рекомбинантная плазмидная днк phig05, кодирующая гибридный белок с проинсулином glargine человека, клетка escherichia coli, трансформированная рекомбинантной плазмидной днк phig05, и штамм бактерий escherichia coli jm109/phig05-продуцент гибридного белка с проинсулином glargine человека
Классы МПК: | C12N15/00 Получение мутаций или генная инженерия; ДНК или РНК, связанные с генной инженерией, векторы, например плазмиды или их выделение, получение или очистка; использование их хозяев C12N15/17 инсулины C12N1/21 модифицированные введением чужеродного генетического материала |
Автор(ы): | ШМАТЧЕНКО Вадим Васильевич (RU), САДГЯН Армен Сергеевич (RU) |
Патентообладатель(и): | Общество с ограниченной ответственностью "БиоКлонТек" (RU) |
Приоритеты: |
подача заявки:
2013-04-29 публикация патента:
10.05.2014 |
Изобретение относится к области биотехнологии и представляет собой рекомбинантную плазмидную ДНК pHIG05, направляющую синтез гибридного белка человека с проинсулином Glargine человека, содержащую ДНК, кодирующую гибридный белок с проинсулином Glargine человека размером 134 а.о. с аминокислотной последовательностью, представленной на фиг.2, содержащей аминокислотные последовательности лидерного пептида, в виде N-концевого фрагмента гамма-интерферона человека, соединенного с проинсулином Glargine пептидным линкером. На основе рекомбинантной плазмиды pHIG05 получен штамм Escherichia coli JM109/pHIG05 - продуцент гибридного белка с проинсулином Glargine, зарегистрированный в ФГУП ГосНИИгенетики ВКПМ под номером В-11408. Использование заявляемых изобретений позволяет упростить технологию выделения инсулина Glargine и повысить его выход. 3 н. и 1 з.п.ф-лы, 2 ил., 2 пр.
Формула изобретения
1. Рекомбинантная плазмида pHIG05, направляющая синтез гибридного белка человека с проинсулином Glargine человека, представленная на фиг.1, содержащая ДНК, кодирующую гибридный белок с проинсулином Glargine человека размером 134 а.о. с последовательностью, представленной на фиг.2, содержащей в своей структуре аминокислотные последовательности лидерного пептида, в виде N-концевого фрагмента гамма-интерферона человека SEQ ID NO:3, проинсулин Glargine человека SEQ ID NO:5, соединенные между собой пептидным линкером SEQ ID NO:4, а также нуклеотидную регуляторную последовательность SEQ ID NO:6, в состав которой входит последовательность Шайна-Дальгарно, расположенную между EcoRI сайтом и стартовым кодоном AUG гена гибридного белка, а также сайты узнавания эндонуклеазами рестрикции, расположенные на следующем расстоянии вправо от сайта EcoRI: BamHI - 156 п.о., Hpal - 182 п.о., HindIII - 439 п.о., Pvu I - 1379 п.о.
2. Рекомбинантная плазмида pHIG05 по п.1, содержащая в качестве генетического маркера ген -лактамазы.
3. Клетка Escherichia coli, содержащая рекомбинантную плазмидную ДНК pHIG05 по п.1, - продуцент гибридного белка, содержащего проинсулин Glargine человека.
4. Штамм бактерий Escherichia coli JM109/pHIG05 - продуцент гибридного белка с проинсулином Glargine человека, зарегистрированный под номером B-11408 во Всероссийской Коллекции Промышленных Микроорганизмов ФГУП Гос. НИИ Генетики.
Описание изобретения к патенту
Изобретение относится к области биотехнологии, в частности к генной инженерии, и касается нового штамма бактерий Escherichia coli JM109/pHIG05, который может быть использован для получения генно-инженерного инсулина Glargine - аналога инсулина человека пролонгированного действия, применяемого при изготовлении лекарственных препаратов для лечения инсулинозависимого сахарного диабета.
В настоящее время сахарный диабет (обычно также называемый «диабет») является одним из наиболее распространенных заболеваний в мире. Диабет представляет собой метаболическое расстройство, вызванное абсолютным или относительным дефицитом инсулина, который представляет собой единственный гипогликемический гормон, и основным признаком сахарного диабета является постоянная гипергликемия. Непрерывность гипергликемического состояния не только усугубляет метаболические расстройства, вызванные недостатком инсулина, но также вызывает микроангиопатию в почках, нервной ткани, сетчатке и им подобных органах и макроангиопатию, такую как артериосклероз. Диабет ассоциирован также с целым рядом хронических осложнений, включающих микрососудистые заболевания, такие как ретинопатия, нефропатия и невропатия, и макрососудистые заболевания, такие как ишемическая болезнь сердца (RU 2358738, 2009).
Во всем мире от сахарного диабета страдают примерно 120 миллионов людей. Среди них примерно 12 миллионов страдают диабетом типа I, для которых необходима замена отсутствующей эндокринной секреции инсулина (RU 2313362, 2007). Для лечения сахарного диабета предлагаются различные гипогликемические средства, такие как препараты инсулина, стимуляторы секреции инсулина, средства, сенсибилизирующие к инсулину, и ингибиторы -глюкозидазы (RU 2358738, 2009). Хотя возможность применения указанных гипогликемических средств подтверждена в клинической практике, однако их практическое применение связано с целым рядом проблем. Например, в случае, когда у больных сахарным диабетом значительно снижается способность поджелудочной железы секретировать инсулин, эффективность средств, стимулирующих секрецию инсулина, и средств, сенсибилизирующих к инсулину, уменьшается.
Долгие годы основным препаратом, применяемым для профилактики и лечения диабета, является инсулин. Человеческий инсулин представляет собой полипептид, содержащий А-цепь из 21 аминокислоты и В-цепь из 30 аминокислот и имеющий одну внутреннюю дисульфидную связь в А-цепи и две дисульфидные связи, которые связывают А-цепь и В-цепь (ЕА 05586, 2009). Инсулин первоначально биологически синтезируется как "препроинсулин" специализированными клетками в островках Лангерганса поджелудочной железы. Препроинсулин представляет собой линейную молекулу, содержащую сигнальный пептид из 24 аминокислот (SP), В-цепь (В), С-пептид из 31 аминокислоты (С) и А-цепь (А), присоединенные в порядке, представленном формулой "SP-B-С-А". После транспорта в эндоплазматический ретикулум, сигнальный пептид отщепляется от препроинсулина с продуцированием "проинсулина (В-С-А)". Проинсулин образует дисульфидные связи в эндоплазматическом ретикулуме, принимая свою трехмерную структуру. Проинсулин расщепляется ферментом PC1/3 в точке соединения В-С, а затем расщепляется ферментом РС2 в точке соединения С-А. И наконец, два N-концевых основных аминокислотных остатка у С-конца В-цепи отщепляются карбоксипептидазой с образованием инсулина.
Пораженным болезнью людям в течение всех оставшихся лет жизни предлагается вводить инсулин путем инъекции неоднократно несколько раз в сутки. При использовании препаратов обычного инсулина возникает опасность возникновения ранней послеобеденной гипергликемии, сопровождаемой гипогликемией перед следующим приемом пищи.
Проблему удалось преодолеть после получения генно-инженерных аналогов инсулина с различным сроком воздействия на организм (Walsh G. Appl. Microbiol. Biotechnol., 2005, v.67, p.151-159). Лечение больных сахарным диабетом I типа включает, в частности, использование комбинации препаратов инсулина человека быстрого (короткого) и длительного (пролонгированного) действия. Короткодействующий инсулин должен быстро достигать пика активности в соответствии с подъемом уровня глюкозы, связанным с приемом пищи, и прекращать свое действие после его падения. Инсулин пролонгированного действия, напротив, должен в течение длительного времени обеспечивать определенный базовый уровень глюкозы в промежутках между приемами пищи.
Известны различные быстродействующие аналоги инсулина человека (ЕР 0214826, ЕР 0375437, ЕР 0678522), имеющие определенные отличия в структуре инсулина, в частности, предлагается (ЕР 0124826) аналог инсулина с замещениями в положениях В27 и В28, аналоги, которые в положении В29 содержат различные аминокислоты, предпочтительно пролин, но не глутаминовую кислоту (ЕР 0678522). Эти замены уменьшили тенденцию молекул инсулина человека к агрегации и, соответственно, время абсорбции гормона из места инъекции (Setter S.M., Corbett C.F., Campbell P.K., White J.R. Ann. Pharmacother., 2000; v.34, p.1423-1431), что привело к значительному снижению времени начала действия препаратов, увеличению максимально достижимой концентрации препаратов в крови и более быстрому восстановлению исходного уровня гормонов в крови (Simpson K.L., Spenser C.M. Drugs, 1999, v.57, p.759-765).
Пролонгированным действием обладают аналоги инсулина, в которых по меньшей мере одна аминокислота в положениях В1-В6 заменена лизином или аргинином (WO 92/00321, ЕР0368187). Наиболее перспективным из этой группы препаратов является инсулин с удлиненной продолжительностью действия Glargine (Gly(A21)-Arg(B31)-Arg(B32)-человеческий инсулин. Инсулин Glargine вводят путем инъекции один раз в сутки в виде кислого прозрачного раствора и благодаря его свойствам в отношении растворения в физиологической области рН подкожной ткани он осаждается в виде стабильного гексамерного ассоциата. Именно при кислом значении рН инсулины проявляют пониженную стабильность и повышенную склонность к агрегации при термической и физико-механической нагрузке, которая может стать заметной в виде помутнений и выпадений осадков (образование частиц). Инсулин Glargine отличается своим низким сывороточным профилем и связанным с этим уменьшением опасности появления ночных гипогликемии (Brange и др., J. Ph. Sci., 86, 517-525, 1997).
Инсулин Glargine (гларгин) является рекомбинантным производным инсулина пролонгированного действия, которое продолжается в течение 24 часов после инъекции. Аминокислотная последовательность инсулина гларгин отличается от последовательности инсулина человека заменой остатка аспарагина в положении 21 А-цепи на глицин (GlyA21) и наличием двух дополнительных остатков аргинина в C-концевой части В-цепи, ArgB31, ArgB32 (Levien T.L., Baker D.E., White J.R., Campbell R.K. Ann. Pharmaco-ther., 2002, v.36, p.1019-1027). Эти модификации, а также добавление в небольшом количестве ионов цинка улучшают стабильность препарата и повышают изоэлектрическую точку аналога с 5,4 до 6,7, что приводит к уменьшению растворимости препарата в нейтральной среде подкожной клетчатки. Инсулин гларгин хорошо растворим при рН 4,0, кислый раствор препарата при подкожных инъекциях нейтрализуется, и аналог инсулина образует микропреципитаты, из которых происходит медленное высвобождение гексамеров инсулина и их диссоциация с образованием димеров и мономеров. Благодаря этим свойствам гларгин медленно всасывается из подкожной ткани в кровоток, не обладает выраженным пиком действия и обеспечивает практически постоянную концентрацию гормона в крови в течение суток. Добавление ионов цинка в препарат также замедляет процесс освобождения димеров и мономеров, что увеличивает время действия аналога (Dunn C.J., Ploscer G.L., Keating G.M., McKeage K., Scott L.J. Drugs, 2003; v.63, p.1743-1778).
Известен способ получения аналога инсулина Glargine, в котором искусственный ген проинсулина человека синтезируют из олигонуклеотидов и экспрессируют в клетках E.coli W3110 дикого типа (US 5656722, 1997).
Одним из недостатков этого штамма-продуцента является неоптимальный для экспрессии рекомбинантных белков генетический фон бактериальных клеток, содержащих неизмененный набор генов протеолитических ферментов, которые участвуют в деградации рекомбинантных белков, образующихся в результате экспрессии рекомбинантных генов, что приводит к необходимости отделения аналога инсулина от продуктов его деградации и затрудняет очистку и уменьшает выход конечного продукта.
Наиболее близким по технической сущности к предлагаемой группе изобретений является технология получения инсулина Glargine на основе использования рекомбинантной плазмидной ДНК pGG-1 с молекулярной массой 3,3 МДа, кодирующей гибридный полипептид массой около 17 кДа, в котором IgG-связывающий домен белка А из S.aureus соединен через пептидный линкер His6 GlySerArg с аминокислотной последовательностью проинсулина Glargine человека и штамма Escherichia coli BGG18, представляющий собой клетки Escherichia coli BL21 трансформированные плазмидой pGG-1 (RU 2325440, 2008).
Существенным недостатком штамма Е.coli BGG18 является высокая доля лидерного пептида в составе продуцируемого гибридного белка, при этом доля инсулина Glargine в гибридном белке, составляющая около 30%, что удорожает процесс производства и снижает выход целевого продукта.
Задачей заявляемой группы изобретений является создание нового штамма, продуцирующего гибридный белок с более высокой долей инсулина Glargine, что позволяет упростить дальнейшую технологию выделения инсулина Glargine и повысить его выход.
Техническая задача состояла в конструировании плазмиды, направляющей синтез гибридного белка с проинсулином Glargine с уменьшенной долей лидерного пептида в составе продуцируемого гибридного белка, и создании высокопродуктивного штамма Е.Coli на ее основе.
Технический результат достигался конструированием рекомбинантной плазмиды pHIG05, детерминирующей синтез гибридного белка с молекулярной массой около 14,7 кДа, в котором N-концевой фрагмент гамма-интерферона человека (SEQ ID NO:3) соединен через пептидный линкер (SEQ ID NO:4) с аминокислотной последовательностью проинсулина Glargine человека (SEQ ID NO:5), и созданием штамма-продуцента Escherichia coli JM109/pHIG05, обеспечивающего индуцибельный биосинтез гибридного белка с долей инсулина Glargine 39% и с уровнем экспрессии гибридного белка в клетке не ниже 30% от суммарного клеточного белка.
Получена рекомбинантная плазмида pHIG05 (фиг.1), содержащая ДНК, с последовательностью нуклеотидов, представленной на фиг.2, кодирующая гибридный белок (фиг.2), состоящий из аминокислотных последовательностей лидерного пептида, представляющего собой N-концевой фрагмент гамма-интерферона человека (SEQ ID NO:3), пептидного линкера (SEQ ID NO:4) и проинсулина Glargine человека (SEQ ID NO:5).
Новая рекомбинантная плазмида pHIG05 кодирует гибридный белок размером 134 а.о. с молекулярной массой 14,7 кДа, в котором аминокислотные последовательности лидерного пептида, представляющего собой N-концевой фрагмент гамма-интерферона человека (SEQ ID NO:3), и проинсулина Glargine человека (SEQ ID NO:5) соединены пептидным линкером (SEQ ID NO:4).
Указанная плазмида состоит из фрагмента BamHI-EcoRI плазмиды рКК223-3 (Brosius J., Dull Т. J., Sleeter D.D., Noller H.F. J. Mol. Biol., 1981, v.148, р.107-127), содержащего промотор транскрипции tac; фрагмента ДНК EcoRI-BamHI (SEQ ID NO:1), содержащего ДНК (SEQ ID NO:6), содержащую последовательность Шайн-Дальгарно, которая расположена между EcoRI сайтом и стартовым кодоном гена гибридного белка, и последовательность, кодирующую N-концевой фрагмент гамма-интерферона человека (SEQ ID NO:3) и пептидный линкер (SEQ ID NO:4); фрагмента ДНК BamHI-HindIII (SEQ ID NO:2), кодирующего аминокислотную последовательность проинсулина Glargine человека (SEQ ID NO:5); фрагмента HindIII-SnaI плазмиды рКК223-3, содержащего терминатор транскрипции рибосомного оперона E.coli, ген -лактамазы (bla), определяющий устойчивость клеток бактерий к ампициллину и участок инициации репликации (ori); и Eco47III-EheI фрагмента плазмиды рКК223-3; сайты узнавания рестрикционными эндонуклеазами, расположенные на следующем расстоянии вправо от сайта EcoRI: BamHI - 155 п.о., HpaI - 168 п.о., HindIII - 426 п.о., PvuI - 1366 п.о.
Оптимальные результаты достигаются при использовании в качестве ДНК с последовательностью Шайн-Дальгарно, ДНК, содержащую последовательность Шайн-Дальгарно и 7-10 нуклеотидов до стартового кодона гибридного белка, что обеспечивает эффективную трансляцию гибридного белка.
В качестве генетического маркера может использоваться не только ген -лактамазы (bla), но и другие гены, определяющие устойчивость клеток бактерий к антибиотикам или иные последовательности, обеспечивающие достижение подобного или аналогичного эффекта.
Достоинство заявляемой плазмидной конструкции и штамма-продуцента, содержащего эту плазмиду, заключается в биосинтезе гибридного полипептида с более высокой долей инсулина Glargine, которая составляет 39%, благодаря уменьшению размера лидерной последовательности.
В заявляемую группу изобретений входят также трансформированные клетки Escherichia coli, содержащие указанную рекомбинантную плазмиду, кодирующую гибридный белок с проинсулином Glargine человека, а также штамм бактерий Escherichia coli JM109/pHIG05 - продуцент гибридного белка с проинсулином Glargine человека.
Также изобретение относится к трансформированным клеткам Escherichia coli, содержащим указанную рекомбинантную плазмиду, кодирующую гибридный белок с проинсулином Glargine человека, а также штамму бактерий Escherichia coli JM109/pHIG05 - продуценту гибридного белка с проинсулином Glargine человека.
Штамм-продуцент Е.coli JM109/pHIG05 получают путем трансформации компетентных клеток Escherichia coli JM109 рекомбинантной плазмидной ДНК pHIG05. После трансформации отбирают колонии, выращенные на среде с ампициллином, выделяют из них плазмиды и подвергают их рестрикционному анализу и секвенированию. Линию клеток, несущую плазмиду pHIG05, несколько раз пересевают на среду с агарозой с добавлением ампициллина и полученной моноклоновой культурой инокулируют 5 мл жидкой среды с ампициллином. Культуру проверяют на наличие индуцируемой экспрессии гибридного белка, фасуют, добавляют глицерин и хранят при минус 70°С.
Новый штамм Escherichia coli JM109/pHIG05, несущий плазмиду pHIG05, является продуцентом гибридного белка, содержащего аминокислотную последовательность проинсулина Glargine человека, и характеризуется следующими признаками.
Морфологические признаки: клетки мелкие, палочковидной формы, грамотрицательные, неспороносные, размером 1×3,5 мкм, подвижные, с хорошо различимыми тельцами включения после индукции синтеза гибридного белка.
Культуральные признаки: при росте на агаризованной среде LB колонии круглые, гладкие, полупрозрачные, блестящие, серые. Край ровный, диаметр колоний 1-3 мм, консистенция пастообразная. Рост в жидких средах (LB, минимальная среда с глюкозой) характеризуется ровным помутнением.
Физиолого-биохимические признаки: клетки растут при температуре 4-42°С, оптимум рН 6,8-7,6. В качестве источника азота используют как минеральные соли аммония, так и органические соединения: аминокислоты, пептон, триптон, дрожжевой экстракт. В качестве источника углерода при росте на минимальной среде используют глицерин, углеводы, аминокислоты.
Устойчивость к антибиотикам: клетки штамма-продуцента проявляют устойчивость к ампициллину (до 500 мг/мл), обусловленную наличием в плазмиде гена -лактамазы (bla).
Стабильность плазмиды в штамме. При поддержании клеток в течение нескольких месяцев на агаризованной среде LB, содержащей ампициллин, не наблюдаются потери или перестройки плазмиды, влияющие на экспрессию гибридного белка.
Новый штамм продуцирует гибридный белок, доля инсулина Glargine в котором составляет 39% и который после индуцированной экспрессии накапливается в виде телец включения, а его содержание в бактериальной клетке составляет не менее 30% от общего белка клетки.
Полученный штамм-продуцент Е.coli JM109/pHIG05 депонирован в ФГУП ГосНИИгенетики ВКПМ под номером В-11408 (справка о депонировании прилагается).
Сущность изобретения иллюстрируется следующими иллюстративными материалами.
На фиг.1 представлена физическая карта рекомбинантной плазмиды pHIG05, где используются следующие обозначения:
Ptac - промотор транскрипции; T1T2 - rrnB терминаторы транскрипции рибосомного оперона E.coli; ori - участок инициации репликации; bla - ген -лактамазы; leader - лидер, N-концевой фрагмент гамма-интерферона человека (SEQ ID NO:3); LK (linker) - пептидный линкер (SEQ ID NO:4); proinsulin Glargine - проинсулин Glargine человека (SEQ ID NO:5). Указанные уникальные сайты узнавания эндонуклеазами рестрикции расположены на следующем расстоянии вправо от сайта EcoRI: BamHI - 155 п.о., HpaI - 168 п.o., HindIII - 426 п.o., PvuI - 1366 п.о.
На фиг.2 представлена нуклеотидная последовательность гена гибридного белка с проинсулином Glargine человека в составе рекомбинантной плазмиды pHIG05 и кодируемая им аминокислотная последовательность.
Сущность и преимущества изобретения иллюстрируется следующими примерами.
Пример 1. Конструирование плазмиды pHIG05, направляющей синтез гибридного белка с проинсулином Glargine человека.
Рекомбинантную плазмиду pHIG05 конструировали на основе вектора рКК223-3 (Brosius J., Dull Т. J., Sleeter D.D., Noller H.F. J. Mol. Biol., 1981, v.148, p.107-127), который предварительно модифицировали. На первом этапе из плазмидной ДНК рКК223-3 удаляют фрагмент BamHI-EheI размером примерно 830 п.о., путем (при помощи) достройки «липких» концов после частичного гидролиза по BamHI и полного гидролиза по Ehe I и последующего лигирования полученных «тупых» концов (RU2263147, 2005). Затем полученную плазмиду pКК223-3-del размером примерно 3750 п.о. делегировали по rop-гену (негативному регулятору копийности) для увеличения числа ее копий на бактериальную клетку (Twigg A.J. and Sherrat D. Nature, 1980, v.283, p.216-218). С этой целью ДНК плазмиды pКК223-3-del подвергали полному гидролизу рестриктазами Eco47III и SnaI, а полученный фрагмент Eco47III-SnaI (3,2 т.п.о.) лигировали. В результате получали плазмиду pКК223-3-del2 размером 3250 п.о., которую использовали в качестве вектора для клонирования фрагмента ДНК размером 160 п.о. (SEQ ID NO:1), фланкированного сайтами рестрикции EcoRI и BamHI, и содержащего последовательность Шайн-Дальгарно и последовательность, кодирующую N-концевой фрагмент гамма-интерферона человека и пептидный линкер. Указанный фрагмент ДНК (SEQ ID NO:1) синтезировали химическим способом и встраивали в плазмиду pКК223-3-del2 по сайтам EcoRI и BamHI. В результате получали плазмидную ДНК pKK-GI-del02 размером примерно 3400 п.о., содержащую между сайтами EcoRI и BamHI последовательность Шайн-Дальгарно и последовательность, кодирующую N-концевой фрагмент гамма-интерферона человека и пептидный линкер.
Далее плазмида pKK-GI-del02 была использована для конструирования плазмидной ДНК, кодирующей гибридный белок, в котором N-концевая последовательность гамма-интерферона (SEQ ID NO:3) через пептидный линкер (SEQ ID NO:4) соединена с последовательностью проинсулина Glargine человека (SEQ ID NO:5). Для этого синтезировали химическим способом фрагмент ДНК размером 410 п.о. (SEQ ID NO:2), фланкированный сайтами рестрикции BamHI и HindIII, содержащий кодон для аргинина и нуклеотидную последовательность, кодирующую проинсулин Glargine человека, оптимизированную с учетом частоты встречаемости кодонов в геноме Е.coli. Указанный фрагмент ДНК клонировали в плазмиду pKK-GI-del02 по BamHI и HindIII сайтам.
В результате получили рекомбинантную плазмидную ДНК pHIG05, строение которой подтверждали рестрикционным анализом. Структура гена, кодирующего гибридный белок, была подтверждена секвенированием.
Плазмидная ДНК pHIG05 позволяет направлять синтез гибридного белка с более высокой долей инсулина Glargine, которая составляет 39%, благодаря уменьшению размера лидерной последовательности.
Пример 2. Получение штамма E.coli JM109/pHIG05 - продуцента гибридного белка с проинсулином Glargine человека.
Плазмидной ДНК pHIG05 трансформируют компетентные клетки штамма E.coli JM109 и высевают на LB-агар, содержащий 100 мкг/мл ампициллина. Отдельно локализованную колонию трижды пересевают на чашки с LB-агаром, содержащим 100 мкг/мл ампициллина. Полученной моноклоновой культурой инокулируют 5 мл жидкой среды LB с ампициллином и инкубируют в течение ночи, при интенсивном встряхивании, при 37°С. Полученный штамм-продуцент E.coli JM109/pHIG05 хранят в 15% глицерине при минус 70°С.
Для определения уровня индуцируемой экспрессии гибридного белка, ночную культуру засевают в разведении 1:50 в 5 мл жидкой среды LB, содержащей 100 мкг/мл ампициллина, и растят до мутности 0,8 при 37°С на качалке при 200 об/мин. К культуре добавляют ИПТГ до концентрации 1,0 мМ и продолжают инкубацию в тех же условиях в течение 3 часов. Клетки собирают центрифугированием, осадок суспендируют в буфере, содержащем 62,5 мМ трис-HCl, рН 6,8, 3% додецилсульфата натрия, 5% 2-меркаптоэтанола, 10% глицерина и 0,01% бромфенолового синего и прогревают 3 мин на кипящей водяной бане. Полученный лизат клеток анализируют электрофорезом в 18% полиакриламидном геле с додецилсульфатом натрия. Гель окрашивают Coomassie R-250, сканируют и проводят его денситометрию. По данным денситометрии выход гибридного белка составляет 29±3% от общего белка клетки.
Преимуществом заявляемой группы изобретений по сравнению с аналогами является увеличение доли инсулина Glargine в гибридном белке, которая составляет 39%, что позволяет повысить выход конечного продукта при его производстве.
Список последовательностей
SEQ ID NO:1
Нуклеотидная последовательность, содержащая на концах сайты рестрикции EcoRI и BamHI и включающая последовательность Шайн-Дальгарно и последовательность, кодирующую N-концевой фрагмент гамма-интерферона человека и пептидный линкер
5' GAATTCAGGAGGCCTCTAGATGCAGGACCCATATGTAAAAGAAGCAGAAAACCTTAAGAA 60
ATATTTTAATGCAGGTCATTCAGATGTAGCGGATAATGGAACTCTTTTCTTAGGCATTTT 120
GAAGAATGAGCTCCCGGGTTCTCATCATCATCATGGATCC 3'
SEQ ID NO:2
Нуклеотидная последовательность, содержащая на концах сайты рестрикции BamHI и HindIII и включающая последовательность, кодирующую проинсулин Glargine человека
5' GGATCCCGTTTTGTTAACCAACACCTGTGCGGTTCTCACCTGGTTGAAGCTCTGTACCTG 60
GTTTGCGGTGAACGTGGTTTCTTCTACACCCCGAAGACCCGTCGTGAAGCTGAAGACCTG 120
CAGGTTGGTCAGGTTGAACTGGGTGGTGGTCCGGGTGCTGGTAGCCTGCAACCGCTGGCT 180
CTGGAAGGTTCTCTGCAGAAGCGTGGTATCGTTGAACAGTGCTGCACCTCTATCTGCTCT 240
CTGTACCAGCTGGAAAACTACTGCGGCTAGTAAGCTT 3'
SEQ ID NO:3
Аминокислотная последовательность N-концевого фрагмента гамма-интерферона человека
Met Gln Asp Pro Tyr Val Lys Glu Ala Glu Asn Leu Lys Lys Tyr
1 5 10 15
Phe Asn Ala Gly His Ser Asp Val Ala Asp Asn Gly Thr Leu Phe
20 25 30
Leu Gly Ile Leu Lys Asn
35
SEQ ID NO:4
Аминокислотная последовательность пептидного линкера
Glu Leu Pro Gly Ser His His His His Gly Ser Arg
1 5 10
SEQ ID NO:5
Аминокислотная последовательность проинсулина Glargine
Phe Val Asn Gln His Leu Cys Gly Ser His Leu Val Glu Ala Leu
15
Tyr Leu Val Cys Gly Glu Arg Gly Phe Phe Tyr Thr Pro Lys Thr
30
Arg Arg Glu Ala Glu Asp Leu Gln Val Gly Gln Val Glu Leu Gly
45
Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu Ala Leu Glu Gly
60
Ser Leu Gln Lys Arg Gly Ile Val Glu Gln Cys Cys Thr Ser Ile
75
Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Gly
86
SEQ ID NO:6
Нуклеотидная последовательность, содержащая последовательность Шайн-Дальгарно
5' AGGAGGCCTCTAG 3'
Класс C12N15/00 Получение мутаций или генная инженерия; ДНК или РНК, связанные с генной инженерией, векторы, например плазмиды или их выделение, получение или очистка; использование их хозяев
Класс C12N1/21 модифицированные введением чужеродного генетического материала