Получение плазмы; управление плазмой – H05H 1/00
Патенты в данной категории
ЭЛЕКТРОДУГОВОЙ ШЕСТИСТРУЙНЫЙ ПЛАЗМАТРОН
Изобретение относится к плазменной технике и может быть использовано в области атомно-эмиссионного спектрального анализа, при термической обработке порошковых материалов, а также в качестве их атомизатора для корректировки траектории космических аппаратов. В устройстве заявленного шестиструйного плазматрона плазмообразующие медные головки, смонтированные на диэлектрических плато, жестко присоединены к кронштейнам с возможностью перемещения вдоль осей головок в направлении, перпендикулярном относительно трубчатых стоек. Над ними кольцеобразно размещены трубчатая камера подачи в головки аргона, защищающего электроды от окисления, и камера распределения рабочего газа. Над стойками аксиально вышеупомянутым камерам размещены камера ввода охлаждающей воды в секции головок из вертикального канала ввода воды и камера сброса воды в канал, связь которых с секциями головок осуществлена посредством гибких шлангов. Для охлаждения водяного потока предусмотрен радиатор. Стойки расположены на монтажном столе, между стойками жестко смонтирован патрубок, формирующий анализируемый газовый поток или обрабатываемый порошковый материал, и цилиндр, обеспечивающий синхронность изменения угла схождения шести головок посредством системы, в составе которой содержится плато с монтируемыми подвижно кронштейнами, обеспечивая изменение величины межэлектродного промежутка плазмообразующих головок. Техническим результатом является обеспечение возможности полного контроля любых газовых потоков при термической обработке любых порошковых материалов заданного фракционного состава с помощью плазменного потока с температурой выше 6000°С. 2 ил. |
2529740 выдан: опубликован: 27.09.2014 |
|
ВЫСОКОВОЛЬТНЫЙ ПЛАЗМОТРОН
Изобретение относится к плазменной технике и может быть использовано для нагрева различных газов и в качестве поджигающего устройства пылеугольной горелки. Технический результат - повышение КПД устройства и увеличение ресурса рабочих электродов. Высоковольтный источник питания, формирующий в непрерывном режиме переменное напряжение высокой частоты, подключен к коническому первому электроду и второму цилиндрическому электроду, который разделен на два - поджигающий и выходной цилиндра. Вторые электроды крепятся соосно в диэлектрическом цилиндре - корпусе устройства - с помощью двух центрирующих диэлектрических шайб с отверстиями, параллельными главной оси устройства, для прохождения воздуха. Внутри поджигающего цилиндра второго электрода соосно через потокоформирующую диэлектрическую шайбу закреплен первый конический электрод. Потокоформирующая шайба имеет отверстия под углом к главной оси устройства для закручивания воздушного потока, проходящего через шайбу. 3 ил. |
2529056 выдан: опубликован: 27.09.2014 |
|
УСТРОЙСТВО С МАГНИТНЫМ УДЕРЖАНИЕМ ПЛАЗМЫ, ТИПА "ОТКРЫТАЯ ЛОВУШКА С МАГНИТНЫМИ ПРОБКАМИ"
Заявленное изобретение относится к физике плазмы. В заявленном устройстве с магнитным удержанием плазмы типа «ловушка с магнитными пробками» рабочий объем заполнен плазмой из одного исходного изотопа, при этом ядра второго изотопа ускоряют до энергий (110÷700) кэВ и вводят плотными пучками, уравновешивающими давление получаемой плазмы со всех сторон. Ускорители распределены вдоль рабочего объема группами, ориентированы на свою - для каждой группы - область схождения пучков и присоединены к источникам питания через устройства, включающие каждую группу ускорителей в заданный для нее момент рабочего цикла. Размещение и включение групп ускорителей согласованы с возможностью взаимодействия потоков плазмы от групп ускорителей, включаемых ранее, и с пучками ускоренных ядер в областях схождения этих пучков ускоренных ядер. Техническим результатом является компенсация давления потоков плазмы вдоль магнитного поля. |
2528628 выдан: опубликован: 20.09.2014 |
|
МАГНИТНЫЙ БЛОК РАСПЫЛИТЕЛЬНОЙ СИСТЕМЫ
Изобретение относится к плазменной технике, в частности к конструкции магнитного блока распылительной системы, и может быть использовано в планарных магнетронах для вакуумного ионно-плазменного нанесения тонких пленок металлов и их соединений на поверхность твердых тел. Магнитный блок включает в себя центральный цилиндрический и внешний кольцевой магниты, коаксиально установленные с зазором на магнитопроводе из магнитомягкого материала. Магнитопровод выполнен с кольцевым выступом, равным по высоте магнитам, при этом выступ выполнен с возможностью фиксации центрального магнита. Поверхность выступа, обращенная к центральному магниту, может быть выполнена конической. Технический результат использования изобретения заключается в повышении равномерности напряженности магнитного поля и уменьшении габаритов блока. 2 з.п. ф-лы, 3 ил. |
2528536 выдан: опубликован: 20.09.2014 |
|
СТАЦИОНАРНЫЙ ПЛАЗМЕННЫЙ ДВИГАТЕЛЬ МАЛОЙ МОЩНОСТИ
Изобретение относится к плазменной технике. Плазменный двигатель с замкнутым дрейфом электронов содержит главный кольцевой канал ионизации и ускорения, ограниченный конструкционными элементами из изолирующего материала и открытый на своем выходном конце. По крайней мере один полый катод сообщен с линией для подачи ионизируемого газа. Кольцевой анод, концентричный главному каналу, расположен на расстоянии от его открытого конца. Во входной части главного канала за зоной расположения анода размещена кольцевая буферная камера, размер которой в радиальном направлении превышает радиальный размер главного кольцевого канала. Трубы для подачи ионизируемого газа сообщаются в направлении к аноду через кольцевой распределитель с зоной, отличной от зоны расположения анода. Техническим результатом является повышение тяговой характеристики стационарного плазменного двигателя малой мощности и упрощение конструкции при обеспечении гарантированного времени непрерывной работы. 17 ил. |
2527898 выдан: опубликован: 10.09.2014 |
|
ЭЛЕКТРОД ПЛАЗМЕННОЙ ГОРЕЛКИ
Заявленное изобретение относится к электроду плазменной горелки. Заявленное устройство содержит продолговатый электрододержатель с передней поверхностью на острие электрода и сверлением, выполненным на острие электрода по средней оси через электрододержатель, и эмиссионную вставку, установленную в сверлении таким образом, что излучающая поверхность эмиссионной вставки остается свободной. При этом излучающая поверхность смещена назад относительно передней поверхности электрододержателя и электрод плазменной горелки содержит гнездо для своего размещения и электрододержатель, причем гнездо под электрод имеет внутреннюю резьбу, а электрододержатель содержит наружную резьбу и сплошное кольцо в канавке на цилиндрической наружной поверхности. При этом электрододержатель свинчен с гнездом под электрод с помощью наружной и внутренней резьбы и уплотнен посредством сплошного кольца. Заявленная плазменная горелка выполнена с указанным электродом. Техническим результатом является повышение срока службы электрода. 2 н. и 7 з. п. ф-лы, 11 ил. |
2526862 выдан: опубликован: 27.08.2014 |
|
ОХЛАЖДАЮЩАЯ ТРУБА, ЭЛЕКТРОДЕРЖАТЕЛЬ И ЭЛЕКТРОД ДЛЯ ПЛАЗМЕННО-ДУГОВОЙ ГОРЕЛКИ, А ТАКЖЕ СОСТОЯЩИЕ ИЗ НИХ УСТРОЙСТВА И ПЛАЗМЕННО-ДУГОВАЯ ГОРЕЛКА С НИМИ
Группа изобретений относится к плазменной технике. Охлаждающая труба для плазменно-дуговой горелки включает в себя продолговатое тело с располагаемым в открытом конце электрода концом и проходящим через это тело каналом для охлаждающей среды, при этом на упомянутом конце стенка охлаждающей трубы имеет валикообразное, направленное внутрь и/или наружу утолщение. Устройство из охлаждающей трубы для плазменно-дуговой горелки включает в себя продолговатое тело с разъемно соединяемым с электрододержателем для плазменно-дуговой горелки задним концом и проходящим через это тело каналом для охлаждающей среды. Электрододержатель для плазменно-дуговой горелки включает в себя продолговатое тело с концом для размещения электрода и полостью, причем на наружной поверхности охлаждающей трубы расположен, по меньшей мере, один выступ для ее центрирования в электрододержателе. Технический результат - предотвращение перегрева электрода плазменно-дуговых горелок. 10 н. и 21 з.п. ф-лы, 17 ил. |
2524919 выдан: опубликован: 10.08.2014 |
|
ПЛАВИЛЬНЫЙ ПЛАЗМОТРОН
Изобретение относится к области электротермической техники, а именно к устройствам плазменно-дуговых сталеплавильных печей. Плавильный плазмотрон включает водоохлаждаемый корпус, каналы для подачи плазмообразующего газа, расположенные параллельно оси плазмотрона и соединенные с вертикально расположенным водоохлаждаемым соплом, электрическую изоляцию, электрическую сеть, вольфрамовый электрод-катод, электрододержатель. Плазмотрон дополнительно снабжен вторым каналом для подачи плазмообразующего газа с соплом, причем сопла установлены симметрично относительно вертикальной оси плазмотрона и под углом 30-35° к вертикальной оси электрододержателя. Технический результат - снижение расхода электроэнергии. 2 ил. |
2524173 выдан: опубликован: 27.07.2014 |
|
СИСТЕМА ЭЛЕКТРОСТАТИЧЕСКОГО ИОННОГО УСКОРИТЕЛЯ
Система электростатического ионного ускорителя, содержащая ионизационную камеру (IK), которая имеет на одной стороне в продольном направлении отверстие для выхода струи, электродную систему, содержащую анодную систему (AN) и катодную систему (KA), которая создает в ионизационной камере электростатическое поле, ориентированное в продольном направлении, при этом анодная система расположена противоположно выходному отверстию у основания камеры. Анодная система отдает преобладающую часть возникающего в ней тепла потерь в ионизационную камеру (IK) в виде теплового излучения (WS), причем в ионизационную камеру подается нейтральный рабочий газ и в ней ионизируются положительно заряженные ионы. Система ионного ускорителя образует привод космического летательного аппарата, магнитная система, окружающая ионизационную камеру, создает в ионизационной камере магнитное поле; отражательное устройство для теплового излучения содержит отражательную поверхность с излучательной способностью, которая меньше, предпочтительно составляет максимально половину излучательной способности обращенной к ионизационной камере поверхности передней стороны анодного электрода. Технический результат - упрощение конструкции. 2 н. и 11 з.п. ф-лы, 1 ил. |
2523658 выдан: опубликован: 20.07.2014 |
|
СПОСОБ ФОРМИРОВАНИЯ КОМПАКТНОГО ПЛАЗМОИДА
Изобретение относится к области физики плазмы и систем ядерного синтеза, в частности к альтернативным способам удержания горячей плотной плазмы. В заявленном способе формирования компактного плазмоида возбуждение тороидального тока производят индуктивным аккумулятором (основной соленоид с подключенной конденсаторной батареей), затем этот ток прерывают, затем пропускают импульс тока через рабочее вещество в продольном направлении, по крайней мере, через один вспомогательный виток, проходящий в рабочем объеме в продольном направлении. Указанный импульс тока создает тороидальное магнитное поле, после чего возобновляют подачу тороидального тока в направлении, противоположном первоначальному направлению через дополнительный соленоид, намотанный соосно основному соленоиду, для отжатая плазмоида от стенки основного соленоида и сжатия плазмоида. Техническим результатом является повышение энерговклада в плазму и уровня захваченного магнитного потока при формировании компактной плазменной конфигурации.4 ил. |
2523427 выдан: опубликован: 20.07.2014 |
|
ИСТОЧНИК ЭЛЕКТРОПИТАНИЯ ПЛАЗМОТРОНА
Изобретение относится к области электротехники, в частности к преобразованию электрической энергии в тепловую с помощью плазмотрона, и может быть использовано, в частности, в установках газификации отходов. Источник электропитания плазмотрона включает трехфазный мостовой выпрямитель на основе управляемых тиристоров, конденсатор фильтра, регулятор тока, систему управления, при этом каждый из входов выпрямителя подключен к соответствующим фазным обмоткам внешнего силового трансформатора A, B, C, выходные клеммы выпрямителя подключены к конденсатору фильтра и входу регулятора, выходные клеммы регулятора подключены ко входу плазмотрона, система управления подключена к исполнительным узлам регулятора, дополнительно включает второй трехфазный мостовой выпрямитель на основе управляемых тиристоров и регулирующий коммутатор, состоящий из шести тиристоров, причем входные клеммы первого выпрямителя A1, B1, C1 подключены к группе фазных обмоток внешнего трансформатора, соединенных в треугольник, входные клеммы второго выпрямителя A2, В2, С2 подключены к группе фазных обмоток внешнего трансформатора, соединенных в звезду, положительная выходная клемма первого выпрямителя соединена с положительной выходной клеммой второго выпрямителя, положительной клеммой конденсатора фильтра и положительным входом регулятора, отрицательная выходная клемма первого выпрямителя соединена с отрицательной выходной клеммой второго выпрямителя, отрицательной клеммой конденсатора фильтра и отрицательным входом регулятора, катод первого тиристора коммутатора подключен ко входу A1 первого выпрямителя, катод второго тиристора коммутатора подключен ко входу B1 первого выпрямителя, катод третьего тиристора коммутатора подключен ко входу C1 первого выпрямителя, анод четвертого тиристора коммутатора подключен ко входу A2 второго выпрямителя, анод пятого тиристора коммутатора подключен ко входу B2 второго выпрямителя, анод шестого тиристора коммутатора подключен ко входу C2 второго выпрямителя, аноды первого, второго, третьего тиристоров коммутатора объединены с катодами четвертого, пятого, шестого тиристоров коммутатора в одну точку. Технический результат - уменьшение установленной мощности источника питания плазмотрона. 2 ил. |
2523066 выдан: опубликован: 20.07.2014 |
|
КАТОД ПЛАЗМЕННОГО УСКОРИТЕЛЯ (ВАРИАНТЫ)
Изобретение относится к области электрореактивных двигателей, а именно, к широкому классу плазменных ускорителей (холловских, ионных, магнитоплазмодинамических и др.), использующих в своем составе катоды. Технический результат-повышение ресурса и надежности работы катода при больших токах разряда путем выравнивания температур эмитирующих электроны элементов и обеспечения равномерности распределения рабочего тела по этим элементам. Катод плазменного ускорителя по первому варианту содержит полые эмитирующие электроны элементы, трубопровод с каналами для подачи рабочего тела к полым эмитирующим электроны элементам, единый теплопровод, охватывающий с внешней стороны каждый из полых эмитирующих электроны элементов, выполненных в виде тела вращения. Материал теплопровода имеет коэффициент теплопроводности не ниже коэффициента теплопроводности материала этих элементов. Каждый из полых эмитирующих электроны элементов присоединен к отдельному каналу трубопровода, а в каждом канале со стороны подачи рабочего тела установлен дроссель, причем поперечные сечения отверстий дросселей выполнены одинаковыми.Во втором варианте изобретения единый теплопровод охватывает и с внешней стороны по всей длине образующей и по выходному торцу каждый из полых эмитирующих электроны элементов, выполненных в виде тела вращения. В выходном торце единого теплопровода выполнены отверстия, оси которых совпадают с осями полых эмитирующих электроны элементов, причем проходные сечения отверстий в едином теплопроводе не больше проходных сечений отверстий в полых эмитирующих электроны элементах.2 н.п. и 2 з.п.ф-лы, 2 ил. |
2522702 выдан: опубликован: 20.07.2014 |
|
СВЧ ПЛАЗМЕННЫЙ КОНВЕРТОР
Изобретение относится к технике переработки углеводородного сырья, в частности природного газа, и может быть использовано при получении углеродных нанотрубок и водорода. СВЧ плазменный конвертор содержит проточный реактор 1 из радиопрозрачного термостойкого материала, заполненный газопроницаемым электропроводящим веществом - катализатором 2, помещенный в сверхвысокочастотный волновод 3, соединенный с источником сверхвысокочастотного электромагнитного излучения 5, снабженный концентратором СВЧ электромагнитного поля, выполненным в виде волноводно-коаксиального перехода (ВКП) 8 с полыми внешним и внутренним 9 проводниками, образующими разрядную камеру 11, и системой вспомогательного разряда. Система вспомогательного разряда выполнена из N разрядников 12, где N больше 1, расположенных в плоскости поперечного сечения разрядной камеры 11 равномерно по ее окружности. Продольные оси разрядников 12 ориентированы тангенциально по отношению к боковой поверхности разрядной камеры 11 в одном направлении. На выходном конце внутреннего полого проводника 9 коаксиала ВКП 8 выполнено сопло 10. Каждый из разрядников 12 снабжен индивидуальным газопроводом 13 для подачи плазмообразующего газа в зону разряда. Изобретение позволяет увеличить реакционный объём, производительность и продолжительность непрерывной работы, а также стабилизировать «горение» СВЧ разряда. 2 з.п. ф-лы, 2 ил. |
2522636 выдан: опубликован: 20.07.2014 |
|
СОПЛО ПЛАЗМЕННОЙ ГОРЕЛКИ С ЖИДКОСТНЫМ ОХЛАЖДЕНИЕМ, КРЫШКА СОПЛА ПЛАЗМЕННОЙ ГОРЕЛКИ С ЖИДКОСТНЫМ ОХЛАЖДЕНИЕМ И ГОЛОВКА ПЛАЗМЕННОЙ ГОРЕЛКИ С ТАКОЙ КРЫШКОЙ ИЛИ КРЫШКАМИ
Заявленное изобретение относится к соплу для плазменной горелки с жидкостным охлаждением. Заявленное сопло содержит отверстие для выхода плазменной струи на носке сопла, первый участок, наружная поверхность которого выполнена по существу цилиндрической, и примыкающий к первому участку со стороны носка сопла второй участок, наружная поверхность которого сужается в направлении к носку сопла по существу на конус, при этом предусмотрена, по меньшей мере, одна канавка для подачи жидкости, проходящая частично по первому участку и по второму участку на наружной поверхности сопла в направлении к носку сопла, а также предусмотрена одна отдельная от канавки или канавок для подачи жидкости канавка для отвода жидкости, проходящая по второму участку, или предусмотрены одна канавка для подачи жидкости, проходящая частично по первому участку и по второму участку на наружной поверхности сопла в направлении к носку сопла, и, по меньшей мере, одна отдельная от канавки для подачи жидкости канавка для отвода охлаждающей жидкости, проходящая по второму участку. Техническим результатом является эффективное охлаждение сопла в зоне его носка и предупреждение термической перегрузки. 3 н. и 13 з.п. ф-лы, 16 ил. |
2519245 выдан: опубликован: 10.06.2014 |
|
ОПТИМИЗАЦИЯ ЧАСТОТЫ ВОЗБУЖДЕНИЯ РАДИОЧАСТОТНОЙ СВЕЧИ
Изобретение относится к радиочастотным устройствам генерирования плазмы для двигателей внутреннего сгорания. Радиочастотное устройство генерирования плазмы содержит модуль (20) питания, подающий на выходной интерфейс сигнал (U) возбуждения на заданной частоте (Fc), позволяющий получить искру (40) на выходе резонатора (30) генерирования плазмы, соединенного с выходным интерфейсом модуля питания, и модуль (10) управления, задающий частоту модулю питания во время команды на радиочастотное генерирование плазмы. Модуль управления содержит средства для определения оптимальной частоты возбуждения, выполненные с возможностью адаптации заданной частоты (Fc) к условиям резонанса устройства после возникновения искры. Технический результат - возможность управления питанием радиочастотных свечей в каждом цилиндре и повышение срока службы свечей. 2 н.и 6 з.п. ф-лы, 3 ил. |
2516295 выдан: опубликован: 20.05.2014 |
|
ЭРОЗИОННЫЙ ИМПУЛЬСНЫЙ ПЛАЗМЕННЫЙ УСКОРИТЕЛЬ
Изобретение относится к плазменной технике и к плазменным технологиям и может использоваться в импульсных плазменных ускорителях, применяемых, в частности, в качестве электроракетных двигателей. Катод (1) и анод (2) эрозионного импульсного плазменного ускорителя (ЭИПУ) имеют плоскую форму. Между разрядными электродами (1 и 2) установлены две диэлектрические шашки (4), выполненные из абляционного материала. Торцевой изолятор (6) установлен между разрядными электродами в области размещения диэлектрических шашек (4). Устройство (9) инициирования электрического разряда подключено к электродам (8). Емкостный накопитель энергии (3) системы электропитания подключен через токоподводы к разрядным электродам (1 и 2). Разрядный канал ЭИПУ образован поверхностями разрядных электродов (1 и 2), торцевого изолятора (б) и торцевых частей диэлектрических шашек (4). Разрядный канал выполнен с двумя взаимно перпендикулярными срединными плоскостями. Разрядные электроды (1 и 2) установлены симметрично относительно первой срединной плоскости. Диэлектрические шашки (4) установлены симметрично относительно второй срединной плоскости. Касательная к поверхности торцевого изолятора (6), обращенной к разрядному каналу, направлена под углом от 87° до 45° относительно первой срединной плоскости разрядного канала. В торцевом изоляторе (6) выполнено углубление (7) с прямоугольным поперечным сечением. В углублении (7) со стороны катода (1) расположены электроды (8). Касательная к фронтальной поверхности углубления (7) направлена под углом от 87° до 45° относительно первой срединной плоскости разрядного канала. Углубление (7) вдоль поверхности торцевого изолятора (6) имеет форму трапеции. Большее основание трапеции расположено у поверхности анода (2). Меньшее основание трапеции расположено у поверхности катода (1). На поверхности торцевого изолятора (6) выполнены три прямолинейные канавки, ориентированные параллельно поверхностям разрядных электродов (1 и 2). Технический результат заключается в увеличении ресурса, повышении надежности, тяговой эффективности, эффективности использования рабочего вещества и стабильности тяговых характеристик ЭИПУ за счет равномерного испарения рабочего вещества с рабочей поверхности диэлектрических шашек. 8 з.п. ф-лы, 3 ил. |
2516011 выдан: опубликован: 20.05.2014 |
|
НАГНЕТАТЕЛЬНОЕ НАСОСНОЕ УСТРОЙСТВО С ДИЭЛЕКТРИЧЕСКИМ БАРЬЕРОМ И СПОСОБ ФОРМИРОВАНИЯ ТАКОГО УСТРОЙСТВА
Изобретение относится к устройствам для нагнетания текучей среды. Нагнетательный насос с диэлектрическим барьером для ускорения потока текучей среды содержит первый диэлектрический слой, в который встроен первый электрод, и второй диэлектрический слой, в который встроен второй электрод. Первый и второй диэлектрические слои отстоят друг от друга с образованием воздушного зазора между ними. В воздушном зазоре перед первым и вторым электродами относительно направления потока текучей среды, по меньшей мере частично, размещен третий электрод. Сигнал высокого напряжения подается на третий электрод от источника высокого напряжения. Указанные электроды взаимодействуют для получения в воздушном зазоре противолежащих асимметричных плазменных полей, которые создают индуцированный воздушный поток внутри указанного зазора. Индуцированный воздушный поток ускоряет поток текучей среды при его перемещении через указанный воздушный зазор. Технический результат - ускорение потока текучей среды внутри трубопровода. 2 н. и 11 з.п. ф-лы, 5 ил. |
2516002 выдан: опубликован: 20.05.2014 |
|
СПОСОБ МОДИФИКАЦИИ ИОНОСФЕРНОЙ ПЛАЗМЫ
Изобретение относится к области электричества, касается способа модификации ионосферной плазмы, который может быть использован для исследования околоземного пространства, задач дальней НЧ радиосвязи, а также в целях радиопротиводействия. Способ модификации ионосферной плазмы включает формирование искусственных плазменных образований за счет ударных волн, расходящихся от мест взрывов отдельных пиропатронов Отстрел пиропатронов производят от кассеты по радиальным направлениям, формирование расходящихся ударных волн осуществляют путем одновременного взрыва всех пиропатронов, при этом плазменное образование с возбужденными в нем импульсными электромагнитными полями формируют в центральной области воздействия за счет сходящейся ударной волны, образующейся в результате смыкания фронтов от отдельных взрывов. Технический результат - увеличение мощности импульсных электромагнитных полей, повышение эффективности исследований околоземного пространства, НЧ радиосвязи и радиопротиводействия. 4 з.п. ф-лы, 3 ил., 1 табл. |
2515539 выдан: опубликован: 10.05.2014 |
|
СПОСОБ ФОРМИРОВАНИЯ САМОНАКАЛИВАЕМОГО ПОЛОГО КАТОДА ИЗ НИТРИДА ТИТАНА ДЛЯ СИСТЕМЫ ГЕНЕРАЦИИ АЗОТНОЙ ПЛАЗМЫ
Изобретение относится к плазменной технике и может быть использовано для упрочняющей обработки деталей из сталей и сплавов цветных металлов методом плазменного азотирования. Заявленный способ включает установку полого катода из титана в разрядную систему, содержащую анодный электрод, постоянную прокачку через полый катод рабочего газа - азота, приложение между анодом и полым катодом напряжения и зажигание тлеющего разряда, ток которого задают таким, чтобы в течение нескольких минут температура полого катода увеличилась до температуры, близкой к температуре плавления титана (1668±4°С), формирование на поверхности полого катода слоя нитрида титана и переход разряда в низковольтный дуговой режим с термоэмиссионным катодом. Затем производят тренировку катода в дуговом режиме, для чего увеличивают ток дугового разряда при одновременном снижении напряжения его горения, поддерживая температуру полого катода близкой к температуре плавления титана, и в таком режиме поддерживают разряд в течение 40 мин. Техническим результатом является возможность изменения параметров разряда в широких пределах, ограниченных достижением температуры плавления нитрида титана (2950°С), а также многократное повышение тока разряда. 6 ил. |
2513119 выдан: опубликован: 20.04.2014 |
|
УСТРОЙСТВО, ПРЕПЯТСТВУЮЩЕЕ КАРБОНИЗАЦИИ
Изобретение относится к медицинской технике, а именно к инструментам для осуществления плазменной коагуляции ткани. Инструмент включает устройство подачи окислительного средства, устройство подачи газа и электрод для получения плазмы, устройство предотвращения карбонизации ткани при плазменной коагуляции. Устройство предотвращения карбонизации выполнено с возможностью приготовления смеси газа и окислительного средства для получения плазмы газа и окислительного средства, при этом предусмотрено двухкомпонентное распылительное устройство для подачи окислительного средства, являющееся самовсасывающим двухкомпонентным распылительным устройством. Использование изобретения позволяет повысить однородность обработки ткани. 11 з.п. ф-лы, 8 ил. |
2508067 выдан: опубликован: 27.02.2014 |
|
ЭЛЕКТРОДУГОВОЙ ПЛАЗМОТРОН С ВОДЯНОЙ СТАБИЛИЗАЦИЕЙ ДУГИ
Изобретение относится к электродуговым плазмотронам с водяной стабилизацией дуги и может быть эффективно использовано при резке всевозможных металлов. Технический результат - упрощение конструкции, увеличение мощности плазмотрона, энтальпии получаемой плазмы, скорости резки. Электродуговой плазмотрон содержит соосно и последовательно установленные охлаждаемые катодный узел, изолятор, вихревую камеру, систему ввода плазмообразующего газа и жидкости и анодный узел с соплом-анодом, установленным с межэлектродным зазором относительно катодного узла и образующим полость для жидкостной стабилизации дуги,переходящей на выходе в водяной экран. Полость в анодном сопле выполнена из двух сопряженных конических поверхностей: стенка на 2/3 длины начального участка полости составляет угол наклона 1=5-10°, далее 2=30-45° до цилиндрического участка на выходе, длина которого равна 0,5-0,8 его диаметра, при этом параметры анодного сопла определяют характер жидкостной стабилизации плазменной струи и защитные характеристики водосборника-рассекателя. 1 ил. |
2506724 выдан: опубликован: 10.02.2014 |
|
ТРАНСФОРМАТОРНЫЙ ПЛАЗМАТРОН НИЗКОГО ДАВЛЕНИЯ ДЛЯ ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ ПОВЕРХНОСТИ МАТЕРИАЛОВ
Изобретение относится к плазменной технике, а именно к трансформаторным плазмотронам низкого давления, и может быть использовано в микроэлектронике для обработки полупроводниковых материалов (плазменное травление, оксидирование, очистка поверхности и т.д.), осаждения тонких пленок, в металлообработке для плазмохимического модифицирования поверхности металлов (ионно-плазменное азотирование, плазменное оксидирование и т.д.), для плазменной обработки полимерных материалов (уменьшение пористости, изменение гидрофобных свойств и т.д.). Трансформаторный плазматрон содержит замкнутую газоразрядную камеру с системой магнитопроводов с первичными обмотками, держатель для фиксирования обрабатываемого материала, источник питания, при этом газоразрядная камера включает рабочую камеру и одну или более одинаковых П-образных камер с меньшим внутренним диаметром и меньшей либо равной длиной, каждая из которых имеет систему разборных магнитопроводов с первичными обмотками и установлена так, что вместе с рабочей камерой образует замкнутый путь для тока газового разряда. В данном изобретении достигается существенное увеличение скорости и качества процесса, коэффициента полезного действия устройства. 4 з.п. ф-лы, 1 ил. |
2505949 выдан: опубликован: 27.01.2014 |
|
АНОД ГЕНЕРАТОРА ДУГОВОЙ ПЛАЗМЫ И ГЕНЕРАТОР ДУГОВОЙ ПЛАЗМЫ
Изобретение относится к области плазменной техники. Генератор дуговой плазмы с многоступенчатой подачей газа содержит катод и анод. Анод выполнен, по меньшей мере, из двух участков, причем любые два соседних анодных участка электрически соединены друг с другом. Между любыми двумя соседними анодными участками обеспечены направляющие газ отверстия, которые являются тангенциальными отверстиями или отверстиями, которые обеспечивают газовый поток, направление скорости которого одновременно имеет тангенциальную и осевую составляющие. Технический результат - повышение надежности работы генератора плазмы. 2 н. и 7 з.п. ф-лы, 8 ил. |
2504931 выдан: опубликован: 20.01.2014 |
|
СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТИ, ПО МЕНЬШЕЙ МЕРЕ, ОДНОГО КОНСТРУКТИВНОГО ЭЛЕМЕНТА ПОСРЕДСТВОМ ЭЛЕМЕНТАРНЫХ ИСТОЧНИКОВ ПЛАЗМЫ ПУТЕМ ЭЛЕКТРОННОГО ЦИКЛОТРОННОГО РЕЗОНАНСА
Изобретение относится к области плазменной обработки поверхности. Способ заключается в том, что придают конструктивному элементу или конструктивным элементам (1), по меньшей мере, одно вращательное движение относительно, по меньшей мере, одного ряда неподвижно расположенных в линию элементарных источников (2), причем ряд или ряды расположенных в линию элементарных источников (2) размещают параллельно оси конструктивного элемента или осям вращения конструктивных элементов. Технический результат - повышение однородности обработки на множестве поверхностей конструктивных элементов. 2 н. и 9 з.п. ф-лы, 7 ил. |
2504042 выдан: опубликован: 10.01.2014 |
|
ГЕНЕРАТОР ПЛАЗМЫ (ВАРИАНТЫ)
Изобретение относится к устройствам, предназначенным для обработки материалов в среде низкотемпературной плазмы газового разряда, а именно к индукционным генераторам плазмы, размещаемым внутри технологического объема (рабочей камеры). Технический результат - повышение КПД устройства; повышение надежности работы устройства, повышение чистоты плазменной среды и увеличение плотности генерируемой плазмы; увеличение срока службы устройства; снижение уровня помех; уменьшение габаритов устройства. В генераторе плазмы по первому варианту выполнения, содержащем спиральную катушку, помещенную внутрь проводящего экрана, внутренняя поверхность которого имеет близкую к цилиндрической форму, причем пространство между витками катушки и между катушкой и экраном заполнено диэлектриком, катушка выполнена плоской, расстояние от плоскости катушки до внешней поверхности диэлектрика меньше удвоенной толщины катушки, а расстояние от плоскости катушки до основания внутренней поверхности экрана больше удвоенного расстояния от плоскости катушки до внешней поверхности диэлектрика. В генераторе плазмы по второму варианту выполнения катушка выполнена плоской, экран выполнен в виде кольца, ось которого перпендикулярна плоскости катушки, край кольца, обращенный к объему, в котором требуется создание плазмы закрыт диэлектриком. В генераторе плазмы по третьему варианту выполнения экран электрически соединен с одним из концов катушки, а диэлектрическая проницаемость диэлектрика находится в пределах от 2,5 до 50. 3 н. и 30 з.п. ф-лы, 7 ил. |
2503079 выдан: опубликован: 27.12.2013 |
|
ПЛАЗМЕННЫЙ КАТОД
Изобретение относится к области плазменной техники, а именно к катодам-компенсаторам, работающим на газообразных рабочих телах. Технический результат - увеличение ресурса надежной работы и снижение трудоемкости изготовления. Плазменный катод содержит полый держатель 1 с торцевыми стенками 2, 3 и проходными отверстиями 4, 5 рабочего тела, внутри которого размещен эмиттер 6, между которыми расположен барьерный слой 7 химически пассивного материала, между внутренними поверхностями 8 полого держателя и наружными поверхностями 9 эмиттера образованы зазоры 10, 10а, 10б, между которыми размещен экран 11. Поверхности экрана покрыты барьерными слоями 7а. 5 з.п. ф-лы, 1 ил. |
2502238 выдан: опубликован: 20.12.2013 |
|
УСТРОЙСТВО ДЛЯ ВОЗБУЖДЕНИЯ ВЫСОКОЧАСТОТНОГО ФАКЕЛЬНОГО РАЗРЯДА
Изобретение относится к плазменной технике и может быть использовано для инициирования высокочастотной плазмы. Устройство для возбуждения высокочастотного факельного разряда содержит диэлектрическую трубку, установленную в пазу диэлектрического фланца, в осевом отверстии которого размещен полый силовой электрод так, что его глухой заостренный конец расположен внутри цилиндрической диэлектрической трубки, а другой конец силового электрода размещен за пределами диэлектрической трубки и электрически связан с высоковольтным электродом высокочастотного генератора. Конец силового электрода, расположенный за пределами диэлектрической трубки, снабжен двумя штуцерами. Первый штуцер, расположенный на наружном конце силового электрода, соединен с системой водоснабжения. Второй штуцер, ориентированный перпендикулярно оси силового электрода, соединен с системой канализации. На силовом электроде радиально, под острым углом к его оси, установлен дополнительный электрод, конец которого заострен и направлен к месту соприкосновения диэлектрической трубки и внешнего электрода, который своей вогнутой стороной охватывает часть внешней поверхности диэлектрической трубки. Внешний электрод установлен на первом конце штанги, имеющем возможность перемещения параллельно оси диэлектрической трубки, а второй конец штанги, через закрепленную на ней электроизолирующую вставку, соединен с приводом. Технический результат: уменьшение напряжения, необходимого для возбуждения барьерного разряда, инициирующего высокочастотный факельный разряд. 1 ил., 1 табл. |
2499373 выдан: опубликован: 20.11.2013 |
|
КОАКСИАЛЬНЫЙ МАГНИТОПЛАЗМЕННЫЙ УСКОРИТЕЛЬ
Изобретение относится к плазменной технике и может быть использовано для ускорения плазмы до гиперскоростей и получения нанодисперсных порошков титана и меди. Коаксиальный магнитоплазменный ускоритель содержит соленоид, цилиндрический титановый ствол, цепь питания. Титановый ствол содержит плавкие перемычки, титановые проволочки, титановый центральный электрод, цилиндрическую медную вставку. Корпус узла центрального электрода выполнен из магнитного материала и перекрывает зону размещения плавкой перемычки на 40-50 мм. Медная вставка выполнена в виде продольно размещённых медных шин круглого сечения. Длина медных шин равна длине титанового ствола, а площадь поверхности составляет 30% от площади поверхности титанового ствола. Изобретение позволяет получить шихты сверхтвердых порошкообразных материалов на основе титана со связующим компонентом из меди. 1 ил. |
2498542 выдан: опубликован: 10.11.2013 |
|
УСТРОЙСТВО И СПОСОБ МОДЕЛИРОВАНИЯ МАГНИТОГИДРОДИНАМИКИ
Изобретение относится к области исследования плазмы. Магнитогидродинамическое моделирующее устройство включает в себя плазменный контейнер, в который помещен первый ионизируемый газ, первый электрический контур, расположенный рядом с плазменным контейнером, содержащий промежуток, электрические контакты на первой и второй сторонах промежутка, и первое вещество, имеющее, по меньшей мере, низкую магнитную восприимчивость и высокую проводимость. Первый электрический контур может быть составлен из совокупности одного или избыточного количества проводных контурных катушек. В таких случаях электрический контакт установлен через концы проводов катушки. Кроме того, магнитогидродинамическое моделирующее устройство включает в себя электропроводную первую катушку, намотанную вокруг плазменного контейнера и через первый электрический контур. Технический результат - обеспечение возможности моделирования магнитогидродинамики плазмы в нежидкостной среде. 19 з.п. ф-лы, 4 ил. |
2497191 выдан: опубликован: 27.10.2013 |
|
ГЕНЕРАТОР ШИРОКОАППЕРТУРНОГО ПОТОКА ГАЗОРАЗРЯДНОЙ ПЛАЗМЫ
Изобретение относится к области получения направленных потоков низкотемпературной плазмы с большим током и может быть использовано в микроэлектронике при производстве интегральных микросхем на активных и пассивных подложках и в дифракционной оптике при производстве элементов дифракционной оптики. Генератор широкоаппертурного потока газоразрядной плазмы содержит полый катод с основанием, установленный коаксиально в полую изоляцию и закрыт крышкой так, что высота полости полого катода определена соотношением 3 <L<5 , где - длина свободного пробега электрона в потоке газоразрядной плазмы. Основания анода и катода выполнены перфорированными, толщина изоляции между полым анодом и полым катодом определена соотношением 0,5d<h<d, где d - диаметр соосно расположенных отверстий в основаниях анода и катода. Технический результат- повышение равномерности распределения частиц по сечению потока и упрощение конструкции. 2 ил. |
2496283 выдан: опубликован: 20.10.2013 |