR.
В основу настоящего изобретения положена техническая задача разработать эффективный способ диспропорционирования изопропилбензола за счет расширения арсенала технических средств, а именно использования катализаторов с микро-мезопористой структурой, которые обеспечивали бы высокую селективность образования диизопропилбензолов и низкую селективность по о-ДИПБ во фракции ДИПБ.
Задача решается тем, что предлагается способ получения диизопропилбензолов путем диспропорционирования изопропилбензола на катализаторе с микро-мезопористой структурой, характеризующейся долей микропор от 0,03 до 0,90 и долей мезопор от 0,97 до 0,10, включающем микропористые кристаллические силикаты с цеолитной структурой, имеющие состав анионного каркаса Т2O3 ·(10-1000)SiO2, где Т - элементы, выбранные из группы, состоящей из р-элементов III группы или d-элементов IV-VIII группы, или их смеси.
Техническим результатом является расширение арсенала технических средств, используемых в технологическом процессе, а именно применение катализаторов с новой структурой, обеспечивающей высокие конверсию изопропилбензола и селективность образования продуктов диспропорционирования с низким содержанием о-изомера во фракции ДИПБ. Используемый катализатор сочетает преимущества цеолитов и мезопористых молекулярных сит, структура которых повышает доступ реагентов и продуктов реакции к его активным центрам, обеспечивая тем самым достижение высоких выходов и селективности образования целевых продуктов. Катализатор также обладает каталитической стабильностью, что подтверждается проведением реакции в более мягких условиях, при более низких температурах, давлении и при отсутствии газа разбавителя-водорода, являющегося взрывоопасным реагентом. Используемый катализатор легко синтезируется, что важно при его промышленном применении, а также обеспечивает высокую скорость без дезактивации активных центров цеолита, вызванных условиями протекании реакции диспропорционирования.
Целесообразно диспропорционирование кумола осуществлять в условиях непрерывного потока в реакторе с неподвижным слоем катализатора в условиях жидкофазного или газожидкофазного алкилирования при температуре от 125 до 450°С, манометрическом давлении от 0,1 до 5 МПа, скорости подачи сырья от 0,1 до 100 г/г·ч. Диспропорционирование можно проводить без газа-разбавителя либо в присутствии инертного газа, например азота либо водорода. Скорость пропускания газа-разбавителя целесообразно использовать до разбавлений 8 моль/моль реагента. В этом случае достигаются максимальный выход и селективность по диалкилбензолам, минимальное образование о-ДИПБ и высокая стабильность работы катализатора.
Целесообразно диспропорционирование осуществлять при температуре от 150 до 200°С, давлении от 1 до 3 МПа, скорости подачи сырья от 1 до 5 г/г·ч. В таких условиях достигаются максимальная конверсия и селективность образования целевого продукта.
Осуществление конверсии при более низких температурах и при более высоких скоростях подачи реагентов и высоком давлении приводит к заметному снижению конверсии исходного сырья. Проведение конверсии при более высоких температурах и при более низких скоростях подачи реагентов и давлении приводит к заметному увеличению образования побочных продуктов реакции, в основном продуктов крекинга, а следовательно, к снижению селективности по целевым продуктам реакции.
Целесообразно в качестве микропористых кристаллических силикатов использовать силикаты со структурой цеолитов FAU, MAZ, MOR, BEA, MFI, MEL.
В дальнейшем изобретение будет подробно раскрыто в описании и примерах его реализации со ссылкой на прилагаемые чертежи, на которых согласно изобретению
фиг.1 изображает дифрактограммы исходных алюмосиликатов и используемого в процессе катализатора;
фиг.2 изображает изотермы низкотемпературной адсорбции-десорбции азота исходных алюмосиликатов и используемого в процессе катализатора.
Предлагаемый способ диспропорционирования изопропилбензола осуществляют следующим образом. Осуществляют предварительную подготовку катализатора путем нагревания в токе инертного газа (азот, гелий) до 450°С в течение 1 ч и прокаливания при этой температуре в течение 30 мин, затем реактор охлаждают до температуры реакции. Кумол подают в реактор проточного типа с неподвижным слоем катализатора. Процесс проводят под давлением 0,1-5 МПа, в интервале температур 125-450°С. Скорость подачи сырья выбирают в диапазоне от 0,1 до 100 г/г·ч. Скорость пропускания газа-разбавителя, например азота либо водорода, берут в интервале 0-8 моль/моль реагента.
На выходе из реактора полученные продукты разделяют на жидкие и газообразные, компонентный состав определяют хроматографическим методом. Результаты процесса диспропорционирования (табл.2) представлены через час после начала реакции, что соответствует установлению в системе стационарного режима.
Катализатор с микро-мезопористой структурой получают путем суспендирования микропористых кристаллических силикатов с цеолитной структурой, имеющих состав Т2 O3·(10-1000)SiO2 , в щелочном растворе до достижения остаточного содержания цеолитной фазы в суспензии 3-90 мас.%, введения в суспензию силиката раствора катионного поверхностно-активного вещества с последующим добавлением кислоты до образования геля и гидротермальную обработку геля с выделением готового продукта.
В качестве Т-элементов, образующих, наряду с атомами кремния, кристаллическую решетку силиката, используют Al или Ga, или В, или Fe, или Zn, или Ti, или Zr, или V, или Cr, или Mn, или их смесь.
Полученный микро-мезопористый катализатор сохраняет кристаллическую структуру исходного микропористого кристаллического силиката, как это видно на фиг.1, где кривая 1 изображает дифрактограмму микропористого алюмосиликата со структурой MOR, кривая 2 - дифрактограмму катализатора с микро-мезопористой структурой, полученного на основе алюмосиликата со структурой MOR, а кривая 3 - дифрактограмму алюмосиликата с известной мезопористой структурой, которая не является кристаллической.
Суспендирование микропористых кристаллических силикатов осуществляют в щелочном растворе с концентрацией гидроксид-ионов 0,2-1,5 моль/л, после чего щелочную суспензию цеолита смешивают с раствором катионного поверхностно-активного вещества и добавляют кислоту до образования геля с рН=7,5-9,0. Гидротермальную обработку геля проводят при температуре 100-150°С при атмосферном давлении или в автоклаве в течение 10-72 ч.
В качестве катионных поверхностно-активных веществ используют соли четвертичного алкиламмония состава С nН2n+1(СН3) 3NAn, где n=12-18, An-Cl, Br, HSO4 -, обеспечивающие электростатическое взаимодействие между отрицательно заряженными (в результате адсорбции гидроксид-ионов) высокодисперсными фрагментами кристаллов исходного силиката и силикат-ионами и положительно заряженными мицеллами поверхностно-активного вещества. В результате этого взаимодействия формируется мезопористая фаза.
Объем пор, долю микропор и долю мезопор рассчитывают по изотермам низкотемпературной адсорбции азота, что показано на фиг.2, где кривая 4 изображает изотерму низкотемпературной адсорбции-десорбции азота для микропористого силиката со структурой цеолита MFI, кривая 5 - изотерму низкотемпературной адсорбции-десорбции азота для материала с микро-мезопористой структурой, полученного на основе микропористого силиката со структурой цеолита MFI, кривая 6 - изотерму низкотемпературной адсорбции-десорбции азота для известного силиката с мезопористой структурой. Как следует из фиг.2, изотерма адсорбции микро-мезопористого катализатора (кривая 5) подобна изотерме мезопористого катализатора (кривая 6), что говорит об образовании развитой регулярной структуры. Расположение изотерм микро-мезопористого катализатора (кривая 5) и микропористого силиката (кривая 6) указывает на увеличение объема пор в 2,5 раза.
Особенностью катализатора с микро-мезопористой структурой является присутствие двух типов пор - микропор (доля которых в общем объеме пор материала составляет 0,03-0,90) и мезопор (доля которых в общем объеме пор материала составляет 0,10-0,97). Наличие микропор обусловлено присутствием высокодисперсных фрагментов микропористых кристаллических силикатов, гомогенно распределенных в объеме мезопористой фазы, образованной стереорегулярной системой мезопор.
Для получения микро-мезопористых катализаторов были использованы микропористые кристаллические силикаты разной кристаллической структуры и разного химического состава, свойства которых представлены в табл.1.
Таблица 1 | ||||
Структура | Состав | Объем пор, см3/г | Доля микропор | |
1 | MOR | Al2О 3·97SiO2 | 0,195 | 1,0 |
2 | BEA | Al 2О3·84SiO2 | 0,184 | 1,0 |
3 | MFI | Al2О3·80SiO 2 | 0,164 | 1,0 |
4 | FAU | Al2О3·10SiO 2 | 0,220 | 1,0 |
5 | MAZ | Al2О3·10SiO 2 | 0,150 | 1,0 |
6 | MEL | Al2О3·80SiO 2 | 0,168 | 1,0 |
В качестве исходных микропористых цеолитов используются: морденит с отношением SiO2 /Al2O3=97 (MOR), бета с отношением SiO2/Al 2O3=84 (BEA), ZSM-5 с отношением SiO2/Al2O 3=80 (MFI), фожазит с SiO2/Al 2O3=10 (FAU), маззит с SiO 2/Al2O3=10 (MAZ), ZSM-11 с SiO2/Al 2O3=80 (MEL). Объем пор всех исходных цеолитов составлял 0,15-0,22 см3/г, доля микропор 1,0.
Нижеследующие примеры иллюстрируют изобретение, но не ограничивают его.
Пример 1.
Приготовление микро-мезопористого катализатора (RMOR).
К 30 мл 0.48 моль/л раствора NaOH добавляют 5 г микропористого кристаллического алюмосиликата со структурой морденита. Полученную суспензию перемешивают при комнатной температуре в течение 0,5 ч, после чего смешивают с раствором 7,76 г гексадецилтриметиламмоний бромида (C16 H33(CH3) 3NBr) в 48 мл H2O. К полученной смеси добавляют 10 мл 2 моль/л соляной кислоты до образования геля с рН=7,5. После гомогенизации геля в течение 0,5 ч его переносят в автоклав, который закрывают и нагревают в течение 24 ч при 110°С. По окончании гидротермальной обработки материал отделяют на фильтре, промывают дистиллированной водой, высушивают при 100°С в течение 24 ч, прокаливают при 550°С в течение 24 ч. В результате получают микро-мезопористый катализатор с цеолитной структурой морденита с объемом пор 0,360 см 3/г, с долями микропор и мезопор в объеме пор 0,48 и 0,52 соответственно.
Пример 2.
Диспропорционирование изопропилбензола (кумола). Микро-мезопористый катализатор, полученный по примеру 1, помещают в проточный реактор, продувают азотом при температуре 450°С в течение 1 ч и прокаливают при этой температуре в течение 30 мин, затем снижают температуру до 175°С и подают кумол при давлении 2 МПа, скорости подачи сырья 2,5 г/г ч. Скорость газа разбавителя N2 1 моль/моль кумола. Результаты эксперимента представлены в табл.2.
Примеры 3-9.
Процесс диспропорционирования проводят аналогично примеру 2, отличие состоит в том, что изменяют условия процесса: температуру, давление, а также скорость подачи реагентов. Условия проведения экспериментов и результаты представлены в табл.2.
Пример 10.
Аналогичен примеру 2, отличие состоит в том, что диспропорционирование проводят при давлении 5 МПа, скорости подачи сырья 100 г/г·ч без газа разбавителя N 2. Результаты эксперимента представлены в табл.2.
Пример 11.
Аналогичен примеру 2, отличие состоит в том, что результаты представлены через 6 ч после начала проведения эксперимента. Результаты эксперимента представлены в табл.2.
Пример 12.
Аналогичен примеру 2, отличие состоит в том, что используют микропористый катализатор MOR. Результаты эксперимента представлены в табл.2.
Пример 13.
Катализатор получают аналогично примеру 1, но при этом 5 г микропористого кристаллического алюмосиликата со структурой морденита добавляют к 30 мл 1,6 моль/л раствора NaOH. В результате получают микро-мезопористый катализатор со структурой цеолита морденита, объемом пор 0,850 см 3/г, с долями микропор и мезопор в объеме пор 0,03 и 0,97 соответственно.
Пример 14.
Аналогичен примеру 2, отличие состоит в том, что диспропорционирование проводят при 450°С, скорости газа-разбавителя 8 моль/моль кумола и используют катализатор, описанный в примере 13. Результаты эксперимента представлены в табл.2.
Пример 15.
Микро-мезопористый катализатор (ReBEA) приготавливают следующим образом: к 30 мл 0,2 моль/л раствора NaOH добавляют 5 г микропористого кристаллического алюмосиликата со структурой ВЕА. Полученную суспензию перемешивают при комнатной температуре в течение 0,5 ч, после чего смешивают с раствором 6,56 г додецилтриметиламмоний бромида (C 12H25(CH3) 3NBr) в 48 мл Н2O. К полученной смеси добавляют 10 мл 2 моль/л соляной кислоты до образования геля с рН=9,0. После гомогенизации геля в течение 0,5 ч его переносят в автоклав, который закрывают и нагревают в течение 72 ч при 100°С. По окончании гидротермальной обработки материал отделяют на фильтре, промывают дистиллированной водой, высушивают при 100°С в течение 24 ч прокаливают при 550°С в течение 24 ч. В результате получают микро-мезопористый катализатор с цеолитной структурой ВЕА с объемом пор 0,415 см 3/г, с долями микропор и мезопор в объеме пор 0,62 и 0,38 соответственно.
Пример 16.
Аналогичен примеру 2, отличие состоит в том, что используют катализатор, описанный в примере 15. Результаты эксперимента представлены в табл.2.
Пример 17.
Микро-мезопористый катализатор (FeReMOR) приготавливают следующим образом: к 30 мл 1,0 моль/л раствора NaOH добавляют 5 г микропористого кристаллического железосиликата со структурой MOR. Полученную суспензию перемешивают при комнатной температуре в течение 2 ч, после чего смешивают с раствором 7,76 г цетилтриметиламмоний бромида (C16H 33(CH3)3NBr) в 48 мл H2O. К полученной смеси добавляют 15 мл 2 моль/л соляной кислоты до образования геля с рН=8. После гомогенизации геля в течение 1 ч его переносят в автоклав, который закрывают и нагревают в течение 48 ч при 110°С. По окончании гидротермальной обработки катализатор отделяют на фильтре, промывают дистиллированной водой, высушивают при 100°С в течение 24 ч, прокаливают при 550°С в течение 24 ч. В результате получают материал со структурой цеолита MOR, отношением SiO 2/Fe2О3=20, объемом пор 0,50 см3/г, с долями микропор и мезопор в объеме пор 0,20 и 0,80 соответственно.
Пример 18.
Аналогичен примеру 2, отличие состоит в том, что используют катализатор, описанный в примере 17. Результаты эксперимента представлены в табл.2.
Пример 19.
Аналогичен примеру 2, отличие состоит в том, что диспропорционирование проводят при скорости газа разбавителя Н2 8 моль/моль кумола. Результаты эксперимента представлены в табл.2.
Пример 20.
Аналогичен примеру 17, отличие состоит в том, что для приготовления микро-мезопористого катализатора (FeAlReMOR) используют микропористый кристаллический железоалюмосиликат со структурой цеолита MOR, гель с рН=8 получают добавлением 10 мл 2 моль/л соляной кислоты и гидротермальную обработку проводят в течение 24 ч. В результате получают катализатор со структурой цеолита морденита (MOR), состава Al2О 3*Fe2O3*50SiO 2, объемом пор 0,65 см3/г, с долями микропор и мезопор в объеме пор 0,30 и 0,70 соответственно.
Пример 21.
Аналогичен примеру 2, отличие состоит в том, что используют катализатор, описанный в примере 20. Результаты эксперимента представлены в табл.2.
Пример 22.
Аналогичен примеру 20, отличие состоит в том, что для приготовления микро-мезопористого катализатора (GaReBEA) используют 1,5 моль/л раствора NaOH, микропористый кристаллический галлосиликат со структурой цеолита ВЕА, в качестве темплата применяют 8,40 г октадодецилтриметиламмоний бромида (C18H37(CH 3)3NBr). В результате получают катализатор со структурой цеолита ВЕА, с отношением SiO2 /Ga2O3=50, объемом пор 0,45 см3/г, с долями микропор и мезопор в объеме пор 0,38 и 0,62 соответственно.
Пример 23.
Аналогичен примеру 2, отличие состоит в том, что используют катализатор, описанный в примере 22. Результаты эксперимента представлены в табл.2.
Пример 24.
Аналогичен примеру 17, отличие состоит в том, что для приготовления микро-мезопористого катализатора (TiAlReBEA) используют 5,5 моль/л раствора KOH, микропористый кристаллический титаноалюмосиликат со структурой ВЕА, время перемешивания суспензии 0.5 ч, гидротермальную обработку проводят в течение 24 ч при 150°С. В результате получают катализатор со структурой цеолита ВЕА, состава Al 2О3*TiO2*70SiO 2, объемом пор 0,65 см3/г, с долями микропор и мезопор в объеме пор 0,10 и 0,90 соответственно.
Пример 25.
Процесс ведут как в примере 2, отличие состоит в том, что используют катализатор, описанный в примере 24. Результаты эксперимента представлены в табл.2.
Пример 26.
Аналогичен примеру 20, отличие состоит в том, что для приготовления микро-мезопористого катализатора (ReMFI) используют 0,5 моль/л раствора NaOH, микропористый кристаллический алюмосиликат со структурой MFI, время перемешивания суспензии 1 ч, в качестве темплата используют 7,76 г гексадецилтриметиламмоний бромида (С16Н33(СН 3)3NBr. В результате получают микро-мезопористый катализатор с цеолитной структурой MFI с объемом пор 0,510 см 3/г, с долями микропор и мезопор в объеме пор 0,20 и 0,80 соответственно.
Пример 27.
Аналогичен примеру 2, отличие состоит в том, что используют катализатор, описанный в примере 26. Результаты эксперимента представлены в табл.2.
Пример 28.
Аналогичен примеру 17, отличие состоит в том, что для приготовления микро-мезопористого катализатора (MnAlRMEL) используют микропористый кристаллический марганцеалюмосиликат со структурой цеолита MEL, гель с рН=8 получают добавлением 10 мл 2 моль/л соляной кислоты и гидротермальную обработку проводят в течение 24 ч. В результате получают катализатор со структурой цеолита ZSM-11 (MEL), состава Al2O 3*MnO2*80SiO2 , объемом пор 0,60 см3/г, с долями микропор и мезопор в объеме пор 0,25 и 0,75 соответственно.
Пример 29.
Аналогичен примеру 2, отличие состоит в том, что используют катализатор, описанный в примере 28. Результаты эксперимента представлены в табл.2.
Пример 30.
Аналогичен примеру 17, отличие состоит в том, что для приготовления микро-мезопористого катализатора (CrAlFAU) используют 0,2 моль/л раствора NaOH, микропористый кристаллический хромоалюмосиликат со структурой цеолита FAU, гель с рН=8 получают добавлением 5 мл 2 моль/л соляной кислоты и гидротермальную обработку проводят в течение 24 ч. В результате получают катализатор со структурой цеолита фожазита (FAU), состава Al2O3*Cr 2O3*10SiO2, объемом пор 0,65 см3/г, с долями микропор и мезопор в объеме пор 0,30 и 0,70 соответственно.
Пример 31.
Аналогичен примеру 2, отличие состоит в том, что используют катализатор, описанный в примере 30. Результаты эксперимента представлены в табл.2.
Пример 32.
Аналогичен примеру 17, отличие состоит в том, что для приготовления микро-мезопористого катализатора (VAlMAZ) используют 1,5 моль/л раствора NaOH, микропористый кристаллический ванадоалюмосиликат со структурой цеолита MAZ, гель с рН=8 получают добавлением 15 мл 2 моль/л соляной кислоты и гидротермальную обработку проводят в течение 24 ч. В результате получают катализатор со структурой цеолита маззита (MAZ), состава Al2О3*V 2O5*10SiO2, объемом пор 0,33 см3/г, с долями микропор и мезопор в объеме пор 0,40 и 0,60 соответственно.
Пример 33.
Аналогичен примеру 2, отличие состоит в том, что используют катализатор. описанный в примере 32. Результаты эксперимента представлены в табл.2.
Таблица 2 | ||||||||||||
№ примера | Катализатор | T, °c | P, МПа | Массовая скорость подачи, г/г·ч | Свойства катализатора с микро-мезопористой структурой | Конверсия, % | Селективность по продуктам диспропорционирования, мольн.% | Содержание в группе изомеров диизопропилбензолов, мольн.% | ||||
объем пор, см3 /г | доля микропор | доля мезопор | м- | o- | п- | |||||||
2 | RMOR | 175 | 2 | 2,5 | 0,360 | 0,48 | 0,52 | 47,4 | 100,0 | 64,7 | 0,0 | 35,3 |
3 | RMOR | 150 | 2 | 2,5 | 0,360 | 0,48 | 0,52 | 22,5 | 100,0 | 61,7 | 0,0 | 38,3 |
4 | RMOR | 200 | 2 | 2,5 | 0,360 | 0,48 | 0,52 | 49,5 | 98,0 | 64,7 | 0,0 | 35,3 |
5 | RMOR | 225 | 2 | 2,5 | 0,360 | 0,48 | 0,52 | 50,9 | 87,0 | 66,3 | 0,1 | 33,6 |
6 | RMOR | 175 | 0,1 | 2,5 | 0,360 | 0,48 | 0,52 | 34,2 | 97,0 | 68,1 | 0,0 | 31,9 |
7 | RMOR | 175 | 2 | 4,3 | 0,360 | 0,48 | 0,52 | 42,2 | 100,0 | 64,5 | 0,2 | 35,3 |
8 | RMOR | 175 | 2 | 6,6 | 0,360 | 0,48 | 0,52 | 36,2 | 100,0 | 64,3 | 0,2 | 35,5 |
9 | RMOR | 125 | 2 | 0,1 | 0,360 | 0,48 | 0,52 | 11,1 | 100,0 | 53,5 | 1,1 | 45,4 |
10 | RMOR | 175 | 5 | 100 | 0,360 | 0,48 | 0,52 | 5,5 | 100,0 | 57,1 | 0,5 | 42,4 |
11 | RMOR | 175 | 2 | 2,5 | 0,360 | 0,48 | 0,52 | 45,6 | 100,0 | 63,9 | 0,0 | 36,1 |
12 | MOR | 175 | 2 | 2,5 | 0,240 | 1,0 | 0,0 | 15,4 | 100,0 | 57,3 | 0,0 | 42,7 |
14 | RMOR | 450 | 2 | 2,5 | 0,850 | 0,03 | 0,97 | 1,0 | 100,0 | 53,6 | 0 | 46,4 |
16 | RBEA | 175 | 2 | 2,5 | 0,415 | 0,62 | 0,38 | 22,2 | 100,0 | 63,1 | 0,0 | 36,9 |
18 | FeRMOR | 175 | 2 | 2,5 | 0,500 | 0,20 | 0,80 | 41,1 | 100,0 | 64,3 | 0,0 | 35,7 |
19 | FeRMOR | 175 | 2 | 2,5 | 0,500 | 0,20 | 0,80 | 38,0 | 100,0 | 64,0 | 0,0 | 36,0 |
21 | FeAlRMOR | 175 | 2 | 2,5 | 0,650 | 0,30 | 0,70 | 43,5 | 100,0 | 64,9 | 0,0 | 35,1 |
23 | GaRBEA | 175 | 2 | 2,5 | 0,450 | 0,38 | 0,62 | 45,4 | 100,0 | 64,1 | 0,0 | 35,9 |
25 | TiAlRBEA | 175 | 2 | 2,5 | 0,650 | 0,90 | 0,10 | 48,6 | 100,0 | 64,6 | 0,0 | 35,4 |
27 | RMFI | 175 | 2 | 2,5 | 0,510 | 0,20 | 0,80 | 42,3 | 98,0 | 63,1 | 0,0 | 36,9 |
29 | MnAlRMEL | 175 | 2 | 2,5 | 0,600 | 0,25 | 0,75 | 33,6 | 77,0 | 58,2 | 0,0 | 41,8 |
31 | CrAlFAU | 175 | 2 | 2,5 | 0,650 | 0,30 | 0,70 | 43,0 | 96,0 | 62,0 | 0,1 | 37,9 |
33 | VAlMAZ | 175 | 2 | 2,5 | 0,330 | 0,40 | 0,60 | 36,7 | 96,0 | 62,1 | 0,0 | 37,9 |
Класс C07C15/085 изопропилбензол
Класс B01J29/064 содержащие металлы группы железа, благородные металлы или медь
Класс B01J29/87 галлийсиликаты; алюмогаллийсиликаты; галлийборосиликаты
Класс B01J29/89 силикаты, алюмосиликаты или боросиликаты титана, циркония или гафния
Класс B01J29/18 типа морденита
Класс B01J29/40 типа пентасила, например ZSM-5, ZSM-8 или ZSM-11, приведенные в патентных документах USA 3702886; GBA 1334243 и USA 3709979 соответственно