способ получения эпоксидированных 1,2-полибутадиенов
Классы МПК: | C08F8/08 эпоксидирование C08C19/06 эпоксидирование C08F136/06 бутадиен |
Автор(ы): | Абдуллин Марат Ибрагимович (RU), Глазырин Андрей Борисович (RU), Куковинец Ольга Сергеевна (RU), Басыров Азамат Айратович (RU), Хамидуллина Гульфия Ильшатовна (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" (RU) |
Приоритеты: |
подача заявки:
2012-12-19 публикация патента:
20.03.2014 |
Настоящее изобретение относится к области высокомолекулярных соединений, в частности к получению полимерных продуктов на основе 1,2-полибутадиенов, содержащих в составе макромолекул эпоксидные группы. Описан способ получения эпоксидированных 1,2-полибутадиенов, заключающийся во взаимодействии полимера с эпоксидирующим агентом, содержащим перекись водорода и фосфорную кислоту, отличающийся тем, что в качестве полимера используют нетканый материал, состоящий из волокон 1,2-полибутадиена с диаметром волокон 1,1-3,5 мкм, поверхностная плотность нетканого материала 40-80 г/м2 , при этом эпоксидирующий агент дополнительно содержит молибдат натрия при мольном соотношении 1,2-полибутадиен:перекись водорода 1:0,4-1,1 и молибдат натрия:фосфорная кислота 1:1-4, а взаимодействие полимера с эпоксидирующим агентом производят при температуре 10-30°C в течение 1-4 ч и показатель pH реакционной среды 2-3 поддерживают путем введения 0,1 М водного раствора гидрофосфата натрия. Технический результат - получение эпоксидированных 1,2-полибутадиенов способом, характеризующимся более высоким уровнем безопасности, исключением использования в процессе синтеза органических растворителей и межфазного катализатора, снижением энергетических затрат и повышением качества целевого продукта. 1 з.п. ф-лы, 1 табл., 31 пр.
Формула изобретения
1. Способ получения эпоксидированных 1,2-полибутадиенов, заключающийся во взаимодействии полимера с эпоксидирующим агентом, содержащим перекись водорода и фосфорную кислоту, отличающийся тем, что в качестве полимера используют нетканый материал состоящий из волокон 1,2-полибутадиена с диаметром волокон 1,1-3,5 мкм, поверхностная плотность нетканого материала 40-80 г/м2, при этом эпоксидирующий агент дополнительно содержит молибдат натрия при мольном соотношении 1,2-полибутадиен:перекись водорода 1:0,4-1,1 и молибдат натрия:фосфорная кислота 1:1-4, а взаимодействие полимера с эпоксидирующим агентом производят при температуре 10-30°C в течение 1-4 ч и показатель pH реакционной среды 2-3 поддерживают путем введения 0,1 М водного раствора гидрофосфата натрия.
2. Способ по п.1, отличающийся тем, что используют атактический или синдиотактический 1,2-полибутадиен со среднечисловой молекулярной массой Mn от 30000 до 150000 и содержанием в макромолекулах звеньев 1,2-полимеризации 60-95 мол.%.
Описание изобретения к патенту
Изобретение относится к области высокомолекулярных соединений, в частности к получению полимерных продуктов на основе 1,2-полибутадиенов, содержащих в составе макромолекул эпоксидные группы.
Эпоксидированные полимерные продукты характеризуются высоким комплексом физико-механических свойств, хорошими адгезионными свойствами и могут найти применение в составе клеевых композиций, герметиков, лакокрасочных покрытий, в качестве модификаторов в составе различных композиций термопластов и эластомеров.
Эпоксидированные атактические 1,2-полибутадиены могут быть получены химической модификацией атактических 1,2-полибутадиенов, содержащих в составе макромолекул двойные углерод-углеродные связи в основной цепи и в боковых, которые синтезируют в промышленности полимеризацией 1,3-бутадиена на комплексных катализаторах [Патент РФ 2072362, кл. C08F 136/06, C08F 36/06, C08F 136/00, C08F 36/00; опубл. 27.01.1997. Патент РФ 2177008, кл. C08F 136/06, C08F 36/06, C08F 36/04, C08F 4/70; опубл. 20.12.2001. Патент РФ 2283850, кл. C08F 36/06, C08F 136/06; опубл. 20.09.2006. Патент США 4182813, кл. C08F 136/06, C08F 36/00, C08F 4/00; опубл. 08.01.1980. Патент РФ 2139299, кл. C08F 136/06; опубл. 10.10.1999].
Способ получения эпоксидированных 1,2-полибутадиенов основан на взаимодействии 1,2-полибутадиена с эпоксидирующим агентом, в качестве которого используют пероксокомплексы молибдена. Наибольшее распространение получил способ эпоксидирования 1,2-полибутадиенов, в котором пероксокомплекс генерируют непосредственно в реакционной колбе взаимодействием водного раствора пероксида водорода с молибдатом натрия в присутствии фосфорной кислоты.
Известен способ получения модифицированного эпоксидными группами частично гидроксилированных 1,4-полибутадиенов оксопероксо- комплексами вольфрама [Qingfa Wang, Xiangwen Zhang, Li Wang, Zhentao Mi. Kinetics of Epoxidation of Hydroxyl-Terminated Polybutadiene with Hydrogen Peroxide under Phase Transfer Catalysis, Ind. Eng. Chem. Res., 2009, 48, 1364 - 1371]. Недостатками данного метода являются необходимость выделения эпоксидированного полимера из реакционной массы, высокие энергетические затраты из-за необходимости проведения процесса при повышенных температурах (до 60°С); возможность протекания побочных реакций, связанных с раскрытием эпоксидных групп в модифицированном полимере.
Известен способ эпоксидирования бутадиен-стирольного каучука в толуоле действием оксопероксо-комплексов вольфрама [Jian, X.; Hay, A. S. Epoxidation of unsaturated polymers with hydrogen peroxide/. Polym. Sci., Polym. Lett. 1990, 28, 285-288]. К раствору бутадиен-стирольного каучука в толуоле добавляют смесь вольфрамовой, фосфорной кислот, пероксид водорода и межфазного катализатора - Aliquat 336. Реакцию проводят в течение 4-6 ч при температуре 60-80°C. Данный метод позволяет получить модифицированные полимерные продукты со степенью эпоксидирования до 85%. К недостаткам данного метода следует отнести высокие энергетические затраты из-за необходимости проведения процесса при повышенных температурах (до 80°C) в течение продолжительного времени до 6 ч, возможность протекания побочных реакций, связанных с раскрытием эпоксидных групп в модифицированном полимере.
Наиболее близким к изобретению по технической сущности и достигаемому эффекту является способ эпоксидирования 1,4-полибутадиена, заключающийся во взаимодействии раствора 1,4-полибутадиена в толуоле с эпоксидирующим агентом, в качестве которого используют смесь вольфрамовой и фосфорной кислот, пероксид водорода и межфазного катализатора - триоктилметиламмонийхлорида [Патент США 5789512, кл. C08C 19/06; C08F 8/08; C08C 19/00; C08F8/00; опубл. 04.08.1998]. Полибутадиен, вольфрамовую, фосфорную кислоту, перекись водорода и триоктилметиламмонийхлорид помещают в реактор, снабженный механической мешалкой и холодильником. Синтез проводили при мольном соотношении 1,4-полибутадиен:перекись водорода 1: (0,3-1,0), вольфрамовая кислота:фосфорная кислота 1: (2,5-98) в течение 3-8 ч при температуре 50-60°C. По окончании синтеза отделяли органическую фазу и дважды промывали водой. Полимер сушили в вакууме. Степень функционализации (превращение ненасыщенных звеньев в эпоксидные группы) 1,4-полибутадиена составляет 5,3-45,0%.
Недостатками данного метода являются необходимость проведения процесса при повышенных температурах (до 60°C) в течение продолжительного времени до 8 ч, возможность протекания в условиях проведении процесса побочных реакций, связанных с раскрытием эпоксидных групп в модифицированном полимере. Проведение процесса эпоксидирования 1,2-полибутадиена в среде пожаровзрывоопасных органических растворителей, использование межфазного катализатора - триоктилметиламмонийхлорида, необходимость выделения конечного продукта из реакционной массы и высушивания полимера, что увеличивает энергетические затраты на получение целевого продукта.
Технической задачей данного изобретения является разработка способа получения эпоксидированных 1,2-полибутадиенов, характеризующегося более высоким уровнем безопасности, исключение использования в процессе синтеза органических растворителей и межфазного катализатора, снижение энергетических затрат, повышение качества целевого продукта.
Указанная техническая задача достигается тем, что в предложенном способе получения эпоксидированных 1,2-полибутадиенов, заключающемся во взаимодействии нетканого материала, состоящего из волокон 1,2-полибутадиена (диаметр волокон 1,1-3,5 мкм, поверхностная плотность нетканого материала 40 - 80 г/м) с эпоксидирующим агентом, в качестве которого используют смесь перекись водорода, молибдата натрия и фосфорной кислоты при мольном соотношении 1,2-полибутадиен:перекись водорода 1: (0,4-1,1) и молибдат натрия:фосфорная кислота 1: (1-4), при температуре 10-30°C в течение 1-4 ч и pH водной фазы 2-3. В качестве исходного 1,2-полибутадиена используют атактический или синдиотактический 1,2-полибутадиен со среднечисловой молекулярной массой Mn от 30000 до 150000 и содержанием в макромолекулах звеньев 1,2- и 1,4-полимеризации 60-95 и 5-40 мол. % соответственно. Показатель pH реакционной среды 2-3 поддерживают путем введения 0,1 М водного раствора гидрофосфата натрия.
При реализации предлагаемого способа использовали промышленные образцы 1,2-полибутадиена производства ОАО «Ефремовский завод СК» и полимеры марки JSR RB производства «Japan Synthetic Rubber Со.» (Япония). Образец 1,2-полибутадиена очищали переосаждением в системе хлороформ-этанол, далее полимер дважды промывали спиртом и сушили под вакуумом при 60°C до постоянной массы. В качестве исходных компонентов эпоксидирующего агента применяли 30-40%-ный раствор перекиси водорода по ГОСТ 177-88 марки А, молибдат натрия по ГОСТ 18289-78, фосфорная кислота по ГОСТ 10678-76.
Данное изобретение иллюстрируется следующими примерами.
Пример 1. Нетканые материалы, состоящие из волокон 1,2-полибутадиена, получали по следующей методике [Xiufeng Наоа, Xuequan- Zhang. Syndiotactic 1,2-polybutadiene fibers produced by electrospinning, Materials Letters, 2007, 61, 1319-1322]. Раствор 1,2-полибутадиена в хлористом метилене подвергли электроформованию при следующих условиях: напряжение между катодом и анодом 13-25 кВ, расстояние между флиерой и коллектором 10-17 см, концентрация раствора 1,2-полибутадиена 3-7%. Получен нетканый материал, состоящий из волокон 1,2-полибутадиена, - диаметр волокон 0,8-5,1 мкм, поверхностная плотность нетканого материала 32,1-91,0 г/м2.
Пример 2. В стеклянный реактор, снабженный обратным холодильником, помещали 3 г (0,056 моль) нетканого материала, состоящего из волокон 1,2-полибутадиена, - диаметр волокон 2,18±0,21 мкм, поверхностная плотность нетканого материала 67,82 г/м2. Использовали атактический 1,2-полибутадиен со среднечисловой молекулярной массой M n 150000, содержанием звеньев 1,2- и 1,4-полимеризации 76 и 24 мол.% соответственно. К образцу нетканого материала прибавляли смесь 1,63 г молибдата натрия (0,0056 моль), 1,68 г 98%-ной фосфорной кислоты (0,0168 моль), 3,6 г 37%-ного раствора перекиси водорода (0,0392 моль) в 20 мл дистиллированной воды. Мольное соотношение полимер:перекись водорода 1:0,7; молибдат натрия:фосфорная кислота 1:3. Показатель рН водной среды 2-3 поддерживали путем введения 0,1 М водного раствора гидрофосфата натрия. Полученную массу выдерживали при 20°C в течение 3 ч. После окончания синтеза образцы нетканого материала отделяли от реакционной смеси и промывали дистиллированной водой до pH 7-8 и сушили в вакууме при температуре 40°C в течение 5 ч. Получили 3,18 г эпоксидированного атактического 1,2-полибутадиена со степенью функционализации 5,7% с количественным выходом (>99%). В ИК-спектре модифицированного эпоксидированного 1,2-полибутадиена отсутствуют сигналы в области 3000-3600 см -1, характерные для гидроксильных групп, что указывает на отсутствие побочных реакций, связанных с раскрытием эпоксидных групп.
Пример 3. В стеклянный реактор, снабженный обратным холодильником, помещали 3 г (0,056 моль) нетканого материала, состоящего из волокон синдиотактического 1,2-полибутадиена, - диаметр волокон 2,18±0,21 мкм, поверхностная плотность нетканого материала 67,82 г/м. Использовали синдиотактический 1,2-полибутадиен со среднечисловой молекулярной массой Mn 150000, содержанием звеньев 1,2- и 1,4-полимеризации 76 и 24 мол.% соответственно. К образцу нетканого материала прибавляли смесь 1,63 г молибдата натрия (0,0056 моль), 1,68 г 98%-ной фосфорной кислоты (0,0168 моль), 3,6 г 37%-ного раствора перекиси водорода (0,0392 моль) в 20 мл дистиллированной воды. Мольное соотношение полимер:перекись водорода 1:0,7; молибдат натрия:фосфорная кислота 1:3. Показатель рН водной среды 2-3 поддерживали путем введения 0,1 М водного раствора гидрофосфата натрия. Полученную массу выдерживали при 20°C в течение 3 ч. После окончания синтеза образцы нетканого материала отделяли от реакционной смеси и промывали дистиллированной водой до pH 7-8 и сушили в вакууме при температуре 40°C в течение 5 ч. Получили 3,09 г эпоксидированного синдиотактического 1,2-полибутадиена со степенью функционализации 6,3% с количественным выходом (>99%). В ИК-спектре модифицированного эпоксидированного синдиотактического 1,2-полибутадиена отсутствуют сигналы в области 3000-3600 см-1, характерные для гидроксильных групп, что указывает на отсутствие побочных реакций, связанных с раскрытием эпоксидных групп.
Массовую долю эпоксидных групп в полимере определяют по следующей методике [Jay, R.R. Direct Titration of Ероху Compounds and Aziridines, Anal. Chem., 1964, 36(3): 667-668]. К раствору анализируемого образца в толуоле добавляют рассчитанное количество раствора HCl4 и перемешивают в течение 2 ч. По окончании перемешивания к раствору добавляют фенолфталеин и титруют водным раствором гидроксида натрия. Степень эпоксидирования рассчитывают по формуле:
где V0 и V1 - объем раствора (мл) HClO4, израсходованного на титрование холостого и анализируемого образцов, соответственно; w - навеска образца (г); N - молярная концентрации раствора HClO4 (моль/л); 70 - молекулярная масса эпоксидированных бутадиеновых звеньев.
Диаметр волокон , мкм, 1,2-полибутадиена определяли на оптическом микроскопе «Axio Imager D2m» производства фирмы «Karl Zeiss».
Поверхностную плотность ткани р, г/м, определяют путем взвешивания образца ткани и расчета по формуле:
где m - масса образца ткани (г); L - длина образца ткани (мм); B - ширина образца ткани (мм).
Примеры 4-31. Все операции процесса проводили в соответствии с примером 2-3. Результаты экспериментов приведены в табл.1.
Для проведения процесса эпоксидирования использовали нетканые материалы с диаметром волокон в интервале 1,1-3,5 мкм. Получение нетканых материалов с диаметром волокон менее 1 мкм технически осложнено вследствие высокого напряжения между катодом и анодом (>25 кВ) (пример 4). При эпоксидировании нетканых материалов с диаметром волокон более 3,5 мкм наблюдается снижение степени эпоксидирования вследствие уменьшения площади контакта нетканого материала с эпоксидирующим агентом (пример 7). Плотность нетканых материалов поддерживали в интервале 40-80 г/м. При уменьшении поверхностной плотности нетканого полимерного материала менее 40 г/м2 наблюдается нарушение поверхностной однородности полимерного нетканого материала (пример 8). При увеличении плотности нетканого материала более 80 г/м2 осложняется осушка конечного продукта (пример 11). Мольное соотношение 1,2-полибутадиен:перекись водорода 1: (0,4-1,1) является наиболее оптимальным. При снижении мольного соотношения 1,2-полибутадиен:перекись водорода ниже 1:0,4 имеет место снижение степени эпоксидирования (пример 12). При увеличении мольного соотношения 1,2-полибутадиен:перекись водорода выше 1:1,1 наблюдается сшивка полимера (пример 15). Мольное соотношение молибдат натрия:фосфорная кислота 1: (1-4) является наиболее оптимальным. При снижении мольного соотношения молибдат натрия:фосфорная кислота 1:1 имеет место снижение степени эпоксидирования (пример 16). При увеличении мольного соотношения молибдат натрия:фосфорная кислота 1:4 наблюдается частичное гидроксилирование продукта реакции (пример 19). Температура процесса в пределах 10-30°C позволяет получать модифицированные продукты с наибольшим выходом и высокого качества. Уменьшение температуры ниже 10°C уменьшает скорость эпоксидирования и приводит к снижению выхода целевого продукта (пример 20). Увеличение температуры выше 30°C приводит к ухудшению качества целевого продукта (пример 23). Время реакции для всех экспериментов составляет 1-4 ч. Уменьшение времени реакции ниже 1 ч приводит к снижению степени эпоксидирования конечного продукта (пример 24). При увеличении времени реакции более 4 ч наблюдается ухудшение качества целевого продукта (пример 27). Значительное влияние на качество продукта оказывает рН водной среды. При рН среды ниже 2 и выше 3 уменьшается степень эпоксидирования целевого продукта (пример 28, 31).
В предложенном способе получения эпоксидированных 1,2-полибутадиенов модификацию 1,2-полибутадиена в виде нетканого материала, состоящего из волокон 1,2-полибутадиена, проводят действием смеси перекиси водорода, молибдата натрия и фосфорной кислоты. За счет использования 1,2-полибутадиена в виде нетканого материала достигается более высокий уровень безопасности процесса. Процесс эпоксидирования проводится в течение 1-4 ч и при температуре 10 - 30°C и pH водной фазы 2-3, при этом не требуется дополнительный нагрев реакционной массы, процесс эпоксидирования протекает без использования органических растворителей и межфазного катализатора, тем самым достигается снижение энергетических затрат. Проведение процесса при относительно низких температурах и без побочных реакций раскрытия эпоксидных групп обуславливает повышение качества целевого продукта.
Таким образом, предлагаемый способ дает возможность целенаправленного получения полимерных продуктов, содержащих эпоксидные группы, на основе 1,2-полибутадиенов с заданной степенью функционализации (содержанием эпоксидных групп) от 1 до 8,6%, молекулярной массой от 30000 до 150000 и содержанием в макромолекулах звеньев 1,2-полимеризации 60-95 мол.% в зависимости от требований, предъявляемых к полимеру.
Таблица 1 | ||||||||||
Результаты экспериментов по синтезу эпоксидированных полибутадиенов | ||||||||||
№ | 1,2- | Условия процесса | , | Примечание | ||||||
ПБ | , | , | м.с. | м.с. | t°C | , ч | pH | % | ||
мкм | г/м 2 | 1,2-ПБ: | Na2MoO4: | |||||||
H2O2 | H3PC4 | |||||||||
2 | а. | 2,18 | 67,8 | 1:0,7 | 1:3 | 20 | 3 | 2,5 | 5,7 | |
3 | с. | 2,18 | 67,8 | 1:0,7 | 1:3 | 20 | 3 | 2,5 | 6,3 | |
4 | а., с. | 0,8 | 67,8 | 1:0,7 | 1:3 | 20 | 3 | 2,5 | 8,6 | |
5 | а., с. | 1,1 | 67,8 | 1:0,7 | 1:3 | 20 | 3 | 2,5 | 8,3 | |
6 | а., с. | 3,5 | 67,8 | 1:0,7 | 1:3 | 20 | 3 | 2,5 | 2,3 | |
7 | а., с. | 5,1 | 67,8 | 1:0,7 | 1:3 | 20 | 3 | 2,5 | >1 | снижение с.э. |
8 | а., с. | 2,1 | 32,1 | 1:0,7 | 1:3 | 20 | 3 | 2,5 | 4,7 | |
9 | а., с. | 2,1 | 40,0 | 1:0,7 | 1:3 | 20 | 3 | 2,5 | 5,5 | |
10 | а., с. | 2,1 | 80,0 | 1:0,7 | 1:3 | 20 | 3 | 2,5 | 5,1 | |
11 | а., с. | 2,1 | 91,0 | 1:0,7 | 1:3 | 20 | 3 | 2,5 | 5,1 | |
12 | а., с. | 2,1 | 67,8 | 1:0,2 | 1:3 | 20 | 3 | 2,5 | 1,5 | снижение с.э. |
13 | а., с. | 2,1 | 67,8 | 1:0,4 | 1:3 | 20 | 3 | 2,5 | 4,6 | |
14 | а., с. | 2,1 | 67,8 | 1:1,1 | 1:3 | 20 | 3 | 2,5 | 5,1 | |
15 | а., с. | 2,1 | 67,8 | 1:2 | 1:3 | 20 | 3 | 2,5 | 5,9 | частичное г. |
16 | а., с. | 2,1 | 67,8 | 1:0,7 | 1:0,5 | 20 | 3 | 2,5 | >1 | снижение с.э. |
17 | а., с. | 2,1 | 67,8 | 1:0,7 | 1:1 | 20 | 3 | 2,5 | 3,6 | |
18 | а., с. | 2,1 | 67,8 | 1:0,7 | 1:4 | 20 | 3 | 2,5 | 4,4 | |
19 | а., с. | 2,1 | 67,8 | 1:0,7 | 1:5 | 20 | 3 | 2,5 | 2,6 | частичное г. |
20 | а., с. | 2,1 | 67,8 | 1:0,7 | 1 | 0 | 3 | 2,5 | 1,9 | снижение с.э. |
21 | а., с. | 2,1 | 67,8 | 1:0,7 | 1:3 | 10 | 3 | 2,5 | 4,9 | |
22 | а., с. | 2,1 | 67,8 | 1:0,7 | 1:3 | 30 | 3 | 2,5 | 7,7 | |
23 | а., с. | 2,1 | 67,8 | 1:0,7 | 1:3 | 45 | 3 | 2,5 | >1 | частичное г. |
24 | а., с. | 2,1 | 67,8 | 1:0,7 | 1:3 | 20 | 0,5 | 2,5 | 1,2 | снижение с.э. |
25 | а., с. | 2,1 | 67,8 | 1:0,7 | 1:3 | 20 | 1 | 2,5 | 2,7 | |
26 | а., с. | 2,1 | 67,8 | 1:0,7 | 1:3 | 20 | 4 | 2,5 | 5,4 | |
27 | а., с. | 2,1 | 67,8 | 1:0,7 | 1:3 | 20 | 5 | 2,5 | 4,5 | частичное г. |
28 | а., с. | 2,1 | 67,8 | 1:0,7 | 1:3 | 20 | 3 | 4 | >1 | снижение с.э. |
29 | а., с. | 2,1 | 67,8 | 1:0,7 | 1:3 | 20 | 3 | 3 | 1,8 | |
30 | а., с. | 2,1 | 67,8 | 1:0,7 | 1:3 | 20 | 3 | 2 | 4,4 | |
31 | а., с. | 2,1 | 67,8 | 1:0,7 | 1:3 | 20 | 1,5 | 2,9 | частичное г. |
а. - атактический 1,2-полибутадиен;
с.- синдиотактический 1,2-полибутадиен;
- диаметр волокон нетканого материала, мкм;
- поверхностная плотность нетканого материала, г/м;
с.э. - степень эпоксидирования;
г. - гидроксилирование.
Класс C08F8/08 эпоксидирование
Класс C08C19/06 эпоксидирование