штамм рекомбинантного вируса осповакцины, эксрессирующий структурные белки вируса венесуэльского энцефаломиелита лошадей и пригодный для производства иммунобиологических препаратов и способ его получения
Классы МПК: | C12N7/00 Вирусы, например бактериофаги; их композиции; приготовление или очистка их C12N15/33 вирусные белки C12N15/86 вирусные векторы |
Автор(ы): | Фролов И.В., Урманов И.Х., Колыхалов А.А., Нетесов С.В., Агапов Е.В., Серпинский О.И., Святченко В.А. |
Патентообладатель(и): | Государственный научный центр вирусологии и биотехнологии "Вектор" |
Приоритеты: |
подача заявки:
1993-04-08 публикация патента:
27.09.1997 |
Использование: биотехнология, разработка иммунобиологических препаратов для диагностики и профилактики венесуэльского энцефаломиелита лошадей. Сущность: получение рекомбинантного штамма вируса осповакцины, экспрессирующего белки вируса венесуэльского энцефаломиелита лошадей (ВВЭЛ). Штамм получают путем встраивания в ген тимидинкиназы коммерческого штамма вируса осповакцины (ЛИВП) под контролем промотора белка 7,5 К вируса осповакцины последовательности, кодирующей только структурные белки ВВЭЛ (полноразмерной ДНК-копии всей 26 S РНК). В результате получают штамм вируса осповакцины, при использовании которого генерируется наиболее полноценный иммунный ответ против ВВЭЛ. При инфицировании клеток полученным штаммом на их поверхности экспрессируются гликопротеины суперкапсидной оболочки вируса венесуэльского энцефаломиелита лошадей. 2 с.п. ф-лы, 2 ил., 2 табл.
Рисунок 1, Рисунок 2, Рисунок 3
Формула изобретения
1. Штамм рекомбинантного вируса осповакцины ГКВ N 944, экспрессирующий структурные белки вируса венесуэльского энцефаломиелита лошадей и пригодный для производства иммунобиологических препаратов. 2. Способ получения штамма рекомбинантного вируса осповакцины ГКВ N 944, заключающийся в том, что из исходной плазмиды серии pUC8, содержащей ДНК-копию 26S-РНК вируса венесуэльского энцефаломиелита лошадей (ВВЭЛ) длиной не менее 4000 п. н. имеющую сайт узнавания рестриктазой EcoRI на 3"-конце и сопряженные BamHI и SalGI-сайты на 5"-конце, удаляют SalGI-ApaI-фрагмент, обрабатывают плазмиду ДНК-полимеразой фага T4 для образования тупых концов, рециклизуют ДНК-лигазой фага T4, трансформируют полученной плазмидой клетки Escherichia coli и отбирают клоны с плазмидой, содержащей ДНК-копию только 26S-РНК ВВЭЛ без 5"-концевой последовательности, затем BamHI-EcoRI-фрагмент данной плазмиды соединяют с помощью ДНК-лигазы фага T4 с фрагментом, содержащим промотор гена белка 7,5 К вируса осповакцины, и плазмидой pTK 1285, гидролизованной рестриктазами SalGI и EcoRI, полученной рекомбинантной ДНК трансформируют клетки Escherichia coli, отбирают клоны с плазмидой, содержащей ДНК-копию 26S-РНК ВВЭЛ под контролем промотора 7,5 К в составе гена тимидинкиназы вируса осповакцины, выделяют указанную плазмиду, которую используют для рекомбинации с геномом вируса осповакцины, и отбирают путем селекции заданный штамм.Описание изобретения к патенту
Изобретение относится к биотехнологии и, в частности к генетической инженерии, представляет собой штамм рекомбинантного вируса осповакцины, обуславливающий синтез структурных белков вируса Венесуэльского энцефаломиелита лошадей (ВЭЛ) в инфицированных клетках, и протективный иммунитет против ВЭЛ у вакцинированных им лабораторных животных, а также способ конструирования данного штамма. Вирус ВЭЛ представляет собой один из наиболее патогенных для животных представителей рода Альфавирусов семейства Тогавирусов, вызывающий наиболее серьезные заболевания человека, грызунов и лошадей и приводящий, для целого ряда видов животных, к летальному исходу. Данный вирус переносится в природе несколькими видами москитов и вызывает широкомасштабные эпизоотии в Южной, Центральной и Северной Америке. Для профилактики заболевания, вызванного вирусом ВЭЛ, в настоящее время применяется вакцинация людей и сельскохозяйственных животных живой вакциной на основе аттенуированных штаммов ТС-83 и 230, а также инактивированной вакциной, изготавливаемой на основе обработанного формалином вируса ВЭЛ, однако существует вероятность реверсии этих штаммов к вирулентному варианту [1] и включению ревертантов в природную циркуляцию [2] Кроме того, штаммы ТС-83 и 230 реактогенны (в 80% случаев), возможно обладают тератогенным потенциалом вируса ВЭЛ [3] и у 30% вакцинированных вызывают симптомы, сходные с симптомами заболевания ВЭЛ [4] Иммунизация же инактивированным вирусом предполагает использование больших количеств материала, что ведет к крупномасштабным наработкам патогена и высокой себестоимости такого рода вакцин. В современной литературе описано несколько векторов, позволяющих экспрессировать чужеродные гены в эукариотических клетках. Созданные к настоящему времени вектора на основе ретровирусов, аденовирусов, папилломавирусов и паповавирусов обладают целым рядом существенных недостатков: малой скоростью размножения на культуре клеток, небольшой емкостью относительно встраиваемых генетических последовательностей, неспособностью размножаться в организме животных и др. [5] Определенные успехи по созданию рекомбинантных вакцин были достигнуты при использовании вируса осповакцины. В геном этого вируса были встроены последовательности генов гемагглютинина вируса гриппа [6] N- и G-белков вируса везикулярного стоматита [7] гликопротеина вируса бешенства [8] антигена малярийного плазмодия [9] и др. Во всех случаях наблюдалась эффективная экспрессия чужеродных для осповакцины белков в культуре клеток. В ряде случаев в организме вакцинированных животных были обнаружены антитела, специфичные к данным белкам и способные защищать от летальной инфекции, вызываемой вирусом, чьи гены были встроены в геном рекомбинантного вируса осповакцины. Потенциальная возможность экспрессии структурных белков альфавирусов в составе генома рекомбинантного вируса осповакцины была продемонстрирована на примере вируса Синдбис [10] В качестве прототипа выбран известный способ конструирования штаммов рекомбинантной осповакцины VACC/TRD и VACC/TC-83, экспрессирующих структурные белки американского варианта штамма Тринидад данки вируса ВЭЛ и полученного из него вакцинного штамма ТС-83 [11] который заключается в следующем:1. Конструируется плазмида, содержащая последовательность генов структурных белков под контролем 7.5К промотора вируса осповакцины, фланкированную с двух сторон последовательностями гена тимидинкиназы (ТК) вируса осповакцины. 2. Проводится рекомбинация между "ТК-плечами" полученной плазмиды и ДНК генома ОВ в клетках, зараженных вирусом осповакцины. 3. Проводится отбор клонов рекомбинантного вируса осповакцины с фенотипом ТК- на селективной среде, содержащей бромдезоксиуридин. 4. Проводится отбор методами гибридизации клонов осповакцины, имеющих фенотип ТК-, содержащих в геноме последовательность встраиваемого гена. 5. Полученные клоны анализируются на культуре клеток для определения уровня экспрессии встроенных последовательностей. Однако в каждом конкретном случае, в зависимости от последовательности, вводимой в геном осповакцины, и промотора, который выбирается для осуществления экспрессии, описанные этапы этой методики настолько сильно различаются, что она не может выступать в качестве универсальной. Наиболее близкой по структуре из всех встроенных последовательностей является область генов структурных белков американского варианта вируса ВЭЛ Тринидад данки. Однако, как показано нами ранее [12] нуклеотидные последовательности 26 S РНК используемого в прототипе американского и используемого нами отечественного варианта патогенного штамма вируса ВЭЛ Тринидад данки имеют ряд различий, приводящих к аминокислотным заменам в кодируемых 26 S РНК белках. В белке C 62-ой Ser на Pro; в белке 6К 48-ой Met на Val, 53-ий Ala на Gly, 54-ый Pro на Ala, 55-ый Ala на Gly и дополнительный Ala в положении 56; в белке Е2 (основной иммуноген) 85-ый His на Tyr, 147-ой Val на Ala, 187-ой Thr на Jle, 192-ой Val на Ala и 408-ой Jle на Met. Для введения генов структурных белков ВЭЛ в геном вируса осповакцины в прототипе предлагается использовать рестриктазу Tth III I, что приводит к удалению из встраиваемой ДНК-копии 26 S РНК 3"-нетранслируемой области вместе с поли-A трактом. Кроме этого, при использовании этой рестриктазы на 5"-конце встраиваемой ДНК-копии остается часть последовательности, кодирующей неструктурный белок nsp 4, способная помешать эффективной транскрипции последовательности, кодирующей структурные белки вируса ВЭЛ. В литературе отсутствует анализ защитных свойств рекомбинантного вируса VACC/TRD, несущего встройку 26 S РНК американского варианта штамма Тринидад данки вируса ВЭЛ. Целью изобретения является создание штамма рекомбинантного вируса осповакцины, вызывающего синтез всех структурных белков вирулентного штамма TRD вируса ВЭЛ в инфицированных клетках и обеспечивающего эффективную защиту вакцинированных им лабораторных животных от летальной инфекции ВЭЛ. Эта цель достигается путем встройки в ген тимидинкиназы коммерческого штамма вируса осповакцины-ЛИВП под контролем промотора белка 7,5К вируса ОВ последовательности, кодирующей только структурные белки вируса ВЭЛ (полноразмерной ДНК-копии всей 26 S РНК), для извлечения которой из ДНК-копии геномной РНК отечественного варианта вирулентного штамма ТРД вируса ВЭЛ, используется рестриктаза Apal, сайт узнавания которой расположен непосредственно перед 5"-концом субгеномной 26 S РНК и является уникальным для этой последовательности. В результате полученный рекомбинантный штамм осповакцины содержит в геноме, по сравнению с исходным коммерческим осповакцинным штаммом (ЛИВП), дополнительную последовательность, состоящую: 1) из фрагмента длиной 300 н.п. включающего в себя район промотора гена белка 7,5К; 2) из фрагмента длиной около 4000 п.о. содержащего последовательность генов белков C, Е3, Е2, 6К и Е1 вируса ВЭЛ, отечественного варианта штамма Тринидад данки, в указанном порядке; встроенная ДНК-копия 26 S РНК не имеет на 5"-конце других последовательностей геномной РНК ВЭЛ, способной помешать транскрипции [12] Схема встроенного фрагмента приведена на фиг. 1. Необходимо отметить, что встройка полноразмерной ДНК-копии 26 S РНК вирулентного штамма вируса ВЭЛ ведет к формированию наиболее полноценного иммунного ответа против вируса ВЭЛ. Указанная встройка проводится в два этапа. На первом этапе из фрагмента ДНК-копии геномной РНК вируса ВЭЛ удаляют последовательность генов неструктурных белков, которые могут помешать впоследствии правильной трансляции, после чего перечисленные выше фрагменты, содержащие последовательности промотора и генов структурных белков ВЭЛ, собирают в составе единой плазмиды внутри гена тимидинкиназы вируса осповакцины. Для этого используются следующие плазмиды: 1) плазмида на основе вектора pUC8 (pVE-4, pVET7-91, pVEI47), содержащая последовательность 5"-конца 26 S РНК вируса ВЭЛ длиной по крайней мере 4000 п. о. и COOH-концевую область гена белка Nsp4; 2) плазмида, содержащая клонированный между сайтами рестрикции SalGI и BamHI полилинкера SalGI-HinfI фрагмент ДНК вируса осповакцины, штамм WR, размером 253 п.н. соответствующий промотору гена белка 7,5К этого вируса [13] (обозначена как p7,5K); 3) плазмида pTK1285 [14] содержащая последовательность гена тимидинкиназы вируса осповакцины, штамм ЛИВП, со встроенным полилинкером. Этот этап конструирования нового штамма заключается в удалении из любой из плазмид, упомянутых выше в пункте 1 (например pVE4, pVET7-91, либо pVE147) фрагмента кДНК, соответствующего области неструктурных белков вируса ВЭЛ. Для этого плазмиды разрезают по уникальному сайту рестрикции ApaI, прилегающему непосредственно к началу субгеномной 26 S РНК вируса ВЭЛ, и одному из сайтов рестрикции расположенных в полилинкере векторной плазмиды (SalGI, либо BamHI), после чего гидролизат обрабатывают ДНК-полимеразой фага Т4 согласно [15] с последующей циклизацией плазмиды с помощью ДНК-лигазы фага Т4. После трансформации клеток E.coli полученной лигазной смесью отбирают клоны, в плазмидах которых отсутствует SalGI-ApaI-фрагмент, соответствующий области неструктурных белков вируса ВЭЛ, размер которого может варьировать в зависимости от исходно выбранной из клонотеки плазмиды, и восстановлен сайт узнавания рестриктазы SalGI. Из отобранных клонов E.coli выделяют плазмиду, обозначенную как pVE5. Затем ДНК плазмиды рТК1285 гидролизуют эндонуклеазами рестрикции SalGI и EcoRI, после чего продукт гидролиза с помощью ДНК-лигазы фага Т4 соединяют с фрагментами SalGI-BamHI плазмиды р7,5К и BamHI-EcoRI плазмиды pVE5. После трансформации клеток E. coli из выросших клонов выделяют плазмиду, обозначенную как pVE5.1. Эта плазмида содержит ген тимидинкиназы вируса осповакцины, штамм ЛИВП, в кодирующей части которого встроена последовательность кДНК-копии 26 S РНК вируса ВЭЛ (с возможным сопутствующим фрагментом другой плазмиды на ее 3"-конце) под контролем промотора гена белка 7,5К вируса осповакцины. Второй этап работы заключается в осуществлении рекомбинации между ДНК коммерческого штамма ЛИВП вируса осповакцины и ТК-плечами плазмиды pVE5.1, что достигается путем контрансфекции ими монослоя клеток CV-1, инфицированного этим же вирусом, с последующей селекцией рекомбинантных клонов осповакцины по приобретаемому ими ТК- -фенотипу на культуре клеток Human 143 (ТК-) в присутствии 5-бром-2"-дезоксиуридина и способности гибридизирования с радиоактивным зондом, комплементарным встроенным чужеродным генам, приготавливаемым на основе плазмиды pVE4. Дальнейшая характеризация клонов осповакцины проводится путем излучения продуктов экспрессии ее генов в культуре зараженных клеток с помощью сывороток, специфичных к поверхностным белкам ВЭЛ, а также путем изучения защитного эффекта против инфекции вирусом ВЭЛ, возникающего при иммунизации животных рекомбинантным вирусом осповакцины. Полученный в результате рекомбинантный штамм вируса осповакцины принадлежит к семейству Poxviridae роду Orthopoxvirus и обладает свойствами типичного представителя рода ортопоксвирусов. Имеет криптограмму: Т/2:160/5: X/*:Y/0. Вирионы имеют характерную форму брикета с размером 200х300 нм и по данным электронной микроскопии не отличаются от исходного штамма вируса осповакцины ЛИВП, то есть имеют нуклеопротеиновую сердцевину двояковогнутой формы, в углублениях которой расположены так называемые боковые тельца. Различают два типа варионов: внутриклеточный, покрытый одной липопротеиновой оболочкой, и внеклеточный, имеющий дополнительную оболочку, образующуюся в результате почкования вируса из клетки. Физико-биохимическая характеристика и культуральные свойства штамма. Основными компонентами вириона являются: белки (




во-первых, штамм получен на основе отечественного коммерческого вакцинного штамма вируса осповакцины ЛИВП;
во-вторых, на плазматической мембране клеток, инфицированных рекомбинантным вирусом, экспрессируются гликопротеины суперкапсидной оболочки вируса ВЭЛ;
в-третьих, двукратная иммунизация животных полученным штаммом вируса осповакцины приводит к появлению в их крови высокого титра антител, специфичных к вирусу ВЭЛ, и защите от летальной инфекции, вызываемой последующим введением больших доз вируса ВЭЛ. Существенным признаком способа получения штамма рекомбинантного вируса осповакцины является то, что в геном отечественного коммерческого штамма ЛИВП вируса осповакцины встраивается чужеродный генетический материал, состоящий из генов структурных белков вируса ВЭЛ, штамм Тринидад данки (Сов), под контролем промотора гена белка 7,5К ОВ. Отбор клонов рекомбинантного штамма проводится по наличию эффекта защиты иммунизированных им лабораторных животных от летальной инфекции, вызываемой введением больших доз патогенного вируса ВЭЛ. На фиг. 1 показана схема конструирования генома штамма рекомбинантного вируса осповакцины, содержащего ДНК-копию 26 S РНК вируса ВЭЛ в составе гена тимидинкиназы под контролем промотора гена белка 7,5К. Буквами обозначены сайты узнавания следующих рестриктаз: E EcoRI, B - BamHI, S SalGI, P PstI, A ApaI, C ClaI, X XmaI, H Hind III
В последней строке приведена схематическая карта рестрикции рестриктазой Hind III генома вируса осповакцины. На фиг. 2 радиоиммунологический анализ проб с использованием: А) кроличьей антисыворотки против вируса ВЭЛ и Б) моноклонального антитела В5, специфичного к белку Е2 вируса ВЭЛ. 1,8 исходные клетки Human 143;
2,3 клетки Human 143, взятые через 4 и 8 ч после заражения исходным штаммом ЛИВП вируса осповакцины;
4,5 клетки Human 143, взятые через 4 ч после заражения рекомбинантными клонами 159 и 3110 соответственно;
6,7 то же самое, но через 8 ч после заражения;
9 то же, что и 3, но с использованием моноклонального антитела;
10,11 то же, что и 6, 7, но с использованием моноклонального антитела. Способ получения штамма рекомбинантного вируса осповакцины, экспрессирующего гены структурных белков ВЭЛ, его наработки, хранения и исследования иммуногенных свойств иллюстрируется следующими примерами:
Пример 1. Клетки бактерий Escherichia coli, содержащие плазмидную ДНК pVE4 (см. фиг. 1), наращивают в 100 мл бульона до насыщения. Плазмидную ДНК выделяют согласно общепринятой методике. Проводят совместный гидролиз 1 мкг плазмидной ДНК рестриктазами ApaI (10 ед. акт.) и SalGI в течение 3 ч при 37oC; после завершения инкубации следует фенольная депротеинизация с последующим спиртовым осаждением. Далее ведут достройку концов плазмидной ДНК до тупых, проводят в буфере В (0,033 М трис-ацетат pH 7,9; 0,66 М ацетат калия; 0,01 М ацетат магния; 0,001 М 2-меркаптоэтанол) ДНК-полимеразой фага Т4 (1 ед. акт.) (при комнатной температуре в течение 10 мин). Первые 2 мин инкубация проводится в отсутствии нуклеозидтрифосфатов, затем их добавляют до концентрации 0,1 мМ. После фенольной депротеинизации и спиртового осаждения плазмиду циклизуют с помощью ДНК-лигазы фага Т4 (0,1 ед. акт.) в буфере C (0,05 М трис-HCl pH 7,5; 0,025 М MgCl2; 0,01 М NaCl; 0,005 М 2-меркаптоэтанол; 0,1 мМ АТФ) в течение 1 ч при 12oC. Трансформацию клеток проводят следующим образом: 0,1 мл суспензии клеток E. coli jM 103 вносят в 20 мл питательного бульона LB и выращивают до титра 5

Первый этап селекции заключается в клонировании вирусного потомства на монослое клеток Human 143 (TK- в присутствии 5-бром-2"-дезоксиуридина. При этом отбираются клоны вируса ОВ, имеющие фенотип (ТК-). Второй этап селекции состоит в анализе (TK-) клонов ОВ методом дот-гибридизации на наличие в вирусном геноме встроенных генов. [32P]-меченый зонд приготавливается на основе вставки плазмиды pVE4 методом никтрансляции согласно методике, описанной в [15]
В результате проведенного анализа было отобрано 2 клона рекомбинатного вируса ОВ: v713-31 и v713-15 со встроенными в геном последовательностями генов структурных белков ВЭЛ. После повторного клонирования вируса из этих клонов и гибридизации ДНК по аналогичной схеме с таким же зондом для дальнейшей работы были использованы клоны v713-159 и v 713-3110. После того, для постановки дополнительного контроля из рекомбинатного вируса путем фенольной экстракции согласно [5] была выделена геномная ДНК, которую гидролизовали рекстриктазой Hind III с последующим анализом фрагментов гидролиза электрофорезом в 0,8% агарозном геле согласно [15] при этом был обнаружен дополнительный фрагмент размером около 9000 п.о. содержащий последовательности части гена тимидинкиназы, 26 S РНК и РstI-EcoRI-фрагмента плазмиды pBR322. Вновь появившийся фрагмент гибридизуется с радиоактивным зондом, комплементарным генам структурных белков вируса. Клоны полученного рекомбинантного вируса ОВ были наработаны на культуре клеток ВНК-21 и очищены по [11] Эти вирусные препараты были использованы для заражения монослоя клеток Human 143 с множественностью 10-20 00E/клетку. Уже через четыре часа после заражения на поверхностной мембране клеток с помощью твердофазного радиоиммунного анализа, описанного в [10] были выявлены структурные белки ВЭЛ. В этих экспериментах были использованы гипериммунные кроличьи сыворотки, специфичные к вирионным белкам ВЭЛ. Результаты этих экспериментов приведены на фиг. 2. Пример 2. Клетки бактерий E.coli, содержащие плазмидную ДНК pVET7-91 с полноразмерной ДНК-копией генома вируса ВЭЛ, имеющую на 3"-конце сайт узнавания рестриктазы Hind III, наращивают в 100 мл бульона до насыщения. Плазмидную ДНК выделяют согласно общепринятой методике. Далее 10 мкг плазмиды гидролизуют рестриктазой ApaI (10 ед. активности, 3 ч, 37oC) и после фенольной депротеинизации и спиртового осаждения достраивают концы линеаризованной плазмидной ДНК до тупых, как и в примере 1. После фенольной обработки и спиртового осаждения плазмидную ДНК дорезают рестриктазой Hind III и с помощью гель-электрофореза и электроэлюции на бумагу DE-81 выделяют фрагмент









1. Berge T.O. Banks I.O. Tigertt W.D. Attenuation of Venezuelan equine encephalomyelitis virus by in vitro cultivation in guinea-pig heart cells. //American Journal of Higiene. 1961. V.73. P. 209-218. 2. McKinney R.W. Inactivated and live VEE vaccines-a review. // In Venezuelan encephalitis. Scientific Publication: Washington, D.C. Pan American Health Organization. 1972. N 243. P. 369-384. 3. London W.T. Levitt N.H. Kent S.G. Wong V.G. Sever J.L. Corgenital cerebral and ocular malformations induced in Rhesus monkeys by Venezuelan equine encephalitis virus. // Teratology. 1977. V.16. P. 285-296. 4. Edelman A. Asher M.S. Oster C.N. Evaluation in human of a new inactivated vaccine for Venezuelan equine encephalitis virus (C-84) // J. Inphect. Dis. 1979. V.140. N 5. P. 516-520. 5. Мэкетт М. Смит Дж. Мосс Б. Создание рекомбинантных конструкций на основе вируса осповакцины для экспрессии чужеродных генов. // Клонирование ДНК. Методы. Мир: М. 1988 г. 538 с. 6. Smith G.L. Murphy B.R. Moss B. Construction and characterization of an infectious vaccinia virus recombinant that expresses the influenza hemagglutinin gene and induces resistance to influenza virus infection in hamsters. // Proc. Natl. Acad. Sci. USA. 1983. V.80. N 3. P. 7155-7159. 7. Mackett M. Gilma T. Rose G.K. Moss B. Vaccinia virus recombinants: expression of VSV genes and protective immunization of mice and cattle. // Science. 1985. V.227. N 4552. P. 433-435. 8. Kieny M. P. Lathe R. Drillien R. et al. Expression of rabies virus glycoprotein from a recombinant vaccinia virus. // Nature. 1984. V.132. - P. 163-166. 9. Langfort C. G. Stirling G.E. Smith G.L. et al. Anchoring a secreted plasmodium antigen on the surface of recombinant vaccinia virus infected cells increased its immunogeneicity. // Mol. Cell. Biol. 1986. V.6. N 9. P. 3191-3199. 10. Rice C.M. Franke C.A. Strauss J.H. Hruby D.E. Expression of Sindbis virus structural proteins via recombinant vaccinia virus: synthesis, processing, and incorporating into mature Sindbis virions. // J. Virol. - 1985. V. 56. N 1. P. 227-229. 11. Kinney R.M. Esposito J.J. Johnson B.L.B. Roehrig J.T. Matheus J.H. Barrett A.D.T. Trend D.W. (1988) Recombinant vaccinia/Venezuelan equine encephalitis (VEE) virus expresses VEE structural proteins. // J. gen. Virol. 1988. V.69. N 12. P. 3005-3013. 12. Фролов И.В. Колыхалов А.А. Волчков В.Е. Нетесов С.В. Сандахчиев Л.С. Сравнение аминокислотных последовательностей структурных белков аттенуированных и патогенных штаммов вируса Венесуэльского энцефаломиелита лошадей. // Доклады АН СССР. 1991. Т.318. N 6. С. 1488-1491. 13. Venkatesan S. Baroudy B.M. Moss B. Distinctive nucleotide sequences adjacent to multiple initiation and termination sites of an early vaccinia virus gene. // Cell. 1981. V.25. N 3. P. 805-813. 14. Урманов И.Х. Приходько Г.Г. Серпинский О.И. Микрюков Н.Н. Чижиков В. Е. Плазмида pTK1285 для введения чужеродных генов в геном вируса осповакцины и метод ее конструирования. // Авторское свидетельство N 1640164. 8 декабря 1990 г. 15. Маниатис Т. Фрич Э. Сэмбрук Дж. Молекулярное клонирование. Методы генетической инженерии. Мир: М. 1984. 480 с.
Класс C12N7/00 Вирусы, например бактериофаги; их композиции; приготовление или очистка их
Класс C12N15/33 вирусные белки
Класс C12N15/86 вирусные векторы