способ получения дизельного топлива из твердых синтетических углеводородов, полученных по методу фишера-тропша, и катализатор для его осуществления
Классы МПК: | C10L1/00 Жидкое углеродсодержащее топливо C10G65/00 Обработка углеводородных масел только путем двух или более процессов гидрообработки B01J32/00 Носители катализаторов вообще B01J23/42 платина B01J29/85 силикоалюмофосфаты (САФО соединения) |
Автор(ы): | Логинова Анна Николаевна (RU), Свидерский Сергей Александрович (RU), Потапова Светлана Николаевна (RU), Фадеев Вадим Владимирович (RU), Михайлова Янина Владиславовна (RU), Лысенко Сергей Васильевич (RU), Герасимов Денис Николаевич (RU), Круковский Илья Михайлович (RU), Аксенов Михаил Сергеевич (RU) |
Патентообладатель(и): | Общество с ограниченной ответственностью "СинТоп" (RU) |
Приоритеты: |
подача заявки:
2011-07-26 публикация патента:
20.09.2013 |
Изобретение относится к технологии получения синтетического дизельного топлива. Описан способ получения дизельного топлива из твердых синтетических углеводородов, полученных по методу Фишера-Тропша, включающий гидрокрекинг/изодепарафинизацию твердых углеводородов на катализаторе, содержащем носитель и платину, причем носитель выполнен из смеси 10-40% цеолита SAPO-41 и -Al2O3, а содержание платины находится в пределах 0,2-0,4%, при давлении 1-6 МПа, температуре 340-420°C, объемной скорости подачи углеводородов 0,5-1,5 ч-1 , соотношении водород:углеводороды 800-1200:1 нл/л с последующим выделением ректификацией из продуктов гидрокрекинга фракции 180-360°C, которую подвергают гидрофинишингу на палладиевом катализаторе, содержащем от 0,5 до 1,5% масс. палладия, нанесенного на носитель, выполненный из -Al2O3 с эффективным радиусом пор 4,0-10,0 нм, причем процесс гидрофинишинга ведут при температуре 150-250°C, давлении 2,0-4,0 МПа, объемной скорости подачи выделенной фракции 1,0-15,0 ч-1, при соотношении водород:фракция 300-800:1 нл/л. Также описан катализатор для осуществления стадии гидрокрекинга/изодепарафинизации вышеуказанного способа. Технический результат - повышение выхода целевой фракции при повышении каталитической активности катализатора. 2 н.п. ф-лы, 1 табл., 6 пр.
Формула изобретения
1. Способ получения дизельного топлива из твердых синтетических углеводородов, полученных по методу Фишера-Тропша, включающий гидрокрекинг/изодепарафинизацию твердых углеводородов на катализаторе, содержащем носитель и платину, причем носитель выполнен из смеси 10-40% цеолита SAPO-41 и -Al2O3, а содержание платины находится в пределах 0,2-0,4% при давлении 1-6 МПа, температуре 340-420°C, объемной скорости подачи углеводородов 0,5-1,5 ч-1 , соотношении водород: углеводороды 800-1200:1 нл/л с последующим выделением ректификацией из продуктов гидрокрекинга фракции 180-360°C, которую подвергают гидрофинишингу на палладиевом катализаторе, содержащем от 0,5 до 1,5 мас.% палладия, нанесенного на носитель, выполненный из -Al2O3 с эффективным радиусом пор 4,0-10,0 нм, причем процесс гидрофинишинга ведут при температуре 150-250°C, давлении 2,0-4,0 МПа, объемной скорости подачи выделенной фракции 1,0-15,0 ч-1, при соотношении водород: фракция 300-800:1 нл/л.
2. Катализатор для осуществления стадии гидрокрекинга/изодепарафинизации способа по п.1, содержащий носитель и платину, отличающийся тем, что носитель выполнен из смеси 10-40% цеолита SAPO-41 и 60-90% -Al2O3, а содержание платины находится в пределах 0,2-0,4%.
Описание изобретения к патенту
Изобретение относится к газохимии и газопереработке, а именно к технологии получения синтетического дизельного топлива из твердых синетических углеводородов, полученных из природного или попутного нефтяного газа по методу Фишера-Тропша. Способ получения дизельного топлива из синтетических твердых углеводородов, полученных по методу Фишера-Тропша, относится к области топлив и энергетики, в частности, к области получения экологически чистых альтернативных топлив не нефтяного происхождения.
Известен способ получения синтетического дизельного топлива, заключающийся в разделении продуктов синтеза Фишера-Тропша на одну или несколько легких фракций и одну или несколько тяжелых фракций. Тяжелую фракцию подвергают каталитической переработке (например, гидрокрекингу) в условиях, обеспечивающих преимущественное получение средних дистиллятов. Из продуктов гидрокрекинга выделяют фракцию средних дистиллятов и смешивают, как минимум, с одной из легких фракций, выделенных из продуктов синтеза Фишера-Тропша (Патент США № 7217852, 2007).
К недостаткам данного способа можно отнести то, что основная часть низкозастывающих изопарафиновых углеводородов вносится в состав дизельного топлива с легкой фракцией, выделенной из продуктов синтеза Фишера-Тропша и содержится в низкокипящей части получаемого дизельного топлива.
Известен способ получения компонента синтетического дизельного топлива. Изобретение относится к получению дистиллятного топлива (реактивного или дизельного), содержащего низкосернистый, высокопарафинистый, умеренно ненасыщенный среднедистиллятный компонент. Этот компонент получен путем гидропереработки продуктов синтеза Фишера-Тропша в таких условиях, при которых образуется или поддерживается на уровне сырья некоторое количество ненасыщенных углеводородов (Патент США № 0187292, 2007).
Топливо, полученное по описанному способу, является смесевым и кроме синтетических углеводородов, полученных методом Фишера-Тропша, содержит компоненты нефтяного и/или иного происхождения.
Наиболее близким к заявляемому является способ получения зимнего дизельного топлива из углеводородов, содержащих высшие парафины, полученные методом Фишера-Тропша. Способ включает в себя выделение из суммарного продукта синтеза Фишера-Тропша фракции 149°С+, переработку выделенной фракции в процессе гидроизомеризации и переработку как минимум части продуктов гидроизомеризации в процессе каталитической депарафинизации (Патент AU 2005229643, 2005).
К недостаткам способа можно отнести низкий выход целевого продукта.
Известен катализатор гидроизомеризации керосиновой фракции, представляющий собой палладий (0,3% мас), нанесенный на алюмосиликатный носитель, с содержанием оксида кремния 10%, кроме того 6% оксида кремния дополнительно нанесено на поверхность носителя. Использование данного катализатора позволяет снизить температуру застывания исходной керосиновой фракции до минус 51°C (Патент США 5888376, 1999).
Недостаткам данного катализатора является низкая каталитическая активность и, как следствие - низкий выход целевой фракции.
Наиболее близким к предлагаемому является катализатор изомеризации фракций синтетических углеводородов, полученных по методу Фишера-Тропша, представляющий собой оксиды металлов VI и VIII групп Периодической таблицы Д.И. Менделеева, в составе алюмосиликатных и цеолитсодержащих носителей (Патент США 5378348, 1995).
Недостатком данного катализатора служит низкая каталитическая активность и селективность по целевому продукту.
Целью изобретения является получение дизельного топлива из твердых синтетических углеводородов, полученных по методу Фишера-Тропша, с выходом целевого продукта не менее 65% масс.
Техническим результатом является повышение выхода целевой фракции при повышении каталитической активности и селективности по целевому продукту используемого катализатора для гидрокрекинга/изодепарафинизации в условиях заявленных режимов обработки исходного сырья.
Указанная цель и технический результат достигаются способом переработки синтетических твердых углеводородов, полученных по методу низкотемпературного синтеза Фишера-Тропша из синтез-газа на кобальтовом катализаторе.
Синтетические твердые углеводороды (СТУ), полученные по методу Фишера-Тропша, представляют собой сложную смесь парафиновых углеводородов с числом углеродных атомов от 5 до 70, с отношением нормальных парафиновых углеводородов к изопарафиновым - 2-10:1. СТУ считаются высококачественным сырьем для получения синтетических дизельных топлив, не содержащих соединений серы, азота и полициклических ароматических углеводородов и характеризующихся низкими температурами застывания.
Предлагаемый способ получения синтетического дизельного топлива предлагает использование комплекса таких гидропроцессов, как гидрокрекинг/изодепарафинизация и гидрофинишинг. В процесс гидрокрекинга/изодепарафинизации преобладающими реакциями являются гидрокрекинг и изомеризация нормальных парафиновых углеводородов исходного сырья, а также изомеризация нормальных парафиновых углеводородов, полученных в результате реакций гидрокрекинга.
Синтетические твердые углеводороды, полученные методом Фишера-Тропша, отделяются от фракции С5- и подвергаются процессу гидрокрекинга/изодепарафинизации. Продукты, полученные в результате данного процесса, подвергаются ректификации с выделением фракции 180°-360°. Фракция 180°-360° подвергается гидрофинишингу. Продукт гидрофинишинга после стабилизации может быть использован в качестве синтетического дизельного топлива. Общий выход синтетического дизельного топлива - не менее 65% масс.
Указанные отличительные признаки существенны.
Использование платинового катализатора на носителе из цеолита SAPO-41 и -Al2O3 для гидрокрекинга/изодепарафинизации в условиях заявленного режима обеспечивает выход промежуточного продукта, состав и свойства которого, позволяют получить высокий выход конечного продукта в процессе гидрофинишинга в условиях заявленного режима обработки.
Способ реализуют следующим образом.
СТУ подвергают гидрокрекингу/изодепарафинизации при давлении 1,0-6,0 МПа, температуре 340-420°C, объемной скорости подачи сырья 0,5-1,5 ч-1, соотношении водород: углеводороды 800-1200:1 нл/л на стационарном слое катализатора, представляющего собой 0,2-0,4% Pt, нанесенной на носитель, содержащий 10-40% цеолита SAPO-41, остальное - -Al2O3. После этого выделяют ректификацией фракцию 180°-360°C. Данную фракцию подвергают гидрофинишингу при температуре 150-250°C, давлении 2,0-4,0 МПа, объемной скорости подачи сырья 1,0-7,0 час-1, при отношении водород: фракция 400-800:1 нл/л.
В процессе гидрофинишинга используют палладиевый катализатор, содержащий от 0,5 до 1,5% масс. палладия, нанесенного на носитель, представляющий собой -Al2O3 с эффективным радиусом пор 4,0-10,0 нм.
Продукт гидрофинишинга после стабилизации может быть использован в качестве синтетического дизельного топлива. Общий выход синтетического дизельного топлива - не менее 65% масс.
Получение катализатора для гидрокрекинга/изодепарафинизации иллюстрируется следующими примерами.
Пример 1.
77,36 г порошка гидроксида алюминия сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия сначала пептизируют 2,39 мл 65%-ного раствора азотной кислоты с плотностью 1,4 г/смЗ.
44,36 г порошка цеолита SAPO-41 в H-форме сначала увлажняют дистиллированной водой, а затем добавляют в пептизированную массу гидроксида алюминия. Полученную массу тщательно перемешивают и формуют в цилиндрические гранулы методом экструзии.
Гранулы носителя подсушивают при комнатной температуре в течение 24 ч, затем просушивают в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 120°C. Просушенные гранулы носителя затем прокаливают в токе воздуха при 550°C в течение 10 ч с подъемом температуры прокалки 50°C в час.
99,8 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 0,2 г платины в составе платинохлористоводородной кислоты; 1 г 98,5% концентрированной уксусной кислоты и 0,92 г 37% концентрированной соляной кислоты.
Пропитку носителя ведут при комнатной температуре в течение 1 ч, затем при температуре 80°C в течение 3 ч при постоянном перемешивании. Избыток пропиточного раствора отделяют декантацией.
Катализатор сушат в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 100°C, 2 ч при 120°C, 2 ч при 140°C.
Состав полученного катализатора, мас.%:
Платина (Pt) | 0,2; |
Цеолит SAPO-41 в H-форме | 39,92; |
Оксид алюминия ( -Al2O3) | 59,88. |
Пример 2.
115,8 г порошка гидроксида алюминия сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия сначала пептизируют 3,58 мл 65%-ного раствора азотной кислоты с плотностью 1,4 г/смЗ.
11,07 г порошка цеолита SAPO-41 в H-форме сначала увлажняют дистиллированной водой, а затем добавляют в пептизированную массу гидроксида алюминия. Полученную массу тщательно перемешивают и формуют в цилиндрические гранулы методом экструзии.
Гранулы носителя подсушивают при комнатной температуре в течение 24 ч, затем просушивают в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 120°C. Просушенные гранулы носителя затем прокаливают в токе воздуха при 550°C в течение 10 ч с подъемом температуры прокалки 50°C в час.
99,6 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 0,4 г в составе платинохлористоводородной кислоты; 1,99 г 98,5% концентрированной уксусной кислоты и 1,84 г 37% концентрированной соляной кислоты.
Пропитку носителя ведут при комнатной температуре в течение 1 ч, затем при температуре 80°C в течение 3 ч при постоянном перемешивании. Избыток пропиточного раствора отделяют декантацией.
Катализатор сушат в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 100°C, 2 ч при 120°C, 2 ч при 140°C.
Состав полученного катализатора, мас.%:
Платина (Pt) | 0,4; |
Цеолит SAPO-41 в H-форме | 9,96; |
Оксид алюминия ( -Al2O3) | 89,64. |
Пример 3.
103,05 г порошка гидроксида алюминия сначала увлажняют дистиллированной водой. Влажную пасту гидроксида алюминия сначала пептизируют 3,2 мл 65%-ного раствора азотной кислоты с плотностью 1,4 г/смЗ.
22,16 г порошка цеолита SAPO-41 в H-форме сначала увлажняют дистиллированной водой, а затем добавляют в пептизированную массу гидроксида алюминия. Полученную массу тщательно перемешивают и формуют в цилиндрические гранулы методом экструзии.
Гранулы носителя подсушивают при комнатной температуре в течение 24 ч, затем просушивают в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 120°C. Просушенные гранулы носителя затем прокаливают в токе воздуха при 550°C в течение 10 ч с подъемом температуры прокалки 50°C в час.
99,7 г прокаленного носителя вакуумируют в течение 30 мин, а затем помещают в 150 мл совместного пропиточного раствора, содержащего 0,3 г в составе платинохлористоводородной кислоты; 1,49 г 98,5% концентрированной уксусной кислоты и 1,38 г 37% концентрированной соляной кислоты.
Пропитку носителя ведут при комнатной температуре в течение 1 ч, затем при температуре 80°C в течение 3 ч при постоянном перемешивании. Избыток пропиточного раствора отделяют декантацией.
Катализатор сушат в токе воздуха в течение 2 ч при 60°C, 2 ч при 80°C, 2 ч при 100°C, 2 ч при 120°C, 2 ч при 140°C.
Состав полученного катализатора, мас.%:
Платина (Pt) | 0,3; |
Цеолит SAPO-41 в H-форме | 19,94; |
Оксид алюминия ( -Al2O3) | 79,76. |
Способ получения дизельного топлива из твердых синтетических углеводородов, полученных по методу Фишера-Тропша с использованием указанного катализатора иллюстрируется следующими примерами.
Пример 4.
СТУ, полученные по методу низкотемпературного синтеза Фишера-Тропша из синтез-газа на кобальтовом катализаторе, отделяются от фракции С5- и подвергаются гидрокрекингу/изодепарафинизации при давлении 1,0 МПа, температуре 340°C, объемной скорости подачи сырья 0,5 ч-1, соотношении водород: углеводороды 1200:1 нл/л. В процессе гидрокрекинга используется катализатор, синтезированный по примеру 1.
Продукты гидрокрекинга/изодепарафинизации подвергаются ректификации с выделением фракции 180°-360°.
Фракция 180°-360° продуктов гидрокрекинга/изодепарафинизации подвергается гидрофинишингу при температуре 250°C, давлении 4,0 МПа, объемной скорости подачи сырья 7,0 час-1, при отношении водород: фракция 300:1 нл/л. В процессе гидрофинишинга используется палладиевый катализатор, содержащий 0,5 масс. палладия, нанесенного на носитель, представляющий собой -Al2O3 с эффективным радиусом пор 10,0 нм.
Продукт гидрофинишинга подвергается стабилизации.
Пример 5.
СТУ, полученные по методу низкотемпературного синтеза Фишера-Тропша из синтез-газа на кобальтовом катализаторе, отделяются от фракции С5- и подвергаются гидрокрекингу/изодепарафинизации при давлении 6,0 МПа, температуре 420°C, объемной скорости подачи сырья 1,5 ч-1 , соотношении водород: углеводороды 800:1 нл/л. В процессе гидрокрекинга используется катализатор, В процессе гидрокрекинга используется катализатор, синтезированный по примеру 2.
Продукты гидрокрекинга/изодепарафинизации подвергаются ректификации с выделением фракции 180°-360°.
Фракция 180°-360° продуктов гидрокрекинга/изодепарафинизации подвергается гидрофинишингу при температуре 150°C, давлении 2,0 МПа, объемной скорости подачи сырья 1,0 час-1, при отношении водород: фракция 400:1 нл/л. В процессе гидрофинишинга используется палладиевый катализатор, содержащий 1,5% масс. палладия, нанесенного на носитель, представляющий собой -Al2O3 с эффективным радиусом пор 4,0 нм.
Продукт гидрофинишинга подвергается стабилизации.
Пример 6.
СТУ, полученные по методу низкотемпературного синтеза Фишера-Тропша из синтез-газа на кобальтовом катализаторе, отделяются от фракции С5- и подвергаются гидрокрекингу/изодепарафинизации при давлении 4,0 МПа, температуре 375°C, объемной скорости подачи сырья 1,0 ч-1 , соотношении водород: углеводороды 1000:1 нл/л. В процессе гидрокрекинга используется катализатор, В процессе гидрокрекинга используется катализатор, синтезированный по примеру 3.
Продукты гидрокрекинга/изодепарафинизации подвергаются ректификации с выделением фракции 180°-360°.
Фракция 180°-360° продуктов гидрокрекинга/изодепарафинизации подвергается гидрофинишингу при температуре 200°C, давлении 3,0 МПа, объемной скорости подачи сырья 15,0 час-1 , при отношении водород: фракция 800:1 нл/л. В процессе гидрофинишинга используется палладиевый катализатор, содержащий 1% масс. палладия, нанесенного на носитель, представляющий собой -Al2O3 с эффективным радиусом пор 6,0 нм.
Продукт гидрофинишинга подвергается стабилизации.
Температуры застывания и выходы синтетических дизельных топлив, полученных из синтетических твердых углеводородов, подвергнутых гидрокрекингу/изодепарафинизации и гидрофинишингу по примерам 4-6, приведены в таблице 1.
Таблица 1 | ||
Наименование примеров | Выход синтетического дизельного топлива, % масс. | Температура застывания, °C |
Пример 4 | 72 | -17 |
Пример 5 | 80 | -33 |
Пример 6 | 75 | -13 |
Класс C10L1/00 Жидкое углеродсодержащее топливо
Класс C10G65/00 Обработка углеводородных масел только путем двух или более процессов гидрообработки
Класс B01J32/00 Носители катализаторов вообще
Класс B01J29/85 силикоалюмофосфаты (САФО соединения)