керамическая шихта для изготовления кислотоупорных плиток

Классы МПК:C04B33/138 от металлургических процессов, например шлак, печная пыль, гальванические отходы
Автор(ы):,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Самарский государственный архитектурно-строительный университет" (СГАСУ) (RU)
Приоритеты:
подача заявки:
2005-12-27
публикация патента:

Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения кислотоупоров. Керамическая шихта для изготовления кислотоупорных плиток, включающая необогащенный каолин и "хвосты" обогащения полиметаллических руд, дополнительно содержит солевые алюминиевые шлаки при следующем соотношении компонентов, мас.%: необогащенный каолин - 45-60, солевые алюминиевые шлаки - 30-38, "хвосты" обогащения полиметаллических руд - 10-17. Технический результат - повышение термостойкости кислотоупорных плиток, утилизация промышленных отходов и расширение сырьевой базы для керамических материалов. 3 табл.

Формула изобретения

Керамическая шихта для изготовления кислотоупорных плиток, включающая необогащенный каолин и "хвосты" обогащения полиметаллических руд, отличающаяся тем, что она дополнительно содержит солевые алюминиевые шлаки при следующем соотношении компонентов, мас.%:

Необогащенный каолин45-60
Солевые алюминиевые шлаки 30-38
"Хвосты" обогащения полиметаллических руд10-17

Описание изобретения к патенту

Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения кислотоупоров.

Известна керамическая масса для получения кислотоупоров следующего состава, мас.%: жана-даурская глина 50, пирофиллит 50 [1].

Недостатком указанного состава является относительно низкая морозостойкость (30 циклов).

Наиболее близкой к изобретению является керамическая масса для изготовления кислотоупоров, включающая следующие компоненты, мас.%: необогащенный каолин 60-80, "хвосты" обогащения полиметаллических руд 10-20, пирофиллит 10-20 [2]. Принята за прототип.

Недостатком указанного состава керамической массы является относительно низкая термостойкость кислотоупоров.

Техническим результатом изобретения является повышение термостойкости кислотоупорных плиток.

Указанный технический результат достигается тем, что в известную керамическую массу, включающую необогащенный каолин и "хвосты" обогащения полиметаллических руд, дополнительно вводят солевые алюминиевые шлаки при следующем соотношении компонентов, мас.%:

необогащенный каолин45-60
солевые алюминиевые шлаки 30-38
"хвосты" обогащения полиметаллических руд10-17

Солевые алюминиевые шлаки использовались в качестве алюмосодержащего сырья. Содержание Al2O3 в шлаках более 40%. Известно, что Al2O 3 задерживает расстекловывание кварцевого стекла в кристобалит, снижает КТР (коэффициент термического расширения) и тем самым повышает термостойкость керамических изделий. Химический анализ показал содержание в шлаках следующих компонентов, мас., %: NaCl - 10,25; СаО+СаСО3 - 14,28; MgO+MgCO 3 - 15,30; FeCl3 - 0,001; SiO 2 - 3,10; Al2О3 - 41,282; KCl - 5,35; CuCl2 - 0,001; алкилмеркаптиты Al - 0,545; предельные углеводороды - 0,001; Al (металлический) - 9,89. Химические составы необогащенного каолина и "хвостов" обогащения полиметаллических руд приведены в табл.1.

Таблица 1

Химический состав компонентов
Компоненты Содержание компонентов, мас.%
SiO2 Al2О3 Fe2О3 CaOMgOR 2OП.п.п.
Необогащенный каолин62,74 18,393,211,81 1,81,62 7,34
"Хвосты" обогащения полиметаллических руд77,72 9,194,421,45 1,853,10 0,55

Керамическую массу готовили пластическим способом при влажности 18-22%. Формовали квадратные плитки типа ПК-1, которые высушивались до остаточной влажности не более 5% и затем обжигались при температурах 1200-1250°С. В табл.2 приведены составы керамических масс, а в табл.3 физико-механические показатели кислотоупорных плиток.

Таблица 2

Составы керамических масс
Компоненты Содержание компонентов, мас.%
1 23 4прототип
Необогащенный каолин6055 504560-80
Пирофиллит      10-20
"Хвосты" обогащения полиметаллических руд10 1215 1710-20
Солевые алюминиевые шлаки30 333538 -

Таблица 3

Физико-механические показатели кислотоупоров
ПоказателиСоставы Прототип
1 234
Усадка, %7,8 7,67,57,3 7,8-8,8
Прочность при изгибе, МПа 4345 484934-41
Термостойкость, циклы 91112 147-8
Кислотостойкость, %97,998,2 98,898,997,8-98,8
Морозостойкость, циклы 354248 49-

Как видно из табл.3, кислотоупорные плитки из предложенных составов имеют выше термостойкость, чем прототип.

Полученное техническое решение при использовании солевых алюминиевых шлаков позволит значительно увеличить в составах керамических масс техногенное сырье.

Использование техногенного сырья при получении кислотоупоров способствует утилизации промышленных отходов, охране окружающей среды и расширению сырьевой базы для керамических материалов.

Источники информации

1. Абдрахимова Е.С. Кинетика изменения структуры пористости в процессе обжига кислотоупоров / Е.С.Абдрахимова, В.З.Абдрахимов. // Известия вузов. Строительство. - 2000. - №9. - С.38-41.

2. Пат. 11977 Республики Казахстан, МПК С04В 33/00. Керамическая масса для изготовления кислотоупоров / Е.С.Абдрахимова. - Опубл. 16.09.2002, Бюл. №9.

Класс C04B33/138 от металлургических процессов, например шлак, печная пыль, гальванические отходы

шихта для производства пористого заполнителя -  патент 2526064 (20.08.2014)
керамическая масса -  патент 2517401 (27.05.2014)
керамическая масса -  патент 2515645 (20.05.2014)
шихта для производства пористого заполнителя -  патент 2514477 (27.04.2014)
керамическая масса для изготовления плитки для полов -  патент 2513461 (20.04.2014)
сырьевая смесь для изготовления облицовочной плитки -  патент 2503644 (10.01.2014)
керамическая масса для изготовления плитки -  патент 2503642 (10.01.2014)
керамическая масса для изготовления керамического кирпича -  патент 2502701 (27.12.2013)
сырьевая смесь для изготовления плитки -  патент 2501765 (20.12.2013)
керамическая масса для изготовления стеновых материалов -  патент 2499779 (27.11.2013)
Наверх