молекулярная визуализация

Классы МПК:A61B6/03 томографы с применением вычислительной техники
A61K49/04 рентгеноконтрастные препараты
A61K49/06 Контрастные препараты для ядерного магнитного резонанса (ЯМР); контрастные препараты для томографии
A61K51/00 Препараты, содержащие радиоактивные вещества, для использования в терапии или для исследований на живом организме
Автор(ы):,
Патентообладатель(и):КОНИНКЛЕЙКЕ ФИЛИПС ЭЛЕКТРОНИКС, Н.В. (NL)
Приоритеты:
подача заявки:
2009-10-06
публикация патента:

Изобретение относится к молекулярной визуализации. Система визуализации содержит источник излучения, которое пересекает область обследования, детектор излучения и формирования сигнала, характеризующего энергию обнаруженного излучения, селектор данных, который выполняет дискриминацию сигнала по энергии на основании относящихся к энергетическим спектрам установочных параметров, соответствующих первой и второй спектральным характеристикам контрастного вещества, введенного в субъект, и блок реконструкции сигнала на основании первой и второй спектральных характеристик и формирования данных объемного изображения, характеризующих мишень. Контрастное вещество имеет первую спектральную характеристику ослабления при присоединении к мишени и вторую отличающуюся спектральную характеристику в состоянии неприсоединения к мишени. Использование изобретения позволяет расширить объем получаемой информации о составе ткани субъекта. 9 з.п. ф-лы, 14 ил.

молекулярная визуализация, патент № 2529804

молекулярная визуализация, патент № 2529804 молекулярная визуализация, патент № 2529804 молекулярная визуализация, патент № 2529804 молекулярная визуализация, патент № 2529804 молекулярная визуализация, патент № 2529804 молекулярная визуализация, патент № 2529804 молекулярная визуализация, патент № 2529804 молекулярная визуализация, патент № 2529804 молекулярная визуализация, патент № 2529804 молекулярная визуализация, патент № 2529804 молекулярная визуализация, патент № 2529804 молекулярная визуализация, патент № 2529804 молекулярная визуализация, патент № 2529804 молекулярная визуализация, патент № 2529804

Формула изобретения

1. Система визуализации, содержащая:

источник (110) излучения, который излучает излучение, которое пересекает область обследования;

детектор (116), который обнаруживает излучение, пересекающее область исследования и субъекта, расположенного в ней, и формирует сигнал, характеризующий энергию обнаруженного излучения;

селектор (122) данных, который выполняет дискриминацию сигнала по энергии на основании относящихся к энергетическим спектрам установочных параметров, соответствующих первой и второй спектральным характеристикам контрастного вещества, введенного в субъект, при этом контрастное вещество имеет первую спектральную характеристику ослабления при присоединении к мишени и вторую отличающуюся спектральную характеристику в состоянии неприсоединения к мишени; и

блок (134) реконструкции, который реконструирует сигнал на основании первой и второй спектральных характеристик и формирует данные объемного изображения, характеризующие мишень.

2. Система визуализации по п.1, в которой контрастное вещество содержит по меньшей мере два материала, имеющих K-край поглощения, и энергетические спектры излучаемого и обнаруженного излучения основаны на упомянутых двух материалах, имеющих K-край поглощения.

3. Система визуализации по п.1, в которой контрастное вещество содержит структуру с по меньшей мере двумя материалами с разными спектральными характеристиками, и один из упомянутых по меньшей мере двух материалов отделяется от структуры, когда структура присоединяется к мишени, из-за чего спектральные характеристики структуры изменяются с упомянутой первой спектральной характеристики на вторую отличающуюся спектральную характеристику.

4. Система визуализации по п.3, дополнительно содержащая процессорный компонент (140), который обрабатывает сигнал или данные изображения и выполняет различение упомянутых материалов на основании упомянутых первой и второй спектральных характеристик.

5. Система визуализации по п.3, дополнительно содержащая процессорный компонент (140), который обрабатывает сигнал или данные изображения и определяет отношение значений ослабления излучения упомянутых двух материалов.

6. Система визуализации по п.3, дополнительно содержащая процессорный компонент (140), который обрабатывает сигнал или данные изображения и определяет значения, характеризующие значения ослабления по меньшей мере одного из упомянутых материалов в разных локализациях в субъекте.

7. Система визуализации по п.3, дополнительно содержащая процессорный компонент (140), который обрабатывает сигнал или данные изображения и определяет время, когда упомянутое контрастное вещество направленного действия присоединилось к мишени.

8. Система визуализации по п.3, дополнительно содержащая процессорный компонент (140), который обрабатывает сигнал или данные изображения и определяет по меньшей мере одну из локальной или общей концентрации контрастного вещества в одной или более областях субъекта.

9. Система визуализации по п.3, дополнительно содержащая процессорный компонент (140), который обрабатывает сигнал или данные изображения и определяет скорость изменения присутствия контрастного вещества в субъекте.

10. Система визуализации по п.3, дополнительно содержащая процессорный компонент (140), который обрабатывает сигнал или данные изображения и выдает количественную оценку участков прицельного связывания.

Описание изобретения к патенту

Настоящее изобретение относится, в общем, к молекулярной визуализации. Хотя изобретение описано относительно конкретного применения к компьютерной томографии (CT), изобретение относится также к другим областям применения медицинской визуализации и немедицинской визуализации.

Компьютерные томографические (CT-) сканеры формируют изображения, характеризующие ослабление рентгеновского излучения исследуемым объектом. Рентгеновские трубки, применяемые в CT-сканерах, обычно генерируют рентгеновское излучение, имеющее одиночный, относительно широкий энергетический спектр. Аналогично, детекторы, используемые в данных системах, обычно обеспечивают ограниченную, если вообще обеспечивают, информацию об энергетическом спектре регистрируемого излучения. Хотя упомянутые сканеры обеспечивают ценную информацию о внутренней структуре исследуемого объекта, данные сканеры только в ограниченной степени способны обеспечивать информацию о составе материала объекта, особенно когда разные соединения характеризуются сходными коэффициентами ослабления излучения.

Так как разные соединения могут изменять спектр ослабляемого излучения различным образом, то, в качестве метода повышения потенциальных возможностей классификации материалов, предложено спектральное CT-сканирование. Идея заключается в сканировании с использованием, по меньшей мере, двух разных спектров рентгеновского излучения или в получении данных с использованием детекторов, которые обеспечивают спектральную информацию. Способность определять состав материала исследуемого объекта может иметь различные области применения. Особенно важной особенностью новых способов, предлагаемых в настоящем изобретении, является возможность надежного различения, по меньшей мере, двух материалов высококонтрастного типа, даже если упомянутые материалы одновременно присутствуют в теле.

Один метод получения данных, содержащих несколько энергетических каналов или окон, состоит в переключении напряжения рентгеновской трубки между несколькими значениями (например, 140 кВ и 80 кВ) в последовательных кадрах. Другой метод состоит в обеспечении фильтра излучения после рентгеновской трубки, при этом фильтр для последовательных кадров поочередно сменяется. В другом методе используют мультиэнергетические детекторы, например детекторы на основе нескольких сцинтилляционных слоев. В другом методе используют две независимые рентгеновские трубки и две матрицы детекторов в одном сканере. В еще одном методе используют детекторы, работающие в режиме счета фотонов, например детекторы на основе детекторов с прямым преобразованием или на основе сцинтиллятора с коротким временем высвечивания, связанного с фотодетектором с высоким коэффициентом усиления.

Один из подходов к обработке данных спектральной компьютерной томографии (CT) заключался в выполнении декомпозиции по материалам при измерениях проекций перед этапом реконструкции. Второй подход заключался в выполнении, после обработки, манипулирования с изображениями, реконструированными по каждому из энергетических окон.

Сходная аналогия имеет место в области магнитно-резонансой томографии (MRI), в которой в общем случае используют сильное магнитное поле для ориентирования ядерного намагничивания (обычно) атомов водорода в воде в теле или других подходящих элементов. Для систематического изменения ориентации упомянутого намагничивания применяют радиочастотные поля, что вынуждает ядра водорода (или других элементов) формировать вращающееся магнитное поле, регистрируемое сканером. Данным сигналом можно манипулировать посредством дополнительных магнитных полей, чтобы собрать достаточно информации для построения изображения тела и специальных контрастных материалов. MRI может также обнаруживать уникальные признаки релаксации ядерного спина относительно сильного магнитного поля. Протокол визуализации, который измеряет спин-решеточную релаксацию в направлении магнитного поля, называется T1-взвешиванием, и протокол, который измеряет спин-решеточную релаксацию перпендикулярно магнитному полю, называется T2-взвешиванием. Измерение характеристик как T1, так и T2 может способствовать более надежному различению контрастных материалов разных типов, которые совместно присутствуют в теле.

Сходная аналогия имеет место также в области радионуклидной диагностики и однофотонной эмиссионной компьютерной томографии (SPECT). Как правило, радиоактивный изотопный материал вводится в субъекта и испускает гамма-фотоны с энергетическим спектром с известными характеристиками. Детекторы излучения регистрируют упомянутые фотоны и измеряют их энергии. Можно различить, по меньшей мере, два разных типа радиофармпрепаратов, которые одновременно присутствуют в теле, если каждый радиофармпрепарат испускает фотоны с разным энергетическим спектром.

При компьютерной томографии (CT) в пациента перед сканированием вводят контрастное вещество, например внутривенное иодированное контрастное вещество, чтобы улучшить визуализацию некоторых анатомических структур (например, кровеносных сосудов) относительно других анатомических структур (например, окружающей ткани) или функциональной информации (например, кровотока) в полученном изображении. Основой контрастного вещества в компьютерной томографии (CT) обычно являются тяжелые элементы, так как их коэффициент ослабления излучения намного выше, чем коэффициент ослабления биологических тканей. Примеры других, часто используемых контрастных веществ содержат контрастные вещества на основе бария, сульфата бария, гастрографина и гадолиния. Предложены другие контрастные материалы на основе более тяжелых элементов, например золота и висмута. Для более специфических структур, например опухолей, бляшек или тромбозов, последней тенденцией было применение контрастных веществ направленного действия. Упомянутые вещества предназначены для накопления в заданной биологической мишени, которая может указывать на конкретные функциональные, анатомические или медицинские состояния. Как было показано, разнотипные контрастные материалы, применяемые совместно в одном субъекте, могут быть различены и могут указывать на разные физиологические функции во время одного сканирования, когда используют спектральную компьютерную томографию (CT).

К сожалению, какая-то часть контрастного материала также распределяется и/или накапливается в других областях тела, где мишень отсутствует. Например, при использовании контрастных веществ направленного действия, которые содержат наночастицы тяжелых элементов, частицы обычно захватываются макрофагами, которые не имеют отношения к мишени. В результате полученное изображение может содержать высококонтрастный фоновый шум и/или ложно положительные участки накопления. Другой недостаток упомянутых веществ состоит в том, что время циркуляции может быть продолжительным, пока упомянутые вещества не вымываются, и контрастное вещество не остается, по существу, только в сайтах-мишенях. Другая возможная проблема состоит в том, что концентрация в сайтах-мишенях или концентрация структурных элементов контрастного вещества, присоединенных к сайтам-мишеням, может быть недостаточно высокой для функциональной молекулярной визуализации вследствие практических ограничений устройства медицинской визуализации.

Аспекты настоящей заявки относятся к вышеупомянутым и другим вопросам.

В соответствии с одним аспектом система визуализации содержит источник излучения, который излучает излучение, которое пересекает область обследования, и детектор, который регистрирует излучение, пересекающее область исследования и субъекта, расположенного в данной области, и формирует сигнал, характеризующий энергию зарегистрированного излучения. Селектор данных выполняет дискриминацию сигнала по энергии на основании относящихся к энергетическим спектрам установочных параметров, соответствующих первой и второй спектральным характеристикам контрастного вещества, введенного в субъект, при этом контрастное вещество имеет первую спектральную характеристику ослабления при присоединении к мишени и вторую отличающуюся спектральную характеристику в состоянии неприсоединения к мишени. Блок реконструкции реконструирует сигнал на основании первой и второй спектральных характеристик и формирует данные объемного изображения, характеризующие мишень.

В соответствии с другим аспектом способ содержит этап обнаружения биохимического компонента в биологической пробе посредством изменения спектра ослабленного рентгеновского излучения биохимического компонента или синтетического компонента, присоединенного к нему, при посредстве гибридизационной цепной реакции олигонуклеотидных структур, включающих в себя, по меньшей мере, две разных наночастицы, имеющих разные спектральные характеристики ослабления рентгеновского излучения.

В соответствии с другим аспектом способ содержит этап обнаружения биохимического компонента в биологической пробе посредством изменения сигнала ядерного магнитного резонанса биохимического компонента или синтетического компонента, присоединенного к нему при посредстве гибридизационной цепной реакции олигонуклеотидных структур с участием, по меньшей мере, двух разных наночастиц, имеющих разные отклики ядерного магнитного резонанса.

В соответствии с другим аспектом способ содержит этап обнаружения биохимического компонента в биологической пробе посредством изменения средней энергии гамма-фотонов, излучаемых при радиоактивном распаде, при посредстве гибридизационной цепной реакции олигонуклеотидных структур с участием, по меньшей мере, двух разных радиоактивных частиц.

В соответствии с другим аспектом способ содержит контрастный материал, который можно обнаружить с помощью средства визуализации, при этом контрастный материал самопроизвольно изменяет, по меньшей мере, одну регистрируемую характеристику, когда контрастный материал связывается со специфической биологической мишенью.

В соответствии с другим аспектом способ содержит этап введения в субъекта, подлежащего сканированию, зонда, содержащего область прицельного связывания, которая связывается только с выбранной биологической мишенью, и область инициатора, доступную для гибридизации, когда зонд связывается со специфической мишенью. Дополнительно вводят в субъекта, по меньшей мере, два мономерных компонента HCR (т.е. вступающих в гибридизационную цепную реакцию (HCR)), которые полимеризуются в процессе цепной реакции с инициатором, когда область инициатора становится доступной для взаимодействия, и вводят в субъекта, по меньшей мере, один компонент, содержащий две конъюгированных разных частицы, каждая из которых выполнена из разных материалов, при этом каждая из частиц показывает отличающийся отклик в данных сканирования, и только первая частица остается гибридизированной с полимеризованным комплексом HCR (полученным в результате гибридизационной цепной реакции (HCR)), а вторая частица отделяется от полимеризованного комплекса HCR. Способ дополнительно содержит этап выполнения сканирования с использованием устройства визуализации, которое регистрирует пространственные и временные характеристики концентраций двух разных частиц, и этап формирования информации, которая отражает агрегацию двух разных материалов, на основании данных сканирования. В настоящем тексте термин «олигонуклеотидная структура» имеет такое же значение, как термин «мономер HCR» или просто «мономер».

В соответствии с другим аспектом способ содержит этап введения вещества, которое содержит множество молекулярных структурных элементов метастабильных мономеров HCR, по меньшей мере, двух разных типов, при этом мономер, по меньшей мере, одного из типов конъюгирован с двумя разными наночастицами, причем первая наночастица остается присоединенной к сформированному комплексу-продукту полимеризации по HCR, и вторая наночастица отделяется от комплекса в результате процесса HCR, и относительные концентрации двух наночастиц обнаруживаются на основании спектральных характеристик ослабленного рентгеновского излучения.

В соответствии с другим аспектом способ содержит этап введения вещества, которое содержит множество молекулярных структурных элементов метастабильных мономеров HCR, по меньшей мере, двух разных типов, при этом мономер, по меньшей мере, одного из типов конъюгирован с двумя разными наночастицами, причем первая наночастица остается присоединенной к сформированному комплексу-продукту полимеризации по HCR, и вторая наночастица отделяется от комплекса в результате процесса HCR, и относительные концентрации двух наночастиц обнаруживаются на основании характеристик ядерного магнитного резонанса.

В соответствии с другим аспектом способ содержит этап введения вещества, которое содержит множество молекулярных структурных элементов метастабильных мономеров HCR, по меньшей мере, двух разных типов, при этом мономер, по меньшей мере, одного из типов конъюгирован с двумя разными радиоактивными частицами, причем первая частица остается присоединенной к сформированному комплексу-продукту полимеризации по HCR, и вторая частица отделяется от комплекса в результате процесса HCR, и относительные концентрации двух радиоактивных частиц обнаруживаются на основании энергий излучаемых гамма-фотонов посредством гамма-камеры.

Дополнительные аспекты настоящего изобретения станут понятными специалистам со средним уровнем компетентности в данной области техники после прочтения и изучения нижеприведенного подробного описания.

Изобретение может осуществляться с использованием различных компонентов и схем расположения компонентов и различных этапов и схем расположения этапов. Чертежи предназначены только для иллюстрации предпочтительных вариантов осуществления и не подлежат истолкованию в смысле ограничения изобретения.

Фигура 1 - система визуализации.

Фигура 2 - примерное контрастное вещество, которое изменяет свои спектральные свойства при присоединении к мишени.

Фигура 3 - кривые ослабления рентгеновского излучения контрастного вещества, показанного на фигуре 2.

Фигуры 4-6 - примеры способов.

Фигуры 7-14 - другие примеры контрастных веществ.

На фигуре 1 представлена система 100, которая содержит по существу стационарный гентри 102 и поворотный гентри 104, который установлен с возможностью поворота в стационарном гентри 102. Поворотный гентри 104 поворачивается вокруг области 106 исследования вокруг продольной или z-оси 108. Рентгеновский источник 110, например рентгеновская трубка, установлен на поворотном гентри 104 и испускает излучение. Коллиматор 112 коллимирует пучок излучения для формирования, в общем, конического, веерного, клиновидного или имеющего другую форму пучка излучения, который пересекает область 106 исследования. Детекторная решетка 116, чувствительная к излучению, регистрирует фотоны, которые пересекают область 106 исследования. Показанный детектор 116 является детектором с энергетическим разрешением, например детектором с прямым преобразованием (например, Si, Ge, GaAs, CdTe, CdZnTe и т.п.) или сцинтилляционным детектором, который содержит сцинтиллятор, оптически связанный с фотоприемником, или упомянутый детектор может быть многослойным сцинтилляционным детектором. В альтернативном варианте детектор может не иметь энергетического разрешения, и рентгеновский источник может быть переключаемым между разными спектрами излучения. Детектор 116 формирует электрический сигнал, например электрические токи или напряжения, для каждого регистрируемого рентгеновского фотона или совокупности принятых рентгеновских фотонов в пределах заданного дискретного отсчета.

Инъектор 118 выполнен с возможностью инъекции или введения контрастного вещества в объект или субъекта для сканирования. В альтернативном варианте контрастные вещества могут быть введены вручную врачом или подобным специалистом. Подходящее контрастное вещество содержит контрастное вещество, которое изменяет свою спектральную характеристику ослабления рентгеновского излучения, когда контрастное вещество присоединяется к мишени. Контрастное вещество позволяет отличать накопление контрастного вещества в мишени, фоновое контрастное вещество и накопление контрастного вещества в области, отличающейся от мишени. Как подробно описано ниже, пример упомянутого контрастного вещества содержит контрастное вещество, основанное на биосенсорных методиках, использующих гибридизационные цепные реакции (HCR), и взаимодействии с наночастицами. Примеры подходящих наночастиц содержат, без ограничения, йод и висмут. В одном примере подобное вещество основано на синтезированных молекулах (мономерах ДНК), которые полимеризируются по типу цепной реакции только в случае, когда связываются со специфической мишенью. Данное вещество способствует повышению специфичности обнаружения и позволяет проводить при обнаружении амплификацию на мишени, что повышает чувствительность.

Блок 120 приема данных получает электрические сигналы и формирует поток данных, характеризующих интенсивности и энергетические спектры зарегистрированного излучения. Селектор 122 данных выполняет селекцию полученных данных для их представления в виде наборов искомых энергетических спектров, например предварительно заданных энергетических окон для дальнейшей обработки. Контроллер 126 энергетических спектров устанавливает настраиваемые характеристики искомых энергетических спектров либо в приемной системе, либо в источнике излучения. Контроллер 126 энергетических спектров можно использовать для установки, по меньшей мере, двух энергетических окон или для установки излучаемого излучения в соответствии с характеристиками ослабления наночастиц в контрастном веществе, что может повышать чувствительность в сравнении с конфигурацией, в которой энергетические спектры устанавливают иначе. Процессор 128 данных дополнительно обрабатывает тербуемым образом данные перед реконструкцией. Блок 134 реконструкции изображений селективно реконструирует выделенные сигналы на основании спектральных характеристик для формирования изображений или другой информации, характеризующей сканированный объект.

Опора 136 объекта, например стол, служит опорой для пациента или другого объекта в области 106 исследования. Опора 136 объекта является перемещаемой для ориентации объекта относительно области 106 исследования для выполнения процедуры сканирования. Универсальный компьютер выполняет функцию пульта 138 оператора. Пульт 138 содержит читаемое человеком устройство вывода, например монитор или дисплей, и устройство ввода, например клавиатуру и мышь. Резидентное программное обеспечение пульта 138 позволяет оператору взаимодействовать со сканером 100 посредством графического пользовательского интерфейса (GUI) или иным способом. Упомянутое взаимодействие может содержать выбор подходящего протокола сканирования с учетом введенного контрастного вещества, например с учетом наночастиц, содержащихся в контрастном веществе, настройку порогов дискриминации по энергии, соответствующих контрастному веществу, и т.п.

Процессорный компонент 140 может обрабатывать данные проекций и/или изображений, сформированные сканером 100. В приведенном примере процессорный компонент 140 показан отдельно от сканера 100 и может быть частью рабочей станции, компьютера или подобного устройства. Процессорный компонент 140 может быть расположен в месте расположения сканера 100 (как показано) или удален от сканера, включая компонент системы распределенной обработки данных и т.п. В другом варианте осуществления процессорный компонент 140 входит в состав пульта 138. Показанный процессорный компонент 140 содержит банк 142 инструментальных средств, который содержит, по меньшей мере, одно инструментальное средство 144 для обработки проекции и/или данных изображений. Ниже приведено несколько примеров подходящей обработки данных. Следует понимать, что нижеприведенные примеры приведены только с целью пояснения и не являются ограничивающими.

По меньшей мере, одно из инструментальных средств 144 может различать, по меньшей мере, две наночастицы в контрастном веществе по спектральным свойствам. Кроме того, по меньшей мере, одно из инструментальных средств 144 может вычислять отношение между коэффициентами ослабления, по меньшей мере, двух наночастиц и/или абсолютные значения, по меньшей мере, одной из наночастиц в, по меньшей мере, двух разных локализациях в сканируемом объекте или субъекте, например пациенте, биологической пробе и т.п. Результаты могут представляться на предварительно калиброванной шкале в единицах Хаунсфилда и/или иным способом. При использовании гибридизационной цепной реакции (HCR) с конечным дендритным ростом, для определения количественной оценки сайтов прицельного связывания можно использовать заранее известный коэффициент, который зависит от числа составляющих поколений. По меньшей мере, одно из инструментальных средств 144 может указывать начальное время, когда был обнаружен процесс гибридизационной цепной реакции (HCR).

По меньшей мере, одно из инструментальных средств 144 может оценивать и представлять уровень достоверности для оценки разных элементов. Данная операция может содержать оценку локальной и общей концентраций или количеств биологических сайтов прицельного связывания. По меньшей мере, одно из инструментальных средств 144 может автоматически оценивать материал направленного действия и, следовательно, биологические сайты прицельного связывания. Данная операция может содержать использование анатомической априорной информации. Например, если предполагается, что материал направленного действия находится в конкретных органах, но не в других органах, данную информацию можно взвешивать при вычислении уровней достоверности. По меньшей мере, одно из инструментальных средств 144 может вычислять скорость изменения, относительную и/или абсолютную, наличия наночастиц на изображениях, полученных последовательными или перфузионными сканированиями. Упомянутую информацию можно представлять различными способами, например в численной форме, визуально посредством полутонов и/или цветными накладными изображениями и/или изменениями полупрозрачных цветных накладных изображений.

Видоизменения и другие варианты осуществления.

В одном случае контрастное вещество содержит, по меньшей мере, два материала, имеющих K-край поглощения. В контексте настоящей заявки материалом, имеющим K-край поглощения, называют материал, содержащий тяжелый элемент с энергией K-края в пределах диапазона энергетического спектра излучения, которое применяют при CT-визуализации. Например, одна из наночастиц может содержать материал, имеющий K-край поглощения с энергией в диапазоне 25-55 кэВ, например серебро, индий, йод, барий, гадолиний и т.п., и другая наночастица может содержать материал, имеющий K-край поглощения с энергией в диапазоне 65-95 кэВ, например вольфрам, платину, золото, таллий, висмут и т.п. В приведенном случае контроллер 126 энергетических спектров можно применять для установки и оптимизации соответствующих энергетических спектров, либо излучаемых, либо регистрируемых, в соответствии с энергией K-края. Примеры подходящих материалов содержат, без ограничения, серебро, индий, йод, барий, гадолиний, вольфрам, платину, золото, таллий и висмут.

Следует также понимать, как уже упоминалось, что в качестве дополнения или альтернативы также применимы другие средства визуализации. При использовании отличающегося средства, контрастное вещество содержит наночастицы или другие частицы, соответствующие конкретным средствам визуализации.

В качестве неограничивающего примера, при визуализации методом MRI, одна из частиц может быть на основе гадолиния, который влияет, главным образом, на T1, и вторая частица может быть на основе оксида железа, который влияет, главным образом, на T2. Две разные частицы можно различать подходящим методом MRI, который измеряет и взвешивает как характеристики T1, так и T2. Например, в одном случае частицы можно различать методом объединения измерений T1 и T2, при котором визуализация в режиме T1 выявляет одно известное свойство магнитного резонанса, и визуализация в режиме T2 выявляет другое известное свойство. Для выявления характеристик T1 и/или T2 можно использовать различные последовательности. Возможно также выполнение комбинированной последовательности. Другой возможный вариант состоит в применении двух разных контрастных элементов, которые оба обладают характеристиками T1 или, в альтернативном варианте, оба обладают характеристиками T2, при этом отклики T1 или отклики T2 являются в подходящей степени разными и различимыми. Примеры подходящих материалов содержат, без ограничения, гадолиний и оксид железа.

В случае радионуклидной диагностики частицы могут быть изготовлены из двух разных радиоактивных изотопов, которые пригодны для регистрации гамма-камерой и SPECT (однофотонным эмиссионным компьютерным томографом). Например, одна частица может быть на основе радиоактивного Tc99m, который излучает, в основном, 140-кэВ гамма-фотоны, и вторая частица может быть на основе Tl-201, который излучает, в основном, 70-кЭв гамма-фотоны. Два компонента можно различать известными методами двухизотопной ядерной медицины. Например, было показано, что двухизотопное сканирование является удобным способом радионуклидной диагностики сердца для оценки функций в покое и под нагрузкой, посредством использования радиоактивных изотопов Tc99m и Tl-201. Возможно также использование некоторых других изотопов, которые широко применяются при однофотонной эмиссионной радионуклидной диагностике.

Применительно к флуоресцентной и/или комбинационной спектроскопии, и/или другим методам оптической визуализации, частицы могут иметь разные оптические отклики, при этом каждый оптический отклик находится в отличающемся спектральном диапазоне. Относительные интенсивности спектров могут определяться оптическими средствами.

Как кратко отмечено выше, подходящее контрастное вещество содержит контрастное вещество, которое изменяет свою спектральную характеристику ослабления рентгеновского излучения, когда контрастное вещество присоединятся к мишени, включая контрастное вещество, основанное на HCR. HCR является способом инициированной гибридизации по типу цепной реакции синтезированных молекул нуклеиновых кислот (аналогичных элементам строения биологической ДНК или РНК). Процесс начинается со специальных метастабильных структур нуклеиновых кислот, которые изменяют форму и связываются между собой в процессе актов цепной реакции только при первоначальном инициировании уникальной инициаторной нитью нуклеиновой кислоты. Инициаторная нить становится доступной для гибридизации, только когда она связывается со специфической биологической мишенью, обычно, через другую молекулу-зонд.

Вышеупомянутый контрастный материал может содержать контрастное вещество, в котором первоначально соединены два разных биохимических компонента или наночастицы, и только когда происходит связывание посредством цепной реакции со специфической мишенью, одна из наночастиц высвобождается из гибридизированного компонента в окружающую среду. В результате спектральная характеристика ослабления рентгеновского излучения контрастного вещества изменяется, и высвободившаяся наночастица не влияет на спектральную характеристику ослабления рентгеновского излучения области мишени. Вышеизложенное поясняется со ссылками на фигуры 2 и 3.

Как показано на фигуре 2, контрастное вещество содержит структуру 200 с первым компонентом 202 HCR и первой и второй наночастицами 204, 206, присоединенными к нему. Первая наночастица 204 имеет первую спектральную характеристику ослабления рентгеновского излучения, вторая наночастица 206 имеет вторую спектральную характеристику ослабления рентгеновского излучения, и комбинация наночастиц 204, 206, присоединенных к компоненту 202 HCR, имеет третью спектральную характеристику ослабления рентгеновского излучения. Данная особенность показана в связи с фигурой 3, на которой по y-оси представлено ослабление изображение в низкоэнергетическом окне (в единицах Хаунсфилда (HU)), и по x-оси показано ослабление изображения в высокоэнергетическом окне (в единицах Хаунсфилда (HU)). Первая кривая 302 представляет спектральную характеристику первой наночастицы 204; вторая кривая 304 представляет спектральную характеристику второй наночастицы 206; и третья кривая 306 представляет спектральную характеристику комбинации наночастиц 204, 206.

Как показано на обеих фигурах 2 и 3, часть структуры 200 присоединяется к инициатору 208, присоединенному к специфической мишени 210, как указано позицией 212. Некоторые дополнительные структуры 200 присоединяются к структуре 200, уже присоединенной к мишени 210, либо непосредственно, как указано позицией 214, либо косвенно, как показано позицией 216. Когда структура 200 присоединяется сама по себе, одна из наночастиц, например наночастица 206 высвобождается, и спектральная характеристика ослабления рентгеновского излучения следует первой кривой 302, как указано позицией 308. В приведенном примере в относительно высокой концентрации структуры 200 захватываются макрофагом 218 и в относительно низкой концентрации структуры 200 циркулируют в крови 220. Высвободившиеся наночастицы 206 также могут быть захвачены макрофагом 218 или циркулировать в крови 220. Спектральная характеристика отделившейся наночастицы 206 следует кривой 304, и спектральная характеристика нереагирующей структуры 200 следует кривой 306, включая структуру 200 в макрофагах 218, как показано позицией 310, и структуру 200, циркулирующую в крови 220, как показано позицией 312.

По существу, можно повысить специфичность обнаружения. Кроме того, полимеризация может развиваться линейно или экспоненциально и продолжаться, в принципе, пока доступен запас новых структур 200, или до тех пор, пока не вводят компонент, прерывающий реакцию. По существу, можно повысить чувствительность обнаружения.

Ниже приведено описание различных способов. Следует понимать, что описанные здесь этапы не ограничивают настоящее изобретение. По существу, в других вариантах осуществления порядок этапов может отличаться. Кроме того, другие варианты осуществления могут содержать большее или меньшее число этапов.

На фигуре 4 показан первый способ. На этапе 402, в объект или субъекта вводят молекулярный зонд. В одном случае молекулярный зонд содержит как область прицельного связывания, предназначенную для специфического связывания с выбранной биологической мишенью, так и область инициатора HCR, которая доступна для гибридизации, когда зонд связывается со специфической мишенью. Зонд может быть молекулой, которая может обнаруживать специфическую мишень и связываться с ней. Например, зонд может быть пептидом, аптамером, антителом или его фрагментами, нуклеотидной нитью или небольшой молекулой с нитью ДНК инициатора HCR, присоединенной к упомянутой молекуле и становящейся доступной для взаимодействия, когда зонд присоединяется к искомой мишени. На этапе 404, в объект или субъекта вводят мономерный компонент HCR. В одном случае мономерный компонент HCR может полимеризоваться по типу цепной реакции после инициирования нитью инициатора, доступной для взаимодействия.

На этапе 406, в объект или субъекта вводят контрастное вещество, содержащее структуру, содержащую, по меньшей мере, две частицы с разными спектральными характеристиками. Упомянутое вещество может изменять свои спектральные характеристики, как поясняется в настоящей заявке, например таким образом, что упомянутое вещество имеет одну спектральную характеристику, при присоединении к инициатору, и другую в состоянии неприсоединения к инициатору. Следует понимать, что контрастное вещество можно объединять с одним из мономеров HCR, или контрастное вещество может быть дополнительным компонентом, независимым от мономеров HCR. На этапе 408, объекта или субъекта сканируют, и полученные данные проекций реконструируют для формирования данных изображений. По желанию, на этапе 410, в пациента можно ввести прерыватель реакции для прерывания дальнейшей реакции HCR. Прерыватель реакции вводят по истечении предварительно заданного интервала времени, после специального указания от данных изображений или иначе. На этапе 412, формируют изображения по данным изображений. Данный способ может дополнительно повышать специфичность и чувствительность обнаружения.

На фигуре 5 изображен другой способ. На этап 502, в объект или субъекта вводят инициатор-зонд. На этапе 504, после подходящего времени задержки, обеспечивающего присоединение инициатора к сайту-мишени, в объект или субъекта вводят контрастное вещество, которое содержит компоненты HCR с наночастицами, как изложено в настоящем описании. В одном случае время задержки имеет значение порядка минут, часов и т.п. В другом случае, например, когда инициатор может быть доступен для взаимодействия только тогда, когда зонд присоединяется к сайту-мишени, инициатор и контрастное вещество можно вводить одновременно. На этапе 506, после подходящего времени задержки для обеспечения агрегирования контрастного вещества в сайте-мишени, сканируют объект или субъекта. По желанию, на этапе 508 можно вводить прерыватель реакции. На этапе 510 обрабатываются полученные данные изображения. Обработка может содержать ручной и/или автоматический анализ с использованием алгоритмических и/или программных инструментальных средств, с получением на выходе клинической, физиологической и/или функциональной информации об объекте или субъекте. Упомянутую информацию можно сохранять и/или различным образом представлять врачу. Упомянутый способ может повышать специфичность и чувствительность обнаружения.

На фигуре 6 изображен другой способ. На этапе 602, в объект или субъекта вводят инициатор-зонд. На этапе 604, после подходящего времени задержки, в объект или субъекта вводят контрастное вещество, которое содержит компоненты HCR с наночастицами, как изложено в настоящем описании. На этапе 606, после подходящего времени задержки, объект или субъекта сканируют. На этапе 608 выполняется определение, следует ли выполнять другое сканирование. Если следует, то на этапе 610 выполняется определение, следует ли еще вводить контрастное вещество. Если следует, то повторяют этапы 604-608. Если не следует, то повторяют этапы 606-608. Если дополнительных сканирований выполнять не требуется, то на этапе 612, по желанию, можно ввести прерыватель реакции. Полученные данные изображений обрабатываются и представляются после каждого сканирования и/или после процедуры в виде отдельной и/или суммарной информации сканирований. В одном неограничивающем примере приведенный способ позволяет контролировать изменения во времени и/или идентифицировать время, с которого начинается процесс HCR, например, для определения, когда вводить прерыватель реакции.

Следует понимать, что в связи с отслеживанием фармацевтического препарата, например отслеживанием активирования и/или функционирования лечебного средства (например, для химиотерапии и т.п.) и/или других лекарств, можно применить другие способы. При этом, лекарственные компоненты могут делать нить инициатора HCR доступной для взаимодействия, когда лекарство активируется, или когда лекарство осуществляет свое искомое физиологическое взаимодействие. При необходимости, введение лечебного средства в пациента можно выполнять на первом этапе последовательности клинической процедуры. Нить инициатора может быть частью лечебного средства, или нить инициатора может быть введена на следующем этапе в том случае, если нить инициатора связана с другим компонентом, который прицельно связывается с лекарственным компонентом. При выполнении последовательных сканирований, в пациента можно вводить, по меньшей мере, дополнительные фармацевтические препараты, например, на основании показаний из визуализирующих сканирований и/или по другим показаниям. Благодаря этому можно обеспечивать контролируемое введение фармацевтических препаратов. Данный подход можно объединять с фотодинамической терапией и/или другими приложениями. При фотодинамической терапии фотосенсибилизатор превращается и становится токсичным для клеток только в том случае, когда фотосенсибилизатор поглощает специфический внешний свет, который подводят локально. Конформационное превращение упомянутого лекарства можно использовать для разработки специфического действия на инициатор HCR.

Ниже приведено более подробное описание подходящих контрастных веществ.

В общем, присоединение структуры 200 к мишени 210 вызывает инициируемую цепную гибридизацию молекул нуклеиновых кислот, начинающуюся со стабильных мономерных шпилек или других более сложных структур нуклеиновых кислот. В одном случае стабильные мономерные шпильки вступают в цепную реакцию гибридизационных событий, с формированием спирали с разрывом, при инициировании нитью инициатора нуклеиновой кислоты. Короткие петли не поддаются инвазии со стороны комплементарных однонитевых нуклеиновых кислот, что допускает сохранение потенциальной энергии в форме петель. Потенциальная энергия высвобождается, когда инициированное конформационное изменение допускает гибридизацию с комплементарной нитью однонитевых оснований в петлях.

Инициатор 208, который инициирует изменение, может быть доступен для гибридизации только при активировании мишенью 210. Например, инициатор 208 может быть связан с другим молекулярным компонентом, который обнаруживает мишень 210 и только после этого делает инициатор 208 доступным для взаимодействия. Компонент HCR содержит, по меньшей мере, два разных вида наночастиц на основе тяжелых элементов, присоединенных посредством специфических мономеров ДНК. Наночастичные структурные элементы только одного типа высвобождаются из гидридизированных компонентов в окружающую среду только после связывания цепной реакцией с искомой биологической мишенью. Первоначальное соединение между первым наночастичным структурным элементом, который предназначен для присоединения к полимеризованному комплексу HCR, и вторым наночастичным структурным элементом, который предназначен для высвобождения, может осуществляться метастабильной слабой связью. Для облегчения высвобождения наночастиц одного вида во время полимеризации по HCR, слабая связь может иметь более сильную конкурентную связь, которая становится доступной для взаимодействия только тогда, когда происходит HCR. В одном случае данная реакция содержит замену одной гибридизируемой конфигурации ДНК другой гибридизируемой конфигурацией, которая является более предпочтительной в энергетическом или энтропийном отношении.

Ниже приведено описание различных подходящих метастабильных слабых связей. В одном случае открытая нить слабо гибридизирована с образованием комплементарной нитью замкнутой петли, которая является частью мономера шпильки. Данная конфигурация основана на относительно слабой гибридизации между первым сегментом петли в мономере шпильки и вторым комплементарным сегментом свободной нити. Феномен слабого притяжения к сегменту петли назван «комплементарным взаимодействием петель шпилек». Комплементарные нуклеотиды в двух сегментах взаимно притягиваются. Однако топология петель препятствует обычному изгибу двойной спирали гибридизированных структур, который предпочтителен энергетически. Когда становятся доступными конкурирующие свободные сегменты нити с нуклеотидной последовательностью, идентичной сегменту петли, второй свободный сегмент, который гибридизирован с петлей, будет стремиться к отделению от петли и гибридизации с идентичной комплементарной свободной нитью. Две позднее гибридизированных нити создают двойную спираль, которая предпочтительна энергетически. При данном подходе, оба разных наночастичных структурных элемента первоначально присоединены к мономеру, принадлежащему к первому типу основных компонентов HCR. Мономеры, которые принадлежат ко второму типу основных компонентов HCR, не содержат присоединенных наночастиц. Когда происходит процесс HCR, одна из двух наночастиц остается связанной с полимеризованным комплексом HCR, и другая наночастица отделяется от комплекса и высвобождается в окружающую среду.

В другом случае энергия накапливается тремя связанными нитями, образующими соединение «T-образной» формы. Данная конфигурация основана на накоплении энергии в соединения T-образной формы. При этом первоначальная структура содержит три нити, которые совместно гибридизированы, с оставлением в середине области, которая не может быть полностью гибридизирована или изогнута. Когда подходящая открытая нить, комплементарная к одной из трех нитей, становится доступной для взаимодействия в процессе HCR, достижимой становится новая энергетически предпочтительная конфигурация, которая содержит два отдельных структурных элемента двойной спирали, вместо «T-образной формы». Для достижения упомянутого результата, одна из трех нитей должна быть комплементарной к новой нити, доступной для взаимодействия, и две другие нити должны быть взаимно комплементарными. При данном подходе, основные компоненты HCR первоначально не содержат присоединенных наночастиц. Отдельный мономерный компонент удерживает вместе две разных наночастицы. Наночастицы двух типов связаны таким образом, что после того как происходит процесс HCR, одна наночастица связывается с полимеризованным комплексом HCR, и другая наночастица отделяется от комплекса и высвобождается в окружающую среду. Данный возможный вариант может обладать преимуществом в некоторых сценариях, так как компоненты с наночастицами можно вводить независимо от основных компонентов HCR. Конъюгацию двух наночастиц в виде структурного элемента, который отличается от основных мономеров HCR, можно также осуществить с использованием вышеупомянутой слабой связи свободной нити с нитью в виде петли петли. Упомянутую конъюгацию можно также осуществить с использованием слабой связи на основе нижеописанного обмена нитями.

Другой пример содержит обмен нитями, при котором короткая нить связывается с комплементарным участком в более длинной нити, при этом другая полностью комплементарная нить, соответствующая более длинной нити, становится доступной для взаимодействия только в процессе HCR. Данная конфигурация основана на относительно слабой гибридизации между первым сегментом нити и вторым, более коротким сегментом, который является комплементарным только к части нуклеотидной последовательности первого, более длинного сегмента, который становится доступным в процессе HCR; в сравнении с полной гибридизацией первого длинного сегмента с полностью комплементарным сегментом. Обмен нитями осуществляется посредством миграции ветвей путем случайных блужданий. Энергетический выигрыш достигается в связи с тем, что в конце процесса обеспечивается высокая стабильность двойной спирали. В некоторых исследованиях вышеописанный обмен нитями объясняется как энтропийный процесс. После того как вторая, более короткая нить отделяется от своей комплементарной части в первой, более длинной нити (которая, на данный момент, полностью гибридизирована с комплементарной, более длинной нитью), ее повторное присоединение к первой, более длинной нити является маловероятным, так как отсутствует свободный липкий конец (зацепка) для инициирования процесса миграции ветвей. Приведенная ситуация дополнительно повышает стабильность последнего состояния гибридизации.

Как кратко описано выше, полимеризацию HCR можно селективно прекращать при предварительно заданных условиях. Например, полимеризацию можно прекращать прекращением подачи компонентов HCR и удалением оставшихся компонентов. В другом случае, и как упоминалось выше, полимеризацию можно прекращать подачей подходящего прерывателя реакции. Например, в случае основной формы HCR из двух компонентов, быстрое введение простых нитей, которые являются комплементарными к нити инициатора, может прекратить процесс роста. В данном случае все свободные нити инициатора, содержащие нити, которые становятся доступными для взаимодействия в процессе HCR, будут гибридизироваться с новыми нитями. В еще одном случае полимеризация может иметь конечный экспоненциальный дендритный рост и прекращается автоматически, например после того как все поколения мономеров гибридизируются.

Примеры

Как показано на фигуре 7, контрастное вещество содержит структуру 700, которая содержит первый молекулярный структурный элемент или мономер 702 первого компонента HCR и первую и вторую наночастицы 704, 706, которые присоединены к нему. Контрастное вещество содержит также второй молекулярный структурный элемент или мономер 708 второго отличающегося компонента HCR, который не соединен с наночастицами. Первый мономер 702 присоединяется к инициатору 710, присоединенному к мишени 712. В результате одна из наночастиц 706 отделяется от структуры 700 и высвобождается к окружающую среду, и другая наночастица 704 остается присоединенной к полимеризованному комплексу 714 HCR. Второй мономер 708 присоединяется к первому мономеру 702, присоединенному к инициатору 710. Данный акт повторяется, за исключением того, что следующий первый мономер 702 присоединяется ко второму мономеру 708, вместо инициатора 710.

На фигуре 8 приведен первый пример упомянутой полимеризации в связи со структурой 700. Как показано, первая наночастица (N1) 704 присоединяется к первому мономеру (H1) 702 сильной стабильной связью, и вторая наночастица (N2) 706 конъюгирует посредством сильной стабильной связи с участком шпильки, который связан с первым мономером 702 метастабильной слабой связью 707. В пояснении, буквы указывают разные сегменты мономера ДНК. Буквы, помеченные звездочкой (« *»), являются комплементарными к соответствующей непомеченной букве. Компоненты 702 и 708 являются стабильными в отсутствие инициатора (i) 710, который образует ядро на липком конце (именуемом также «зацепкой») компонента 702 и вступает во взаимодействие неискаженного замещения цепи, с открытием шпильки. Вновь доступный для взаимодействия липкий конец компонента 702 образует ядро на липком конце компонента 708 и открывает шпильку, с предоставлением доступа для взаимодействия к липкому концу на компоненте 708, который идентичен по последовательности инициатору 710. По существу, каждая копия инициатора 710 может проходить цепную реакцию из событий гибридизации между шпильками чередующихся мономеров 702 и 708 для формирования двойной спирали с разрывом, с амплификацией сигнала связывания инициатора.

Приведенному процессу можно дать следующее альтернативное описание. Вследствие присутствия инициатора d*e*, сегмент d мономера H1 присоединяется к d* инициатора, e* инициатора открывает пару ee* мономера H1 вследствие энергии, накопленной в петле f мономера H1. Липкий конец f* мономера H2 может присоединяться к сегменту f мономера H1, только когда петля f является открытой. Тогда, сегменты e*b* мономера H1 открывают сегменты eb мономера H2 вследствие энергии, накопленной в петлях d* и c мономера H2. Когда петля c открывается, она присоединяется к сегменту c* мономера H1 (который первоначально присоединен к петле c мономера шпильки, конъюгированного с наночастицей N2). Замещение происходит потому, что связь между двумя открытыми комплементарными сегментами сильнее, чем связь открытого сегмента с петлей. После данного процесса, N2 больше не присоединена к комплексу HCR. Когда H2 открывается, его сегменты d*e* формируют новый инициатор. Следует отметить, что сегменты c и c* являются относительно длинными (относительно общего сегмента петли в шпильке) для создания возможности метастабильного соединения открытого сегмента с петлей. Сегменты d и f являются относительно короткими, так что открытый комплементарный сегмент не может присоединяться к ним, когда они находятся в форме замкнутой петли.

На фигуре 9 представлен второй пример упомянутой полимеризации в связи со структурой 700. Основное различие между приведенным примером и примером, показанным на фигуре 8, состоит в том, что метастабильная слабая связь второй наночастицы N2 выполнена гибридизацией короткого сегмента, который можно замещать в процессе обмена нитями. N2 связана с H1 коротким сегментом c, который гибридизирован с c* мономера H1. H2 содержит петлю, которая состоит из сегмента c и сегмента k. В процессе HCR, петля kc мономера H2 открывается, k сначала гибридизируется с k* мономера H1. Следующий сегмент c открытой петли мономера H2 будет замещать сегмент c, конъюгированный с N2, в процессе обмена нитями. Новая конфигурация, в которой N2 отделена от комплекса HCR, является более предпочтительной в термодинамическом отношении.

На фигуре 10 изображен вариант, в котором контрастное вещество содержит структуру 1000, в которой наночастицы 704, 706 не присоединены к первому компоненту 708 HCR. Вместо этого, наночастицы 704, 706 связаны мономером 1002. Две наночастицы 704, 706 связаны с мономером 1002 таким образом, что одна из наночастиц 706 отделяется и высвобождается в окружающую среду, наночастица 704 остается связанной с полимеризованным комплексом 714 HCR. Настоящий вариант осуществления допускает отдельное введение наночастиц 704, 706 и компонентов 702, 708 HCR.

На фигуре 11 представлен первый пример в связи со структурой 1000. В присутствии инициатора d*e*, сегмент d мономера H1 присоединяется к d* инициатора, e* инициатора открывает пару ee* мономера H1, вследствие энергии, накопленной в петле f мономера H1. Липкий конец f* мономера H2 может присоединяться к сегменту f мономера H1 только в случае, когда петля f открыта. После этого сегменты e*b* мономера H1 открывают сегменты eb мономера H2, вследствие энергии, накопленной в петлях d* и c мономера H2. Сегменты d*e* мономера H2 открываются и формируют новый инициатор. Петля, обозначенная a, мономера H2, еще замкнута. Когда присутствует компонент с двумя наночастицами, компонент c* , который конъюгирован с N1, присоединяется к сегменту c , который был замкнутой петлей в H2 перед его гибридизацией в комплекс HCR. Сегмент g* в компоненте наночастицы открывает сегменты gg* в комплексе HCR вследствие энергии, накопленной в петле. Затем, сегмент a мономера H2 присоединяется к сегменту a* компонента наночастицы, вместо петли a шпильки, конъюгированной с N2. Замена происходит потому, что связь между двумя открытыми комплементарными сегментами сильнее, чем связь открытого сегмента с петлей. После данного процесса, к комплексу HCR присоединена только N1. Следует отметить, что в настоящем примере сегменты a и a* являются относительно длинными (в сравнении с общим сегментом петли в шпильке), что обеспечивает возможность связывания открытого сегмента с петлей. Сегменты c, d и f являются относительно короткими, так что открытые комплементарные сегменты не могут присоединяться к ним, когда они находятся в форме замкнутой петли.

На фигуре 12 представлен другой пример в связи со структурой 1000. Основное различие между настоящим примером и примером, представленным на фигуре 11, состоит в том, что метастабильная слабая связь наночастицы N2 осуществляется гибридизацией короткого сегмента, который можно заместить при помощи процесса обмена нитями. N2 соединяется с N1 коротким сегментом a, который гибридизируется с сегментом a*, конъюгированным с N1. H2 содержит петлю, которая построена из сегмента a и сегмента k. В процессе HCR и в присутствии компонента наночастицы, петля ka мономера H2 открывается, сначала k гибридизируется с k*, который конъюгирован с N1. Следующий сегмент a открытой петли мономера H2 будет замещать сегмент a , который конъюгируется с N2 в процессе обмена нитями. Новая конфигурация, в которой N2 отделена от комплекса HCR, является более предпочтительной в термодинамическом отношении.

На фигуре 13 представлен пример метастабильной связи на основе T-образного соединения. Сегменты a1, a 2 и a3 содержат в точности одинаковые нуклеотидные последовательности, и индексы предназначены только для облегчения описания (такие же условные обозначения приняты для комплементарных сегментов). N1 и N2 первоначально связаны посредством T-образной гибридизированной структуры. Петля a3a3* является частью одного из компонентов HCR. Когда петля замкнута, два комплементарных сегмента, составляющих петлю, обычно, притягиваются один к другому. Однако они не могут полностью гибридизироваться из-за топологии петли. Когда петля открывается в процессе HCR, будет иметь место притяжение g к g*, a2 к a 3*, a2* к a 3 и, затем, a1 к a1 *. В конце приведенного процесса, N1 притягивается к комплексу HCR, и N2 отделяется. Новая конфигурация является более предпочтительной, так как содержит два участка двойной спирали вместо T-образной формы, которая не может быть полностью изогнутой.

На фигуре 14 представлен пример компонентов HCR, проходящих полимеризацию с экспоненциальным ростом. Экспоненциальный рост может повышать амплификацию мишени и чувствительность обнаружения. Как показано, в данном случае имеются четыре, Q1, Q2, E1 и E2, компонента HCR. Наночастица типа N1 постоянно присоединена к концам как Q2, так и E2, и наночастица типа N2 слабо присоединена короткими нитями к части липких концов как в Q2, так и в E2. В Q2 и E2, части липких концов являются первоначально доступными для взаимодействия. В присутствии инициатора, Q1 и Q2 формируют одну ветвь HCR. Когда петля f в Q1 открывается, она присоединяется к f* компонента Q2, а частично комплементарная нить (конъюгированная с N2) отделяется. Замещение происходит путем обмена нитями короткого сегмента с другим новым более длинным сегментом, который является комплементарным к большему числу нуклеотидных сайтов. Открытая петля c компонента Q2 инициирует другую ветвь HCR компонента E1 и компонента E2, и вновь с высвобождением наночастицы N2. Открытая петля d* компонента E2 инициирует новую ветвь компонента Q1 и компонента Q2.

Изобретение описано выше на примере предпочтительных вариантов осуществления. Специалистами, после прочтения и изучения вышеприведенного подробного описания, могут быть созданы модификации и изменения. Предполагается, что настоящее изобретение следует интерпретировать как содержащее все упомянутые модификации и изменения в той степени, в которой они заключены в объеме притязаний прилагаемой формулы изобретения или ее эквивалентов.

Класс A61B6/03 томографы с применением вычислительной техники

система получения изображений с кардио-и/или дыхательной синхронизацией и способ 2-мерной визуализации в реальном времени с дополнением виртуальными анатомическими структурами во время процедур интервенционной абляции или установки кардиостимулятора -  патент 2529481 (27.09.2014)
способ и устройство для формирования изображений в большом поле зрения, и детектирования и компенсации артефактов движения -  патент 2529478 (27.09.2014)
формирование модели усовершенствованного изображения -  патент 2529381 (27.09.2014)
способ ведения пациентов при тромбоэмболии легочной артерии -  патент 2526469 (20.08.2014)
способ прогнозирования неблагоприятного исхода нарушения мозгового кровообращения -  патент 2526099 (20.08.2014)
способ оценки положения компонентов эндопротеза тазобедренного сустава -  патент 2525206 (10.08.2014)
расширение на основе модели поля обзора при радионуклидной визуализации -  патент 2524302 (27.07.2014)
устройство и способ рентгеновского обследования -  патент 2523827 (27.07.2014)
способ лечения кариеса дентина в постоянных зубах у детей с незаконченными процессами минерализации твердых тканей (варианты) -  патент 2523619 (20.07.2014)
управляемый разбаланс гентри -  патент 2523127 (20.07.2014)

Класс A61K49/04 рентгеноконтрастные препараты

контрастные агенты на основе наночастиц для диагностической визуализации -  патент 2526181 (20.08.2014)
способ рентгенологической диагностики открытых ретенционных кист экзокринных желез трахеи и бронхов -  патент 2525275 (10.08.2014)
способ диагностики состояния задней продольной связки средней опорной структуры позвоночника при повреждениях грудного и поясничного отделов позвоночного столба -  патент 2508906 (10.03.2014)
магнитно-резонансное и рентгеновское контрастное средство и способ его получения -  патент 2497546 (10.11.2013)
средство для контрастирования при рентгенодиагностике -  патент 2471501 (10.01.2013)
способ диагностики компрессии периферических ветвей тройничного нерва при невралгии -  патент 2469649 (20.12.2012)
метод контрастирования остаточного содержимого толстой кишки при виртуальной колоноскопии -  патент 2469648 (20.12.2012)
контрастные агенты -  патент 2469021 (10.12.2012)
способ диагностики опухолей мягких тканей -  патент 2465825 (10.11.2012)
методика проведения ирригоскопии при стенозирующем варианте опухолевого поражения ободочной кишки -  патент 2460461 (10.09.2012)

Класс A61K49/06 Контрастные препараты для ядерного магнитного резонанса (ЯМР); контрастные препараты для томографии

носитель лекарственного средства, обеспечивающий контрастное усиление при мрт -  патент 2528104 (10.09.2014)
способ диагностики панкреатической гипертензии -  патент 2526917 (27.08.2014)
способ диагностики ишемии миокарда у больных кардиальным синдромом х -  патент 2502461 (27.12.2013)
способ комплексной диагностики заболеваний нижних мочевыводящих путей и окружающих тканей у мужчин -  патент 2492807 (20.09.2013)
способ предоперационной инвазивной лучевой диагностики патологических изменений в тазобедренном суставе при врожденном вывихе бедра у детей для последующего выбора метода лечения этих патологических изменений -  патент 2480157 (27.04.2013)
универсальная контактная среда -  патент 2477998 (27.03.2013)
контрастное средство для t1 и/или t2 магнитно-резонансного сканирования и способ его получения -  патент 2471502 (10.01.2013)
хелаты металлов, имеющие перфторированный пэг радикал, способы их получения и их применение -  патент 2470014 (20.12.2012)
способ диагностики распространенности опухолевого процесса у больных немелкоклеточным раком легкого -  патент 2454931 (10.07.2012)
способ нахождения оси головки нижней челюсти пациента -  патент 2454180 (27.06.2012)

Класс A61K51/00 Препараты, содержащие радиоактивные вещества, для использования в терапии или для исследований на живом организме

циклический октапептид, радиофармацевтическое средство на его основе и способ применения радиофармацевтического средства для получения лекарственных (фармацевтических) средств для лечения новообразований, экспрессирующих соматостатиновые рецепторы -  патент 2528414 (20.09.2014)
способ получения реагента для приготовления радиофармпрепарата на основе меченного технецием-99м ципрофлоксацина -  патент 2527771 (10.09.2014)
способ диагностики недостаточности сфинктера одди -  патент 2525210 (10.08.2014)
трициклические индольные производные в качестве лигандов pbr -  патент 2525196 (10.08.2014)
реагенты и способы введения радиоактивной метки -  патент 2524284 (27.07.2014)
способ лечения раковых опухолей -  патент 2524194 (27.07.2014)
конъюгаты антагониста пептида аналога бомбезина -  патент 2523531 (20.07.2014)
меченые молекулярные визуализирующие агенты, способы получения и способы применения -  патент 2523411 (20.07.2014)
способ получения активной фармацевтической субстанции для синтеза препаратов галлия-68 -  патент 2522892 (20.07.2014)
способ получения реагента для приготовления радиофармпрепарата на основе меченного технецием-99м ципрофлоксацина с сохранением его стабильности при длительном хранении -  патент 2522498 (20.07.2014)
Наверх