способ концентрирования водной дисперсии фторполимера

Классы МПК:C08F14/18 мономеры, содержащие фтор
C08F14/22 винилиденфторид
C08F14/26 тетрафторэтен
C09D127/16 гомополимеры или сополимеры винилиденфторида
C09D127/18 гомополимеры или сополимеры тетрафторэтена
Автор(ы):, , , , , , , , , ,
Патентообладатель(и):Общество с ограниченной ответственностью "Завод полимеров КЧХК" (ООО "Завод полимеров КЧХК") (RU)
Приоритеты:
подача заявки:
2004-04-12
публикация патента:

Изобретение относится к способу концентрирования водной дисперсии фторполимера путем термического отстоя, включающему смешивание исходной дисперсии со стабилизатором - неионогенным ПАВ, выбранным из класса оксиэтилированных алкилфенолов, нагрев смеси, выдержку ее без перемешивания, при необходимости последующее охлаждение еотественньм путем, отделение концентрированной фазы от верхнего слоя, при необходимости введение дополнительного стабилизатора в концентрированную фазу и, при необходимости, разбавление концентрированной фазы до содержания фторполимера 50-55 мас.%. В качестве фторполимера используют политетрафторэтилен; политетрафторэтилен, модифицированный гексафторпропиленом, перфторпропилвиниловым эфиром или 2-перфторпропоксипропилвиниловым эфиром; поливинилиденфторид; поливинилиденфторид, модифицированный тетрафторэтиленом; сополимер тетрафторэтилена с перфторпропилвиниловым эфиром или с перфторэтилвиниловым эфиром; сополимер тетрафторэтилена с этиленом. В качестве неионогенного ПАВ используют неонол АФ-9-n, представляющий собой смесь полиэтиленгликолевых эфиров моноалкилфенолов формулы R-С6Н4О-(СН2СН2 О)nН, где R - алкильный радикал изононил -C 9H19, присоединенный к фенолу в пара-положении по отношению к гидроксильной группе, a n - усредненное число молей окиси этилена, присоединенное к одному молю алкилфенолов, равное 9-10. Указанный неонол вводят в количестве 7-10% от массы воды в исходной дисперсии. Нагрев смеси ведут до температуры 40-65°С, выдержку без перемешивания ведут до полного разделения фаз, охлаждение ведут до температуры не выше 40°С, а отделение концентрированной фазы от верхнего слоя ведут при указанной температуре. Изобретение позволяет сократить время разделения фаз. 5 з. п. ф-лы, 1 табл.

Формула изобретения

1. Способ концентрирования водной дисперсии фторполимера путем термического отстоя, включающий смешивание исходной дисперсии со стабилизатором - неионогенным ПАВ, выбранным из класса оксиэтилированных алкилфенолов, нагрев смеси, выдержку ее без перемешивания, при необходимости последующее охлаждение естественньм путем, отделение концентрированной фазы от верхнего слоя, при необходимости введение дополнительного стабилизатора в концентрированную фазу и при необходимости разбавление концентрированной фазы до содержания фторполимера 50-55 мас.%, отличающийся тем, что в качестве фторполимера используют политетрафторэтилен; политетрафторэтилен, модифицированный гексафторпропиленом, перфторпропилвиниловым эфиром или 2-перфторпропоксипропилвиниловым эфиром; поливинилиденфторид; поливинилиденфторид, модифицированный тетрафторэтиленом; сополимер тетрафторэтилена с перфторпропилвиниловым эфиром или с перфторэтилвиниловым эфиром; сополимер тетрафторэтилена с этиленом; в качестве неионогенного ПАВ используют неонол АФ-9-n, представляющий собой смесь полиэтиленгликолевых эфиров моноалкилфенолов формулы R-С6Н4О-(СН2СН2 О)nН, где R - алкильный радикал изононил -C 9H19, присоединенный к фенолу в пара-положении по отношению к гидроксильной группе, a n - усредненное число молей окиси этилена, присоединенное к одному молю алкилфенолов, равное 9-10, указанный неонол вводят в количестве 7-10% от массы воды в исходной дисперсии, нагрев смеси ведут до температуры 40-65°С, выдержку без перемешивания ведут до полного разделения фаз, охлаждение ведут до температуры не выше 40°С, а отделение концентрированной фазы от верхнего слоя ведут при указанной температуре.

2. Способ по п.1, отличающийся тем, что разделение фаз ведут при рН 2,5-3,5.

3. Способ по п.1, отличающийся тем, что в смесь исходной дисперсии с неонолом перед осуществлением нагрева и выдержки дополнительно вводят водный раствор аммиака до рН 4,0-10,5.

4. Способ п.1, отличающийся тем, что дополнительный стабилизатор неонол АФ-9-n вводят в концентрированную фазу после ее отделения от верхнего слоя до концентрации 6-12 мас.% по отношению к фторполимеру.

5. Способ п.1, отличающийся тем, что для концентрирования используют исходную дисперсию с содержанием фторполимера 10-35 мас.%.

6. Способ по п.1, отличающийся тем, что для разбавления концентрированной фазы используют исходную дисперсию.

Описание изобретения к патенту

Изобретение относится к способам концентрирования водных дисперсий фторсодержащих полимерных продуктов, а именно политетрафторэтилена; политетрафторэтилена, модифицированного гексафторпропиленом, перфторпропилвиниловым эфиром или 2-перфторпропоксипропилвиниловым эфиром; поливинилиденфторида; поливинилиденфторида, модифицированного тетрафторэтиленом, а также сополимеров: тетрафторэтилена с перфторпропилвиниловым эфиром, тетрафторэтилена с перфторэтилвиниловым эфиром и тетрафторэтилена с этиленом, с помощью средств, способствующих отстаиванию. Концентрированные дисперсии указанных продуктов могут быть использованы в химической промышленности, в машиностроении и в медицине для нанесения на поверхность металлов и других субстратов, таких как стекло, стеклоткань, графит, асбест. Они широко используются для изготовления защитных пленок, а также в качестве основы эмалей для покрытия проводов и металлических поверхностей, антиадгезионных и антипригарных композиций.

Известно, что дисперсии политетрафторэтилена, получаемые в процессе полимеризации, после добавления соответствующих стабилизаторов - неионогенных поверхностно-активных веществ (ПАВ), например оксиэтилированных алкилфенолов марки ОП-7 или ОП-10, концентрируют до содержания полимера 50-60 мас.% любыми известными методами: центрифугированием, электродекантацией, упариванием и фазовым разделением (Паншин Ю.А., Малкевич С.Г., Дунаевская Ц.С. Фторопласты, Л., «Химия», 1978, с.35). При этом предпочтение отдается методу электродекантации, основанному на перемещении отрицательно заряженных частиц полимера к аноду под действием электрического тока, с образованием концентрата и отделением водной фазы. Для придания концентрированной дисперсии устойчивости к механическим воздействиям в качестве стабилизатора в нее добавляют неионогенное ПАВ - ОП-7 (Явзина Н.Е. и др. Об электрофоретическом концентрировании водных суспензий политетрафторэтилена// ЖПХ, 1969, №12, с.2762-2766).

Недостатком указанного способа является низкая скорость концентрирования.

Известен способ концентрирования водной дисперсии политетрафторэтилена путем «сливкоотделения» (пат. США №4145502, кл. 526-255, 1979), в соответствии с которым в исходную дисперсию с содержанием политетрафторэтилена 15 мас.% добавляют неионогенное ПАВ «Тритон Х-100», представляющее собой эфир полиэтиленгликоль-п-октилфенола формулы R-C6 H4-(СН2СН2О)nОН, где R - трет-октил, n=9-10, в количестве менее 2% от массы воды в дисперсии и водный раствор аммиака до рН 5, а также для дополнительной стабилизации вводят альгинат аммония в количестве 0,1% от массы воды в дисперсии. Латекс выдерживают 16 ч при температуре 22°С и отделяют верхний водный слой. Получают дисперсию политетрафторэтилена с концентрацией 75 мас.%, которую используют, в основном, для получения покрытий. Недостатки описанного способа: низкая скорость концентрирования, высокая концентрация получаемой дисперсии, которая не всегда удобна для последующего использования; неустойчивость при хранении таких дисперсий; возможность их структурирования и способность водных растворов альгинатов гидролизоваться при хранении.

Известен способ термического концентрирования водных дисперсий фторполимеров (пат. РФ №2092500, МПК С 08 J 3/03, С 08 F 14/26, 1997). Указаны фторполимеры: политетрафторэтилен, сополимер тетрафторэтилена с перфторпропилвиниловым эфиром и сополимер тетрафторэтилена с гексафторпропиленом. К исходной дисперсии добавляют гидроксид аммония до установления рН 6 и более, затем вводят полиакриловый концентрирующий агент, в качестве которого используют полиакриловую кислоту или ее соль со средней молекулярной массой от 50000 до 500000, до концентрации его в полученной смеси 0,01-0,50 мас.% в расчете на воду, содержащуюся в смеси. Полученную смесь нагревают и выдерживают при температуре 40-65°С в течение 3 ч до завершения процесса концентрирования и разделения ее на верхнюю и нижнюю фазы, проводят охлаждение и разделяют эти фазы. Для снижения чувствительности к силам сдвига перед концентрированием в дисперсию вводят стабилизаторы дисперсии - неионогенные ПАВ, выбранные из класса этоксилированных алкилфенолов, или ионогенные ПАВ, выбранные из класса алкилсульфатов или полиспиртов в количестве 0,05-0,12 мас.% (в расчете на массу полимера). Для дальнейшего повышения стабильности и с целью улучшения смачиваемости субстрата, такого как стеклоткань, в концентрированную дисперсию может быть добавлено 1-12 мас.% неионогенного ПАВ. Этот способ, позволяющий снизить количество неионогенного ПАВ в маточнике, имеет ряд недостатков. Используемые в качестве концентрирующего агента специальные синтетические акриловые полимеры не выпускаются промышленностью, и авторы известного способа предлагают предварительно синтезировать их при температуре 80°С в течение нескольких часов. В условиях промышленного производства это будет дополнительной стадией, требующей наличия специального оборудования и затрат теплоносителя. Кроме того, при синтезе акриловых эмульсий свойства конечного продукта нестабильны, поэтому необходим расчет дозировки для каждой конкретной партии полимера.

Наиболее близким по совокупности существенных признаков к предлагаемому является известный способ концентрирования водной дисперсии фторсодержащей смолы, в частности политетрафторэтилена, путем термического отстоя, предложенный для получения лакокрасочных композиций для металлов (пат. Японии №57-31589, кл. С 09 D 3/78, В 05 D 7/14, 1982, реф. в РЖХим, 1984, 9Т2116П). Концентрированные дисперсии содержат 3-10% неионогенного ПАВ с температурой помутнения 25-55°С, выбранного из класса оксиэтилированных алкилфенолов общей формулы:

способ концентрирования водной дисперсии фторполимера, патент № 2266916

где R - октил или нонил, n=4-20,

формулы способ концентрирования водной дисперсии фторполимера, патент № 2266916

где R1 - лаурил, олеил, цетил, n=5-20

и формулы способ концентрирования водной дисперсии фторполимера, патент № 2266916

где R2 - лаурил, олеил, стеарил, n=5-20.

Например, в 32%-ную дисперсию политетрафторэтилена добавляют 20%-ный водный раствор неионогенного ПАВ формулы 1 с температурой помутнения 65°С в таком количестве, чтобы массовое отношение ПАВ к полимеру составило 0,1. Смесь нагревают до температуры 75°С и выдерживают при ней без перемешивания в течение 3 ч. После охлаждения естественным путем удаляют верхнюю фракцию, при этом получают концентрированную 65%-ную водную дисперсию полимера. В эту дисперсию дополнительно вводят 0,03% ПАВ формулы 1, где R=C8H17, n=4, 5, и 0,002% ПАВ формулы 1, где R=C6H17, а n=10. Устанавливают температуру концентрата 39°С и разбавляют его водой до концентрации 50-55 мас.%. Дисперсию наносят наливом на алюминиевую пластину, протравленную 10%-ным раствором соляной кислоты, и сушат по 10 мин при 85°С и при 380°С. Свойства пленок и покрытий в реферате не указаны. Известный способ позволяет снизить в сливаемом маточнике долю неионогенного ПАВ, что, с точки зрения охраны окружающей среды, упрощает утилизацию или очистку маточника.

Однако в известном способе имеется ряд недостатков, в частности высокая температура концентрирования (75°С), которую без перемешивания сложно поддерживать постоянной, особенно в промышленных условиях. Кроме того, требуется довольно длительное время для разделения фаз и охлаждения, так как охлаждение ведется без перемешивания естественным путем, что значительно снижает общую производительность способа. Наличие добавочной стадии, включающей нагрев концентрата до 39°С и его охлаждение после введения добавки неионогенных ПАВ для стабилизации, требует дополнительных энергозатрат и специального оборудования, что приводит к повышению стоимости конечного продукта.

Технический результат, достижение которого обеспечивает настоящее изобретение, заключается в сокращении времени разделения фаз.

Указанный технический результат достигается тем, что в способе концентрирования водной дисперсии фторполимера путем термического отстоя, включающем смешивание исходной дисперсии со стабилизатором - неионогенным ПАВ, выбранным из класса оксиэтилированных алкилфенолов, нагрев смеси, выдержку ее без перемешивания, при необходимости, последующее охлаждение естественным путем, отделение концентрированной фазы от верхнего слоя, при необходимости введение дополнительного стабилизатора в концентрированную фазу и, при необходимости, разбавление концентрированной фазы до содержания фторполимера 50-55 мас.%, согласно изобретению, в качестве фторполимера используют политетрафторэтилен; политетрафторэтилен, модифицированный гексафторпропиленом, перфторпропилвиниловым эфиром или 2-перфторпропоксипропилвиниловым эфиром; поливинилиденфторид; поливинилиденфторид, модифицированный тетрафторэтиленом; сополимер тетрафторэтилена с перфторпропилвиниловым эфиром или с перфторэтилвиниловым эфиром; сополимер тетрафторэтилена с этиленом; в качестве неионогенного ПАВ используют неонол АФ-9-n, представляющий собой смесь полиэтиленгликолевых эфиров моноалкилфенолов формулы R-C6Н4O-(СН2СН2 СО)nН, где R - алкильный радикал изононил -C 9H19, присоединенный к фенолу в пара-положении по отношению к гидроксильной группе, a n - усредненное число молей окиси этилена, присоединенное к одному молю алкилфенолов, равное 9-10, указанный неонол вводят в количестве 7-10% от массы воды в исходной дисперсии, нагрев смеси ведут до температуры 40-65°С, выдержку без перемешивания ведут до полного разделения фаз, охлаждение ведут до температуры не выше 40°С, а отделение концентрированной фазы от верхнего слоя ведут при указанной температуре.

Разделение фаз предпочтительнее проводить при рН 2,5-3,5.

В смесь исходной дисперсии с неонолом перед осуществлением нагрева и выдержки можно дополнительно вводить водный раствор аммиака до рН 4,0-10,5.

Дополнительный стабилизатор неонол АФ-9-n вводят в концентрированную фазу после ее отделения от верхнего слоя до концентрации 6-12 мас.% по отношению к фторполимеру.

Для концентрирования предпочтительнее использовать исходную дисперсию с содержанием фторполимера 10-35 мас.%.

Для разбавления концентрированной фазы можно использовать исходную дисперсию.

Нижеприведенные примеры иллюстрируют сущность изобретения.

Пример 1. В стеклянную колонку вместимостью 2 л, снабженную мешалкой, термостатирующей рубашкой, термометром, воронкой для подачи компонентов и нижним краном для слива жидкости, помещают 1500 г исходной дисперсии политетрафторэтилена (ПТФЭ), содержащей 19 мас.% полимера, добавляют 94,5 г неонола марки АФ-9-9 и мягко перемешивают в течение 30 мин. При перемешивании смесь нагревают до температуры 55°С - начала разделения фаз, отключают мешалку и выдерживают систему при этой температуре до полного разделения фаз, рН 3,2. Далее систему охлаждают естественным путем до температуры 40°С и сливают нижний, концентрированный слой, содержащий 55,7 мас.% полимера. Сконцентрированную дисперсию разбавляют исходной дисперсией до концентрации полимера 50-52 мас.%. Из полученной концентрированной дисперсии наливом приготавливают покрытия и пленки, сушат 10 мин при температуре 120°С, оплавляют при температуре 380°С и определяют их свойства по ТУ.

Условия концентрирования и свойства дисперсии, полученной по примеру 1, а также по всем последующим примерам, приведены в таблице. Там же приведены свойства покрытий и пленок, определенные по соответствующим ТУ:

- для дисперсий, содержащих политетрафторэтилен и политетрафторэтилен, модифицированный перфторпропилвиниловым эфиром или 2-перфтор-пропокси-пропилвиниловым эфиром, - по ТУ 6-05-1246-81;

- для дисперсий, содержащих поливинилиденфторид и поливинилиденфторид, модифицированный тетрафторэтиленом, - по ТУ 6-05-041-645-77,

- для дисперсий сополимеров тетрафторэтилена с перфторпропилвиниловым эфиром, тетрафторэтилена с перфторэтилвиниловым эфиром - по ТУ 6-05-1246-81;

- для сополимера тетрафторэтилена с этиленом - по ТУ 6-05-1246-76.

Условия концентрирования и свойства концентрированных дисперсий фторполимеров, свойства полученных из них покрытий и пленок
№примераИспользуемый фторполимер Неонол, добавленный

в исходную дисперсию
рН дисперсии Температура разделения фаз, °С Время разделения фаз,

ч
Общее время концентрирования, чКонцентрация дисперсии,

мас.%
Свойства покрытий и пленок
Название Содержание в исходной дисперсии, мас.%Марка Количество по отношению к воде, мас.% Разрушающее напряжение при разрыве, Н/мм 2Удлинение при разрыве,

%
12 345 678 91011 12
1ПТФЭ 19АФ-9-9 83,255 1,04,057,7 28.5300
2 То жеТо же АФ-9-10То же3,3 651.5 4,557,231,5 310
3-«- -«-АФ-9-9 -«-2,555 То же4,560,0 25,5То же
4-«- 10То же6 3,5402,0 2,560,125,9 300
5-«- 35-«- 103,350 1,53/553,1 28,5То же
6-«-19 -«-84,0 45То жеТо же 57,028,0 -«-
7-«- То же-«- То же5,0То же -«-3,5 60,026,9-«-
8-«- -«--«--«- 9,5-«-1,0 2,055,231,4 310
9-«- -«-АФ-9-10 -«-5,067 То же5,062,0 24,6300
10-«--«- То же-«-10,5 То же-«- 4,552,032,0 310
См. продолжение таблицы

Продолжение таблицы
123 456 789 101112
11АПТФЭ 19АФ-9-98 3,2551,5 4,560,624,8 300
11БТо жеТо жеТо же То жеТо же То же-«-То же То же32,6 320
11В-«- -«--«- -«--«--«- -«--«-60,8 31,9То же
12ПТФЭ мод (ГФП)-«- -«--«- -«--«--«- -«-61,425,5 330
13ПТФЭ мод (ПФПВЭ)-«--«- -«-3,3 -«-1,04,0 55,727,5То же
14ПТФЭ мод (ПФППВЭ) -«--«- -«-3,2-«- То жеТо же56,4 26,5-«-
15ПВДФ-«- -«--«-3,5 -«-1,54,5 50,524,5-«-
16ПВДФ мод (ТФЭ) -«--«- -«-3,2-«- То жеТо же52,4 25,5-«-
17ТФЭ с ПФПВЭ-«- -«--«- То же-«-1,0 4,062,527,5 -«-
18ТФЭ с ПФЭВЭ-«--«- -«--«- -«-То жеТо же 58,026,5 -«-
19ТФЭ с Э-«--«- -«--«--«- 1,54,565,4 25,5-«-
20 ТФЭ с Э мод(ГФП)-«- -«--«- -«--«-То же То же62,526,9 -«-
21к ПТФЭ-«--«- 5-«--«- 5838,2* --
22к То же-«- -«-11-«- 55То жеТо же 42,0*- -
23к-«- -«-АФ-9-8 83,230 14,059, 0* 14,7170
См. продолжение таблицы

Продолжение таблицы
123 456 7910 111213
24к-«- -«-То жеТо же 9,9То же То же4,556,0** 20,0210
25кПТФЭ19 АФ-9-1283,2 65611,5 32,8*--
26кТо же То жеТо жеТо же 9,9То же То жеТо же38,5* --
27к-«--«- АФ-9-853,2 7538 59.0**--
28к-«- -«-АФ-9-9То же То жеТо же То жеТо же52,2 20,5200
29к-«--«- АФ-9-10-«--«- -«--«- -«-38.0*- -
30к-«- -«-АФ-9-12 -«--«--«- -«--«-30,5* --
* - Концентрация ниже нормы, покрытия не делают.

** - Дисперсия структурируется, образуя гель. Покрытие неровное с пузырями и подтеками, при выпечке растрескивается.

Пример 2. Процесс проводят аналогично описанному в примере 1, но в качестве неионогенного ПАВ используют неонол АФ-9-10, отличающийся от неонола АФ-9-9 более длинной оксиэтильной цепью. Температура нагрева смеси составляет 65°С.

Пример 3. Процесс проводят аналогично описанному в примере 1, но берут исходную дисперсию с рН 2,5.

Пример 4. Процесс проводят аналогично описанному в примере 1, но берут исходную дисперсию, содержащую 10 мас.% фторполимера. Нагрев ведут до температуры 40°С, рН 3,5.

Пример 5. Процесс проводят аналогично описанному в примере 1, но берут исходную дисперсию, содержащую 35 мас.% полимера. Нагрев ведут до температуры 50°С, рН 3,3.

Примеры 6-8. Процесс проводят аналогично описанному в примере 1, но в смесь исходной дисперсии с неонолом добавляют водный раствор аммиака, количество которого варьируют до установления рН в интервале от 4,0 до 9,5. Нагрев ведут до температуры 45°С.

Примеры 9-10. Процесс концентрирования проводят аналогично описанному в примере 2, но в смесь исходной дисперсии с неонолом добавляют водный раствор аммиака, количество которого варьируют до установления рН 5,0 и 10,5 соответственно. Нагрев ведут до температуры 65°С.

Пример 11А. Процесс проводят аналогично примеру 1. После полного разделения фаз сливают нижний концентрированный слой, содержащий 55,7 мас.% ПТФЭ, с концентрацией неонола 5,1 мас.% по отношению к фторполимеру. Полученную дисперсию делят на три части. Из первой части дисперсии приготавливают покрытие и определяют его свойства.

Пример 11Б. Берут вторую часть дисперсии, полученной в примере 11А, и добавляют в нее дополнительно неонол АФ-9-9 до концентрации 6,0 мас.% по отношению к фторполимеру. После перемешивания и выстаивания дисперсии из нее готовят покрытие и определяют его свойства.

Пример 11В. Берут третью часть дисперсии, полученной в примере 11А, и добавляют в нее дополнительно неонол АФ-9-9 до концентрации 12,0 мас.% по отношению к фторполимеру. После перемешивания и выстаивания дисперсии из нее готовят покрытие и определяют его свойства.

Пример 12. Процесс концентрирования проводят аналогично описанному в примере 1, но для концентрирования используют дисперсию ПТФЭ, содержащего 3,5 мол.% гексафторпропилена (ГФП).

Пример 13. Процесс концентрирования проводят аналогично описанному в примере 1, но для концентрирования используют дисперсию ПТФЭ, содержащего 0,9 мол.% перфторпропилвинилового эфира (ПФПВЭ).

Пример 14. Процесс концентрирования проводят аналогично описанному в примере 1, но для концентрирования используют дисперсию ПТФЭ, содержащего 0,7 мол.% 2-перфторпропоксипропилвинилового эфира (ПФППВЭ).

Пример 15. Процесс концентрирования проводят аналогично описанному в примере 1, но для концентрирования используют дисперсию поливинилиденфторида (ПВДФ).

Пример 16. Процесс концентрирования проводят аналогично описанному в примере 15, но для концентрирования используют дисперсию ПВДФ, содержащего 3,0 мол.% ТФЭ.

Пример 17. Процесс концентрирования проводят аналогично описанному в примере 1, но для концентрирования используют дисперсию сополимера ТФЭ с 3,0 мол.% ПФПВЭ. Покрытия из полученной концентрированной дисперсии приготавливают наливом на алюминиевую пластину, протравленную 10%-ным раствором соляной кислоты, сушат 10 мин при 120°С, спекают при 290°С, затем оплавляют при 380°С. Определяют свойства покрытий.

Пример 18. Процесс концентрирования проводят аналогично описанному в примере 17, но для концентрирования используют дисперсию сополимера ТФЭ с 3,5 мол.% перфторэтилвинилового эфира (ПФЭВЭ).

Пример 19. Процесс концентрирования проводят аналогично описанному в примере 1, но для концентрирования используют дисперсию сополимера ТФЭ с этиленом (Э). Покрытия из полученной концентрированной дисперсии приготавливают наливом на алюминиевую пластину, протравленную 10%-ным раствором соляной кислоты, сушат 10 мин при 120°С и оплавляют при 280°С.

Пример 20. Процесс концентрирования проводят аналогично описанному в примере 19, но для концентрирования используют дисперсию сополимера ТФЭ с Э, содержащего 1,0 мол.% ГФП.

Примеры 21-22 (контрольные). Процесс концентрирования проводят аналогично описанному в примере 1, но варьируют количество неонола АФ-9-9 (за пределами заявляемого по отношению к воде).

Пример 23 (контрольный). Процесс концентрирования проводят аналогично описанному в примере 1, но используют неонол марки АФ-9-8, отличающийся длиной оксиэтильной цепи, которая короче, чем в заявляемом способе. Нагрев ведут до температуры 30°С.

Пример 24 (контрольный). Процесс концентрирования проводят аналогично описанному в примере 23, но в смесь исходной дисперсии с неонолом добавляют водный раствор аммиака до установления рН 9,9.

Пример 25 (контрольный). Процесс концентрирования проводят аналогично описанному в примере 1, но используют неонол марки АФ-9-12, отличающийся более длинной оксиэтильной цепью, чем в заявляемом способе. Нагрев ведут до температуры 65°С.

Пример 26 (контрольный). Процесс концентрирования проводят аналогично описанному в примере 25, но в смесь исходной дисперсии с неонолом добавляют водный раствор аммиака до установления рН 9,9.

Пример 27 (контрольный, в условиях, приближенных к прототипу). Процесс концентрирования проводят аналогично описанному в примере 1, но добавляют 59 г неонола марки АФ-9-8. При перемешивании смесь нагревают до температуры 75°С. Выдерживают систему при этой температуре после отключения мешалки в течение 3 ч. Охлаждение системы естественным путем ведут до температуры 30-35°С.

Примеры 28-30 (контрольные, в условиях, приближенных к прототипу). Процесс концентрирования проводят аналогично описанному в примере 27, но используют другие марки неонолов.

Из представленных данных видно, что предлагаемый способ обеспечивает получение дисперсий фторполимеров с требуемой концентрацией, при этом позволяет, в отличие от прототипа, сократить время разделения фаз. Снижение температуры, при которой система разделяется на фазы (40-65°С), позволяет сократить время охлаждения дисперсии, что дает возможность повысить производительность процесса.

Добавление водного раствора аммиака до предлагаемого интервала рН позволяет предотвратить бактериологическое скисание дисперсии при хранении и транспортировке, что улучшает товарный вид продукта.

Из опытов (примеры 1-20) видно, что из дисперсий, сконцентрированных по предлагаемому способу, получаются покрытия, свойства которых соответствуют предъявляемым к ним требованиям.

Контрольные опыты (примеры 21-22) показывают, что при изменении количества вводимого неонола (за пределами заявляемого) получаются дисперсии с низкой концентрацией, непригодные для приготовления покрытий, что ограничивает область использования продукта.

Контрольные опыты (примеры 23-24) показывают, что при использовании неонола марки АФ-9-8 с более короткой оксиэтильной цепью, чем в заявляемом способе, получаются дисперсии с хорошей концентрацией, однако они структурируются с образованием геля, непригодного для получения покрытий, т.к. последние получаются неровными, с многочисленными пузырями и подтеками. Кроме того, они растрескиваются при выпечке.

Контрольные опыты (примеры 25-26) показывают, что при использовании неонола марки АФ-9-12 с более длинной оксиэтильной цепью, чем в заявляемом способе, для разделения фаз тратится большее время, при этом получается дисперсия с концентрацией ниже нормы, которая не образует качественного покрытия.

Контрольный опыт (пример 28) показывает, что при использовании неонола АФ-9-9 в условиях, приближенных к прототипу, получается достаточно концентрированная дисперсия, но покрытие из нее имеет низкие физико-механические свойства, в отличие от предлагаемого способа, кроме того, для разделения фаз тратится большее время. Использование в прототипе более высокой температуры (75°С), в отличие от предлагаемого способа, приводит к существенному повышению времени охлаждения дисперсии и тем самым к снижению общей производительности процесса. При использовании неонола марки АФ-9-8 (пример 27) получается дисперсия с хорошей концентрацией, но структурирующаяся с образованием геля, непригодного для получения покрытий, которые получаются неровными, с пузырями и подтеками, кроме этого, они растрескиваются при выпечке. А при использовании неонолов марок АФ-9-10 и АФ-9-12 (примеры 29 и 30) получаются дисперсии с низкой концентрацией, непригодные для приготовления покрытий, что ограничивает области использования продукта.

Дополнительным преимуществом предлагаемых заявляемым способом неонолов является то, что они жидкие, имеют низкую вязкость и не требуют разогрева при использовании, что значительно упрощает способ их подачи в концентратор. Они нетоксичны, не имеют цвета и запаха, биоразлагаемы на 96%.

Класс C08F14/18 мономеры, содержащие фтор

тройные сополимеры на основе тетрафторэтилена для термоагрессивостойких материалов -  патент 2528226 (10.09.2014)
соединения фторполимера, содержащие многоатомные соединения, и способы из производства -  патент 2522749 (20.07.2014)
способ получения фторполимеров -  патент 2497836 (10.11.2013)
технологическая добавка, композиция для формования, маточная смесь технологической добавки и формовое изделие -  патент 2483082 (27.05.2013)
способ получения водной дисперсии фторсодержащего полимера, имеющей пониженное содержание фторсодержащего эмульгатора -  патент 2439083 (10.01.2012)
водоэмульсионная полимеризация фторированных мономеров с использованием перфторполиэфирного поверхностно-активного вещества -  патент 2428434 (10.09.2011)
способ получения перфторированного сополимера с сульфогруппами -  патент 2412948 (27.02.2011)
применение водных дисперсий полимеров на основе винилиденфторида для получения красок для покрытий архитектурных объектов -  патент 2411250 (10.02.2011)
водоэмульсионная полимеризация фторированных мономеров с использованием фторсодержащего поверхностно-активного вещества -  патент 2406731 (20.12.2010)
фторированный эластомерный латекс, способ его получения, фторированный эластомер и формованный продукт из фторкаучука -  патент 2398796 (10.09.2010)

Класс C08F14/22 винилиденфторид

Класс C08F14/26 тетрафторэтен

способ утилизации отходов политетрафторэтилена -  патент 2497846 (10.11.2013)
способ получения тонкодисперсного порошка политетрафторэтилена -  патент 2478653 (10.04.2013)
способ получения термоперерабатываемых сополимеров тетрафторэтилена с гексафторпропиленом -  патент 2463312 (10.10.2012)
соль перфторкарбоновой кислоты и способ ее получения -  патент 2453529 (20.06.2012)
способ получения водной дисперсии фторсодержащего полимера, имеющей пониженное содержание фторсодержащего эмульгатора -  патент 2439083 (10.01.2012)
способ получения перфторированного сополимера с сульфогруппами -  патент 2412948 (27.02.2011)
способ получения политетрафторэтилена методом фотохимической полимеризации -  патент 2409594 (20.01.2011)
фторсодержащий полимер с низким остаточным содержанием фторированного эмульгатора и способ его получения -  патент 2409592 (20.01.2011)
водная дисперсия политетрафторэтилена и способ ее получения -  патент 2400499 (27.09.2010)
способ получения водной дисперсии очищенного политетрафторэтилена -  патент 2387672 (27.04.2010)

Класс C09D127/16 гомополимеры или сополимеры винилиденфторида

лаковая композиция -  патент 2505572 (27.01.2014)
лакокрасочная композиция с высокой рассеивающей способностью для получения химстойких покрытий методом электроосаждения на катоде -  патент 2437908 (27.12.2011)
низкомолекулярные тройные сополимеры винилиденфторида и мономера, содержащего фторсульфатную группу -  патент 2432366 (27.10.2011)
применение водных дисперсий полимеров на основе винилиденфторида для получения красок для покрытий архитектурных объектов -  патент 2411250 (10.02.2011)
коррозионно-стойкая и электропроводящая композиция и способ нанесения покрытия -  патент 2405799 (10.12.2010)
способ нанесения фторполимерных покрытий для защиты поверхностей -  патент 2394860 (20.07.2010)
полимерная композиция для покрытий -  патент 2333925 (20.09.2008)
полимерный материал -  патент 2319719 (20.03.2008)
способ получения антифрикционных покрытий -  патент 2161171 (27.12.2000)
порошковые композиции для нанесения покрытий с высоким глянцем и применение для их получения сополимеров винилиденфторида -  патент 2140429 (27.10.1999)

Класс C09D127/18 гомополимеры или сополимеры тетрафторэтена

коррозионностойкое композиционное полимерматричное порошковое покрытие на основе полисульфона -  патент 2525906 (20.08.2014)
способ получения ультрагидрофобных покрытий для борьбы с обледенением больших площадей -  патент 2525292 (10.08.2014)
композиции для облицовочных покрытий -  патент 2515301 (10.05.2014)
лаковая композиция -  патент 2505572 (27.01.2014)
состав для нанесения фторполимерного покрытия на полиимидную пленку и устройство для нанесения состава на полиимидную пленку -  патент 2503691 (10.01.2014)
смешанные композиции фторполимеров -  патент 2497849 (10.11.2013)
композиция для получения покрытия с высокими триботехническими свойствами и способ получения покрытия -  патент 2495893 (20.10.2013)
композиция антифрикционного твердого смазочного покрытия -  патент 2493241 (20.09.2013)
антикоррозионная лакокрасочная композиция -  патент 2470054 (20.12.2012)
способ нанесения фторполимерного порошкового покрытия в качестве грунтовочного слоя и верхнего покрывного слоя -  патент 2464107 (20.10.2012)
Наверх