магнитный полупроводниковый материал
Классы МПК: | C30B29/40 соединения типа AIIIBV H01F1/01 содержащие неорганические материалы C01G15/00 Соединения галлия, индия или таллия C01G30/00 Соединения сурьмы |
Автор(ы): | Саныгин Владимир Петрович (RU), Пашкова Ольга Николаевна (RU), Филатов Андрей Викторович (RU), Изотов Александр Дмитриевич (RU), Новоторцев Владимир Михайлович (RU) |
Патентообладатель(и): | Учреждение Российской академии наук Институт общей и неорганической химии им. Н.С. Курнакова РАН (ИОНХ РАН) (RU) |
Приоритеты: |
подача заявки:
2011-07-07 публикация патента:
27.10.2012 |
Изобретение относится к области неорганической химии, конкретно к легированным марганцем и цинком антимонидам индия, которые могут найти применение в спинтронике, где электронный спин используется в качестве активного элемента для хранения и передачи информации, формирования интегральных и функциональных микросхем, конструирования новых магнито-оптоэлектронных приборов. Предлагается магнитный полупроводниковый материал, который включает индий, сурьму, марганец и цинк, представляет собой соединение антимонид индия InSb, легированное марганцем в количестве 0,12÷0,19 мас.% Мn и цинком в количестве 0,71÷1,12 мас.% Zn, и отвечает формуле InSb<Mn,Zn>. Изобретение позволяет получать материал, характеризующийся температурой Кюри 320 К, сочетающий полупроводниковые и ферромагнитные свойства. 2 ил., 2 табл., 3 пр.
Формула изобретения
Магнитный полупроводниковый материал, характеризующийся температурой Кюри 320 К, который включает индий, сурьму, марганец и цинк, представляет собой соединение антимонид индия InSb, легированное марганцем в количестве 0,12÷0,19 мас.% Мn и цинком в количестве 0,71÷1,12 мас.% Zn, и отвечает формуле InSb<Mn,Zn>.
Описание изобретения к патенту
Изобретение относится к области неорганической химии, конкретно к легированным марганцем и цинком антимонидам индия, которые могут найти применение в спинтронике, где электронный спин используется в качестве активного элемента для хранения и передачи информации, формирования интегральных и функциональных микросхем, конструирования новых магнито-оптоэлектронных приборов.
Вышеуказанный антимонид индия относится к классу антимонидов элементов третьей группы Периодической системы.
Известны эпитаксиальные пленки InSb<Mn>, выращенные методом низкотемпературной молекулярно-лучевой эпитаксии, с критическими температурами Кюри Тс<20 К [Csontos M., Wojtowicz Т., Liu X., Dobrowolska M., Janko В., Furdyna J.K., Miha'ly G. Magnetic Scattering of Spin Polarized Carriers in InMnSb Dilute Magnetic Semiconductor // Phys. Rev. Lett. 2005. V. 95. № 22. P.227203-1-227203-4].
К недостаткам описанных выше эпитаксиальных пленок InSb<Mn> относится то, что они не могут быть использованы при создании элементов памяти, поскольку обладают низкой температурой Кюри, что исключает их применение в повседневных электронных приборах широкого спектра действия, работающих при комнатных температурах.
Ближайшими техническими решениями поставленной задачи является магнитный полупроводниковый материал, характеризующийся температурой Кюри 329÷355 К, который включает германий, кадмий, мышьяк и марганец, представляет собой тройное соединение арсенида германия и кадмия, легированное марганцем в количестве 1÷6 мас.%, и отвечает формуле CdGeAs2<Mn> [RU 2282685].
К недостаткам указанного материала относятся то, что основой описанного технического решения является тройное полупроводниковое соединение CdGeAs2 с довольно широкой областью гомогенности и склонностью к стеклообразованию, и, как следствие, возможными в дальнейшем непредсказуемыми колебаниями магнитных свойств материала.
Изобретение направлено на создание магнитного полупроводникового материала с температурой Кюри выше комнатной и с сочетанием полупроводниковых и ферромагнитных свойств.
Согласно изобретению технический результат достигается тем, что предлагается магнитный полупроводниковый материал, характеризующийся температурой Кюри 320 К, который включает индий, сурьму, марганец и цинк, представляет собой соединение антимонид индия InSb, легированное марганцем в количестве 0.12÷0.19 мас.% Мn и цинком в количестве 0.71÷1.12 мас.% Zn, и отвечает формуле InSb<Mn,Zn>.
По литературным данным [В.М.Рыжковский, В.И.Митюк. Неоднородные магнитные состояния в твердых растворах Mn2-xZn xSb (0,6 х 1,0) // Неорган. мат., 2010, т.46, № 6, С.656-662] структура ферримагнитного соединения Мn 2Sb с температурой Кюри Тс=550 К имеет слоевой характер с двумя структурно-неэквивалентными положениями магнитоактивного марганца. Легирование Mn2Sb цинком приводит к разрушению одной из магнитных подрешеток. При составах Mn2-xZn xSb (x<1.0) получают магнитные материалы с двумя температурами Кюри 550 и 320 К, при составе Mn2-xZnxSb (x=1.0) получают ферромагнетик с температурой Кюри Тс=320 К. На всем протяжении легирования температура Кюри, равная 320 К, является практически постоянной величиной.
Указанный интервал концентрации марганца обусловлен тем, что при легировании материала InSb<Mn,Zn> марганцем в количестве менее 0.12 мас.% заявленный материал имеет намагниченность, близкую нулю, а в образцах с содержанием более 0.19 мас.% Мn получают магнитный материал с двумя температурами Кюри - 320 и 550 К.
Указанный интервал концентрации цинка обусловлен его особенностью растворения в антимониде индия: одна треть атомов цинка замещает индий, а две трети располагаются в междоузлиях. С учетом того, что в заявленном материале цинк должен образовывать в матрице индия еще и наноразмерные включения MnZnSb, в исходный материал состава InSb+0.19 мас.% Мn добавляют 1.12 мас.% Zn, а в исходный материал состава InSb+0.12 мас.% Мn добавляют 0.71 мас.% Zn.
Т.о. антимонид индия InSb легируется марганцем в количестве 0.12÷0.19 мас.% и цинком в количестве 0.71÷1.12 мас.%.
При содержании Мn и Zn менее указанных пределов наблюдается уменьшение удельного магнитного момента ( ) до нуля.
При содержании Мn и Zn более указанных пределов получают магнитный материал с двумя температурами Кюри - 320 и 550 К.
Антимонид индия, легированный марганцем и цинком, получают путем прямого сплавления монокристаллического антимонида индия с добавками марганца и цинка в вакуумированной кварцевой ампуле. Ампулу откачивают до остаточного давления 2·10 -3 Па, герметизируют и помещают в печь, температуру которой медленно, 20 град/час, повышают до 780°С. Ампулу выдерживают при этой температуре 48 часов, затем быстро охлаждают до комнатной температуры со скоростью 5÷15 град/секунду. Выход антимонида индия, легированного марганцем и цинком, составляет 99.9%.
Параметры полученного материала контролировали посредством электронно-зондового микроанализа, рентгенофазового анализа и методами магнитной диагностики. Данные анализов свидетельствуют о том, что полученный антимонид индия, легированный марганцем и цинком, магнитно однофазен.
Сущность заявляемого изобретения поясняется следующими прилагаемыми иллюстрациями.
Фиг.1. «Кривые температурной зависимости удельного магнитного момента ( ·103, Гс·см3/г) образцов составов InSb+0.19 мас.% Mn+1.12 мас.% Zn (1) и InSb+0.27 мас.% Mn+1.12 мас.% Zn (2)».
Фиг.2. «Дифрактограмма материала InSb+0.19 мас.% Mn+1.12 мас.% Zn».
В Таблице 1 приведены «Результаты расчета дифрактограммы материала InSb+0.19 мас.% Mn+1.12 мас.% Zn».
В Таблице 2 приведены «Магнитные и электрофизические характеристики материала InSb<Mn,Zn>».
Фиг.1 демонстрирует тот факт, что заявленный материал состава InSb+0.19 мас.% Mn+1.12 мас.% Zn является оптимальным для проявления ферромагнитной фазы с температурой Кюри Тс=320 К (кривая 1), а в материале с повышенным содержанием Mn наблюдаются две температуры Кюри 320 и 550 К (кривая 2).
Фиг.2 демонстрирует тот факт, что в заявленном материале состава InSb+0.19 мас.% Mn+1.12 мас.% Zn легирующие добавки марганца и цинка в соединении антимонида индия растворены настолько, что не приводят к выявлению рентгеновским методом посторонних фаз.
Таблица 1. | |||||
№ линии (Фиг.2) | d(hkl), эксп. | I отн., эксп. | d(hkl), табл | I отн., табл.. | hkl |
1 | 3,754 | 100 | 3,74 | 100 | 111 |
2 | 2,286 | 100 | 2,29 | 80 | 220 |
3 | 1,952 | 70 | 1,953 | 55 | 311 |
4 | 1,620 | 30 | 1,620 | 16 | 400 |
5 | 1,485 | 30 | 1,486 | 20 | 331 |
Из данных Таблицы 1 следует, что растворение легирующих добавок марганца и цинка практически не влияют на структурные параметры антимонида индия.
Ниже приведены примеры предложенных составов заявленного материала, а также пример с превышением заявленного содержания марганца. Примеры иллюстрируют, но не ограничивают предложенное техническое решение.
Пример 1.
Навески 15.0448 г антимонида индия, 0.0182 г марганца, 0.1077 г цинка, что соответствовало составу антимонида индия с 0.12 мас.% Мn и 0.71 мас.% Zn, сплавляли в вакуумированной кварцевой ампуле. Ампулу откачивали до остаточного давления 2·10 -3 Па, герметизировали и помещали в печь, температуру которой медленно, 20 град/час, повышали до 780°С. Ампулу выдерживали при этой температуре 48 час, затем быстро охлаждали до комнатной температуры со скоростью 5÷15 град/секунду. Выход антимонида индия, легированного марганцем и цинком, составлял 99.9%.
Полученный образец InSb<Mn,Zn> имел минимальную экспериментально обнаруживаемую намагниченность.
Пример 2.
Навески 14,9706 г антимонида индия, 0,0294 г марганца, 0,1707 г цинка, что соответствует составу антимонида индия с 0,19 мас.% марганца и 1,12 мас.% цинка. Полученный образец InSb<Mn,Zn> имеет одну температуру Кюри 320 К.
Пример 3 (за пределом заявленного содержания марганца).
Навески 14,9597 г антимонида индия, 0,0403 г марганца, 0,1707 г цинка, что соответствует составу антимонида индия с 0,27 мас.% марганца и 1,12 мас.% цинка. Полученный образец InSb<Mn, Zn> имеет две температуры Кюри 320 К и 550 К.
Магнитные и электрофизические характеристики InSb<Mn,Zn> по Примерам 1, 2 и 3 приведены в Таблице 2.
Таблица 2. | |||
Содержание марганца в InSb<Mn, Zn>, мас.% | Содержание цинка в InSb<Mn, Zn>, мас.% | Температура Кюри Тс, К | Концентрация дырок р, число электронных вакансий в см3 |
0.12 | 0.71 | 320±2 | 2.7·10 19 |
0.19 | 1.12 | 320±2 | 3.0·10 19 |
0.27 | 1.12 | 320±2;550±2 | 3.3·1019 |
Уникальное сочетание полупроводниковых и ферромагнитных свойств InSb<Mn,Zn> делает его перспективным материалом для широкого практического использования.
Класс C30B29/40 соединения типа AIIIBV
Класс H01F1/01 содержащие неорганические материалы
Класс C01G15/00 Соединения галлия, индия или таллия
Класс C01G30/00 Соединения сурьмы