Установки, в которых рабочее тело используется только для создания реактивной струи, т.е. установки, не имеющие турбин или иных двигателей, приводящих компрессор или нагнетатель; управление ими – F02K 7/00

МПКРаздел FF02F02KF02K 7/00
Раздел F МАШИНОСТРОЕНИЕ; ОСВЕЩЕНИЕ; ОТОПЛЕНИЕ; ДВИГАТЕЛИ И НАСОСЫ; ОРУЖИЕ И БОЕПРИПАСЫ; ВЗРЫВНЫЕ РАБОТЫ
F02 Двигатели внутреннего сгорания
F02K Реактивные двигательные установки
F02K 7/00 Установки, в которых рабочее тело используется только для создания реактивной струи, т.е. установки, не имеющие турбин или иных двигателей, приводящих компрессор или нагнетатель; управление ими

F02K 7/02 .пульсирующие воздушно-реактивные двигатели 
F02K 7/04 ..с резонансными камерами сгорания 
F02K 7/06 ..с камерами сгорания, снабженными клапанами 
F02K 7/067 ...с аэродинамическими клапанами
F02K 7/075 ..с несколькими пульсирующими реактивными двигателями
F02K 7/08 .с непрерывной реактивной струей 
F02K 7/10 .отличающиеся сжатием за счет скоростного напора, т.е. бескомпрессорные или прямоточные воздушно-реактивные двигатели 
F02K 7/12 ..реактивные двигатели с непосредственным впрыском топлива
F02K 7/14 ..с внешним сгоранием, например пульсирующий воздушно-реактивный двигатель со сверхзвуковым горением
F02K 7/16 ..комбинированные воздушно-турбореактивные двигатели
F02K 7/18 ..комбинированные ракетно-прямоточные двигатели
F02K 7/20 ..комбинированные прямоточно-пульсирующие воздушно-реактивные двигатели

Патенты в данной категории

ГИПЕРЗВУКОВОЙ ДВИГАТЕЛЬ (ВАРИАНТЫ)

В гиперзвуковом двигателе, содержащем камеру сгорания, топливо после топливного насоса и перед подачей в камеру сгорания нагревается выше температуры самовоспламенения. Нагрев топлива происходит в теплообменнике, находящемся в стенках камеры сгорания или непосредственно в камере сгорания. Гиперзвуковой двигатель содержит два контура, две камеры сгорания, и одно общее реактивное сопло. Второй контур имеет профиль кольцевого прямоточного двигателя, в котором компрессор второго контура находится перед камерой сгорания. Диффузор первого контура является центральным телом кольцевого входного устройства для второго контура и может иметь возможность продольно перемещаться для настройки входного устройства. Изобретение направлено на обеспечение бесперебойной работы прямоточного двигателя и предупреждение срыва пламени. 2 н. и 5 з.п. ф-лы, 1 ил.

2529601
выдан:
опубликован: 27.09.2014
ВОЗДУХОЗАБОРНОЕ УСТРОЙСТВО С ЗАГЛУШКОЙ ВОЗДУШНО-РЕАКТИВНОГО ДВИГАТЕЛЯ

Изобретение относится к авиационной технике, к конструктивным элементам двигателей летательных аппаратов, в частности к защитным устройствам различных типов воздушно-реактивных двигателей. Воздухозаборное устройство включает заглушку воздушно-реактивного двигателя для защиты элементов регулирования и распределения маршевого топлива на стартовом режиме. Заглушка расположена на входе в воздухозаборное устройство, имеет обтекаемую аэродинамическую форму, выполнена сбрасываемой и содержит пиротолкатель для ее сброса. Пиротолкатель состоит из корпуса, газогенератора с дроссельной шайбой, сбрасываемого с заглушкой поршня, разрушаемого элемента фиксации сбрасываемого с заглушкой поршня в корпусе и толкающего поршня. Толкающий поршень выполнен с возможностью перекрытия своим торцом канала расположения сбрасываемого с заглушкой поршня. Изобретение позволяет упростить конструкцию заглушки и механизма ее удаления, а также повысить надежность последнего. 1 з.п. ф-лы, 4 ил.

2527800
выдан:
опубликован: 10.09.2014
ПУЛЬСИРУЮЩАЯ ДЕТОНАЦИОННАЯ УСТАНОВКА ДЛЯ СОЗДАНИЯ СИЛЫ ТЯГИ

Пульсирующая детонационная установка для создания силы тяги содержит корпус, внутри которого установлен насадок с полузамкнутой детонационной камерой, систему подачи окислителя. Детонационная камера выполнена в виде полусферы постоянного объема, в стенках которой соосно друг другу установлены форсунка для впрыска жидкого топлива и свеча зажигания для воспламенения горючей смеси. Между детонационной камерой и насадком расположено профилированное кольцевое сопло, выполненное в виде кольцевой щели с чередующимися пазами, расположенными под острым углом к продольной оси установки, направленными внутрь детонационной камеры и связанными с системой подачи окислителя в детонационную камеру. Изобретение направлено на упрощение конструкции установки расширение диапазонов работы. 1 ил.

2526613
выдан:
опубликован: 27.08.2014
ГИПЕРЗВУКОВОЙ, ВОЗДУШНО РЕАКТИВНЫЙ ДВИГАТЕЛЬ С ДЕТОНАЦИОННО-ПУЛЬСИРУЮЩЕЙ КАМЕРОЙ СГОРАНИЯ, С СОВМЕЩЕНИЕМ ГИПЕРЗВУКОВОГО РЕАКТИВНОГО ПОТОКА СО СВЕРХЗВУКОВЫМ ПРЯМОТОЧНЫМ "ОДИН В ДРУГОМ"

Изобретение относится к двигателестроению, в частности к двигателям реактивным авиационным, ракетным, камера детонационно-пульсирующего сгорания которого способна развивать гиперзвуковые скорости распространения пламени с условным ростом в сторону бесконечного увеличения. Техническим результатом изобретения является дальнейшее совершенствование и повышение эффективности работы известных детонационно-пульсирующих тяговых модулей, освоение принципиально новой технологии их работы. Сущность изобретения заключается в дальнейшем совершенствовании технологии использования разреженного пространства, образующегося после отражения ударной волны от рабочей поверхности полусферического резонатора (известный эффект Гартмана-Шпренгера), с тем чтобы увеличить рабочий объем разрежения для последующего его заполнения паровоздушной или другой газовой топливной смесью во взрывоопасной концентрации с целью получения нескольких взрывных объемов подряд с их взаимно усиливающим наложением друг на друга в продольном направлении летательного аппарата (в направлении единственно имеющейся степени свободы), с целью дальнейшего осуществления возможности одновременного самовоспламенения части топливной смеси в замкнутом объеме одного из них, которое обеспечивает условную возможность роста скорости распространения пламени в сторону бесконечного увеличения. Гиперзвуковой воздушно-реактивный двигатель имеет детонационно-пульсирующую конусно-круговую камеру сгорания, объемлющую прямоточный реактивный рабочий канал, в результате чего происходит совмещение гиперзвукового рабочего реактивного потока конусно-круговой камеры сгорания со сверхзвуковым рабочим реактивным потоком прямоточного канала «один в другом», конусно-круговая детонационно-пульсирующая камера сгорания имеет кольцевое сопло подачи паровоздушной взрывоопасной топливной смеси, участок образования повышенного объема разрежения и всаса первого взрывного объема, участок, образующий второй взрывной объем, участок торможения впередиидущей ударной волны на выходе из конусно-круговой камеры сгорания, совпадение наружной конусной поверхности конусно-круговой камеры сгорания с входным сопловым участком первого сопла Лаваля, герметично соединенного со вторым, место совмещения гиперзвукового и сверхзвукового рабочих реактивных потоков, происходящее как бы в камере смешения в месте стыковки двух сопел Лаваля, средство зажигания, обеспечивающее воспламенение взрывоопасной топливной смеси в начальный период запуска двигателя, термический заряд для прогрева и продувки камеры сгорания, прямоточного канала и установления эжекционной тяги воздуха, детонационный стартовый заряд для образования тройной ударной волны с необходимым интервалом для запуска двигателя. 1 з.п. ф-лы, 2 ил.

2524591
выдан:
опубликован: 27.07.2014
СТАРТОВЫЙ УСКОРИТЕЛЬ САМОЛЁТА

Изобретение относится к области авиации. Стартовый ускоритель самолета представляет баллон с краном, наполненный водой и сжатым воздухом. Изобретение направлено на регулирование вектора тяги по направлению и тангажу. 7 з.п. ф-лы, 2 ил.

2521153
выдан:
опубликован: 27.06.2014
СПОСОБ ОРГАНИЗАЦИИ ДЕТОНАЦИОННОГО РЕЖИМА ГОРЕНИЯ В КАМЕРЕ СГОРАНИЯ ГИПЕРЗВУКОВОГО ПРЯМОТОЧНОГО ВОЗДУШНО-РЕАКТИВНОГО ДВИГАТЕЛЯ

Способ организации детонационного режима горения в камере сгорания гиперзвукового прямоточного воздушно-реактивного двигателя включает сжатие воздуха в системе внешних и внутренних скачков уплотнения, возникающих на фиксированных и регулируемых элементах фюзеляжа и силовой установки, подачу топлива за внешней системой скачков перед камерой сгорания, формирование на ее входе детонационной волны. Детонационное горение топливовоздушной смеси осуществляют в камере сгорания, регулируя положения детонационной волны в камере сгорания в зависимости от числа Маха потока на входе в камеру сгорания посредством изменения геометрических параметров камеры сгорания и химического состава поступающей топливовоздушной смеси. Осуществляют последующее расширение продуктов горения в сопле. Топливовоздушную смесь создают на основе нанодисперсного топлива, содержащего углеродные нанотрубки с капсулированным в них водородом, которое вводят перед камерой сгорания через отверстия игольчатой топливной форсунки навстречу набегающему потоку. Генерируют в зоне горения пульсирующее электрическое поле напряженностью более 20 В/см. Изобретение направлено на повышение скорости горения топлива, улучшение полноты сгорания и топливной эффективности двигателя. 1 ил

2520784
выдан:
опубликован: 27.06.2014
РЕАКТИВНЫЙ ДВИГАТЕЛЬ, СОДЕРЖАЩИЙ МНОЖЕСТВО РАКЕТНЫХ ДВИГАТЕЛЕЙ

Сверхзвуковой реактивный двигатель содержит прямоточный воздушно-реактивный двигатель, имеющий камеру сгорания топливовоздушной смеси, и множество ракетных двигателей, расположенных в воздушном потоке выше по потоку камеры сгорания. Питаемый смесью топливных компонентов ракетный двигатель содержит трубчатый корпус, снабженный внутри коаксиальной стенкой. Коаксиальная стенка образует экран, определяющий кольцевую зону впрыска топлива, проходящую на большей части длины корпуса, и форсунку окислителя, выходящую по оси внутрь экрана вблизи его переднего конца. Экран содержит перфорированную цилиндрическую стенку или пористую стенку. Изобретение направлено на охлаждение камеры сгорания. 7 з.п. ф-лы, 3 ил.

2517940
выдан:
опубликован: 10.06.2014
ГИПЕРЗВУКОВОЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ И СПОСОБ ОРГАНИЗАЦИИ ГОРЕНИЯ

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит воздухозаборник, топливную форсунку, расположенную в носовой части перед воздухозаборником по его оси и соединенную с ним пилонами, камеру сгорания, воспламенитель и сопло. Топливная форсунка выполнена в виде газоструйного резонатора с острой передней кромкой, вход которого совмещен с носовой частью двигателя и обращен навстречу набегающему потоку. Боковая и задняя стенки газоструйного резонатора выполнены пористыми с управляемой скважностью. При горении топливовоздушной смеси в камере сгорания гиперзвукового прямоточного воздушно-реактивного двигателя через топливную форсунку подают нанодисперсное топливо, содержащее углеродные нанотрубки с капсулированным в них водородом, двумя потоками: через вход газоструйного резонатора навстречу набегающему потоку и через его пористые стенки и создают в зоне горения пульсирующее электрическое поле напряженностью более 20 В/см. Изобретение позволяет улучшить подготовку топливовоздушной смеси, повысить полноту сгорания топлива и топливную эффективность двигателя. 2 н.п. ф-лы, 1 ил.

2516735
выдан:
опубликован: 20.05.2014
ДОЗВУКОВЫЕ И СТАЦИОНАРНЫЕПРЯМОТОЧНЫЕ ВОЗДУШНО-РЕАКТИВНЫЕ ДВИГАТЕЛИ

Аппарат для взаимодействия с воздухом или газом, способный выполнять функцию компрессора или детандера, содержит корпус, вал для передачи крутящего момента, ротор. Вал для передачи крутящего момента проходит через корпус с возможностью вращения вокруг оси и функционально соединен с ротором. Ротор позволяет поддерживать его устойчивое вращение при окружной скорости обода, составляющей приблизительно от 2000 до 5400 футов в секунду. Кольцевая область вокруг ротора и внутри корпуса образует проход для потока. Корпус также включает выпускное отверстие для потока, образующее проход для вытекания высокоэнергетического газа или воздуха наружу из кольцевой области или его втекания в кольцевую область. Вал содержит материал с высокой удельной прочностью на сжатие или растяжение и имеет проходы для потока, обеспечивающие прохождение потока воздуха или газа к ротору или от ротора. Некоторые части вала обмотаны намотками из волоконного жгута из материала с высокой удельной прочностью на растяжение, натягиваемыми примерно до половины их предела прочности на разрыв. Ротор окружает часть вала внутри корпуса и имеет проходы для потока газа или воздуха, пропускающие поток в радиальных направлениях и задерживающие поток от ротора в осевом направлении. Ротор содержит материал с высокой удельной прочностью на растяжение и компрессионный материал, сжатый намотками из волоконного жгута с высокой удельной прочностью на растяжение, натягиваемыми примерно до половины их предела прочности на разрыв. Материал с высокой удельной прочностью на сжатие функционально соединен с валом сжатием или, по меньшей мере, одной намоткой из волоконного жгута. Аппарат, способный выполнять функции компрессора, в функции компрессора содержит кольцевую область вокруг ротора и внутри корпуса, выполненную с возможностью формирования в процессе работы прохода для воздуха или газа от ротора к выпускному отверстию для потока в корпусе, внутри которого воздух или газ проходит по спирали в радиальном направлении от ротора наружу через кольцевую область и с уменьшением скорости. При этом кольцевая область обеспечивает в процессе работы выход потока воздуха или газа в радиальном направлении от ротора наружу. Реактивный и механический двигатели содержат описанный выше аппарат в качестве компрессора. Изобретение направлено на уменьшение расхода топлива, повышение кпд, снижение выбросов CO2 и снижение стоимости двигателя. 3 н. и 13 з.п. ф-лы, 11 ил., 8 табл.

2516075
выдан:
опубликован: 20.05.2014
ГИПЕРЗВУКОВОЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ И СПОСОБ ОРГАНИЗАЦИИ ГОРЕНИЯ

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит воздухозаборник с центральным телом, камеру сгорания, топливную форсунку, соединенную пилонами с воздухозаборником, и систему управления. Топливная форсунка установлена в центральном теле воздухозаборника и выполнена в виде газоструйного резонатора с острой передней кромкой. Вход газоструйного резонатора совмещен с носовой частью центрального тела и обращен навстречу набегающему потоку воздуха, а его внутренняя полость соединена с топливной системой. Задняя стенка и часть боковой стенки газоструйного резонатора выполнены пористыми с управляемой скважностью. На внешней стороне задней стенки газоструйного резонатора размещен плоский воспламенитель с отверстиями, электрически соединенный с системой управления двигателя и источником пульсирующего электрического поля. Через топливную форсунку перед воздухозаборником подают нанодисперсное топливо, содержащее углеродные нанотрубки с капсулированным в них водородом двумя потоками: через вход газоструйного резонатора навстречу набегающему потоку воздуха и через его пористые стенки. Создают между воспламенителем на задней стенке газоструйного резонатора и камерой сгорания пульсирующий электрический разряд с частотой в диапазоне от 0,1 до 25 кГц. Изобретение направлено на улучшение процессов подготовки и горения топливовоздушной смеси, повышение полноты сгорания топлива и топливной эффективности двигателя, а также совершенствование его массогабаритных характеристик. 2 н.п. ф-лы, 1 ил.

2511921
выдан:
опубликован: 10.04.2014
ВЫГОРАЕМОЕ СОПЛО КОМБИНИРОВАННОГО РАКЕТНО-ПРЯМОТОЧНОГО ДВИГАТЕЛЯ

Изобретение относится к машиностроению, а именно к комбинированным ракетно-прямоточным двигателям. Выгораемое сопло комбинированного ракетно-прямоточного двигателя размещено во внутренней полости сопла маршевого режима и выполнено из двух элементов, соединенных друг с другом с возможностью формирования тракта сопла разгонного режима от дозвуковой до трансзвуковой и от трансзвуковой до сверхзвуковой областей. С внешней стороны элементов сопла выполнены продольные каналы, заглушенные со стороны камеры дожигания и образующие систему пилонов, которые с внешней стороны прикреплены к внутренней поверхности маршевого сопла двигателя. Элементы сопла выполнены из материала, обладающего высокой термоэрозионной стойкостью к продуктам сгорания с восстановительным химическим потенциалом и низкой термоэрозионной стойкостью к продуктам сгорания с окислительным химическим потенциалом. Изобретение позволяет повысить надежность работы выгораемого сопла на разгонном режиме работы двигателя и повысить скорость перехода к геометрическим характеристикам маршевого сопла на прямоточном режиме. 3 з.п. ф-лы, 3 ил.

2507409
выдан:
опубликован: 20.02.2014
СПОСОБ ОПРЕДЕЛЕНИЯ ПОЛНОТЫ СГОРАНИЯ ТОПЛИВНОЙ СМЕСИ В КАМЕРЕ СГОРАНИЯ СВЕРХЗВУКОВОГО ПРЯМОТОЧНОГО ВОЗДУШНО-РЕАКТИВНОГО ДВИГАТЕЛЯ

Способ определения полноты сгорания топливной смеси в камере сгорания сверхзвукового прямоточного воздушно-реактивного двигателя заключается в том, что двигатель жестко соединяют с горизонтальной мерительной платформой, платформу устанавливают на поперечные упругие опоры и соединяют с датчиком силы. Датчик силы тарируют грузом заданной массы и измеряют усилие на датчике силы. После этого подают холодный воздух на вход в камеру сгорания и измеряют усилие на датчике силы. Потом дополнительно подают в камеру сгорания топливо, воспламеняют образовавшуюся топливную смесь и в процессе горения смеси измеряют усилие на датчике силы, затем вычисляют полноту сгорания топливной смеси по соотношению, защищаемому настоящим изобретением. Изобретение позволяет повысить точность, надежность и упростить определения полноты сгорания топливной смеси в камере сгорания сверхзвукового прямоточного воздушно-реактивного двигателя. 1 ил.

2495270
выдан:
опубликован: 10.10.2013
СПОСОБ РЕАЛИЗАЦИИ ЦИКЛИЧЕСКОГО ДЕТОНАЦИОННОГО СГОРАНИЯ В ПУЛЬСИРУЮЩЕМ ВОЗДУШНО-РЕАКТИВНОМ ДВИГАТЕЛЕ

Способ реализации циклического детонационного сгорания в пульсирующем воздушно-реактивном двигателе заключается в продувке камеры сгорания из трубчатых аэродинамических клапанов, подаче топлива и последующем его воспламенении от остаточных продуктов сгорания и воспламенении топливо-воздушной смеси от продуктов сгорания, возвращающихся внутрь камеры сгорания из резонаторной трубы на цикле всасывания. Воспламенение от остаточных продуктов сгорания, приводящее к детонационному сгоранию, осуществляют посредством их истечения из периферийных труб аэродинамических клапанов. Изобретение направлено на достижение более высокой амплитуды пульсаций давления и повышение термодинамического КПД и экономичности пульсирующего воздушно-реактивного двигателя. 5 ил.

2493399
выдан:
опубликован: 20.09.2013
СПОСОБ ПОЛУЧЕНИЯ ТЯГИ

Изобретение относится к области двигателей и движителей и может быть использовано для перемещений различных объектов, например летательных аппаратов, а также наземных или водных транспортных средств, в строительстве, при погрузоразгрузочных работах, в военной технике. Способ получения тяги заключается в подаче топливной смеси в камеру, осуществлении детонационного процесса сжигания топлива в пульсирующем режиме. Наружную стенку камеры закрывают микропористой пластиной, располагают ее между двумя перфорированными металлическими пластинами. Микропористую пластину выполняют в несколько слоев из разных материалов и разной пористости, с извилистыми капиллярами, топливную смесь подают под давлением. Детонационный процесс сжигания топлива осуществляют вблизи наружной стенки, например, лазерным лучом. Способ значительно упрощает и удешевляет процесс создания тяги, дает возможность создания универсальных устройств. 3 з.п. ф-лы, 2 ил.

2493398
выдан:
опубликован: 20.09.2013
ТВЕРДОТОПЛИВНАЯ РАКЕТА

Изобретение относится к ракетно-космической технике. Твердотопливная ракета содержит стартовый двигатель I ступени с пороховым аккумулятором давления разделения ступеней, прямоточный ракетный двигатель II ступени с соплом и воздуховодом, в камере дожигания которого размещен последовательно стартовый двигатель, установленный по скользящей посадке, и твердотопливный газогенератор. Твердотопливная ракета снабжена двигателем III ступени, своим сопловым днищем утопленным в камеру дожигания прямоточного двигателя и связанным с ней соединительным отсеком. Вокруг переднего днища стартового двигателя и соплового днища двигателя III ступени установлены силовые конструкции, жестко закрепленные на фланцах соединительного отсека и переднего днища стартового двигателя. Между фланцами установлена переходная цилиндрическая силовая проставка, жестко связанная с силовой конструкцией, установленной на стартовом двигателе, и упирающаяся свободным концом в силовую конструкцию двигателя III ступени. На внутренней поверхности камеры дожигания по скользящей посадке установлено сопло камеры дожигания, снабженное фиксатором конечного положения на торцевом срезе камеры дожигания, и закреплено разрывной связью на переднем днище или соответствующей силовой конструкции стартового двигателя. Корпус газогенератора выполнен в виде полого цилиндра, охватывающего цилиндрическую проставку и установленного с кольцевым зазором между внутренней поверхностью камеры дожигания. Воздуховоды выполнены по периметру камеры дожигания между сопловым днищем двигателя III ступени и газогенератором. Между фланцами соплового днища двигателя III ступени и фланцем соединительного отсека выполнена разрывная связь. Достигается увеличение дальности полета ракеты. 2 з.п. ф-лы, 5 ил.

2492417
выдан:
опубликован: 10.09.2013
ПУЛЬСИРУЮЩИЙ ДЕТОНАЦИОННЫЙ ДВИГАТЕЛЬ

Пульсирующий детонационный двигатель может быть использован для создания тяги на летательных аппаратах. Пульсирующий детонационный двигатель содержит корпус, средства для хранения и подачи в реактор горючего и окислителя, реактор с кольцевым соплом и газодинамический резонатор. Газодинамический резонатор выполнен в виде трубы из немагнитного материала меньшего диаметра, один конец которой с выпуклым дном, а второй со свободным выходом. Резонатор размещен в трубе реактора так, что выход кольцевого сопла направлен во внутреннюю полость резонатора, и совмещены точка пересечения струй смеси топлива и окислителя, вытекающей из кольцевого сопла, и точка фокусировки отраженной от дна ударной волны. На критическом сечении кольцевого сопла размещены средства импульсной активации, выходящей смеси топлива и окислителя. Дно резонатора состоит из двух частей, разделенных буфером, внутренняя часть выполнена из материала, выдерживающего высокие импульсные нагрузки, а наружная - из блока пьезоэлектрических элементов, соединенных электрически параллельно, являющихся пьезогенератором. В состав двигателя включена система управления и контроля процессом работы двигателя, состоящая из чувствительных элементов, усилительно преобразовательного устройства. Чувствительными элементами являются постоянный магнит и обмотка из провода, намотанная вокруг наружного корпуса резонатора, а также пьезоэлектрический генератор, выходы которых соединены с входом блока приема и преобразования сигнала. Усилительно преобразовательное устройство состоит из источника питания, блока контроля и блока приема и преобразования сигнала. Вход блока приема и преобразования соединен с обмоткой из провода, намотанной вокруг наружного корпуса резонатора, выходом пьезогенератора и блоком запуска и останова. Выход блока приема и преобразования соединен с исполнительным элементом и блоком контроля, исполнительного элемента, которым является электронный переключатель, через который источник питания подключен или к средствам импульсной активации, или к обмотке из провода, находящейся на критическом сечении кольцевого сопла. Управляющий вход электронного переключателя соединен с выходом блока приема и преобразования. Изобретение направлено на повышение эффективности горения и удельных тяговых характеристик пульсирующего детонационного двигателя и осуществление автоматического управления и контроля его работой. 2 з.п. ф-лы, 3 ил.

2490498
выдан:
опубликован: 20.08.2013
ТЯГОВЫЙ МОДУЛЬ ПОСТОЯННОГО ДЕТОНАЦИОННОГО ГОРЕНИЯ ПАРОВОЗДУШНОЙ ТОПЛИВНОЙ СМЕСИ

Тяговый модуль постоянного детонационного горения паровоздушной топливной смеси состоит из полусферического резонатора, продольного трубчатого газодинамического резонатора, кругового сопла, трех радиальных щелевых сопел плоского истечения подогретой паровоздушной топливной смеси под давлением и двух ступеней камеры смешения воздуха с парами топлива. Продольный трубчатый газодинамический резонатор входит своим соплом в центральную осевую часть снаружи полусферического резонатора, подводящего поток высокотемпературных отработанных газов. Круговое сопло расположено по краю полусферического резонатора и обеспечивает, за счет своей конструкции, направление потока подогретой взрывоопасной паровоздушной топливной смеси по внутренней поверхности полусферического резонатора. Три радиальные щелевые сопла, плоского истечения подогретой паровоздушной топливной смеси под давлением, расположены по наружному краю полусферического резонатора через 120 град и направлены в центральную часть полусферического резонатора в место истечения высокотемпературного потока отработанных газов. Изобретение направлено на повышение мощности и эффективности работы реактивных детонационного горения тяговых модулей. 3 з.п. ф-лы, 3 ил.

2489595
выдан:
опубликован: 10.08.2013
ПУЛЬСИРУЮЩИЙ РЕАКТИВНЫЙ ДВИГАТЕЛЬ

Изобретение может быть использовано как двигатель для привода летательных аппаратов и различных машин. Пульсирующий реактивный двигатель содержит корпус с камерой сгорания и сопло, системы подачи и воспламенения компонентов в камере сгорания. Сопло выполнено в виде прерывистой или сплошной замкнутой, например, кольцевой щели. Корпус двигателя представляет собой как минимум два диска, между которыми расположена дискообразная камера сгорания. Диски закреплены неподвижно относительно друг друга, установленными по окружности перемычками. Нижний диск закреплен на электрогенераторе, а верхний диск установлен на оси, связанной с осью ротора электрогенератора, с возможностью вращения относительно нижнего диска. Изобретение направлено на улучшение условий охлаждения двигателя и на расширение ассортимента существующих двигателей. 3 з.п. ф-лы, 1 ил.

2488711
выдан:
опубликован: 27.07.2013
СПОСОБ РЕЦИРКУЛЯЦИИ ПРОДУКТОВ СГОРАНИЯ В КАМЕРЕ ПУЛЬСИРУЮЩЕГО ГОРЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение используется в камерах пульсирующего горения при сжигании газообразных и жидких топлив, а также в камерах сгорания пульсирующих воздушно-реактивных двигателей. Способ рециркуляции продуктов сгорания в камере пульсирующего горения заключается в перемешивании топливно-воздушной смеси с продуктами сгорания в объеме камеры сгорания посредством установки на входе в камеру сгорания фронтового устройства. В диапазоне работы с коэффициентом избытка воздуха до 10 воздух, поступающий через фронтовое устройство в камеру сгорания из впускной системы, используется для эжекции фронтовым устройством продуктов сгорания из периферийной пристеночной области камеры сгорания в поток воздуха на входе в камеру сгорания с целью их последующего смешения. Фронтовое устройство пульсирующей камеры сгорания содержит элементы интенсификации смесеобразования и корпус, углубленный в камеру сгорания на расстояние 0.3-1.5 своего гидравлического диаметра. Элементы интенсификации смесеобразования выполнены в виде полых полуоткрытых лепестков, установленных радиально в вырезах внутри корпуса и имеющих закрытую хорошо обтекаемую переднюю кромку со стороны входа воздуха из впускной системы и открытые в сторону камеры сгорания заднюю кромку и в радиальном направлении через вырез в корпусе фронтового устройства верхнюю кромку. Угол наклона передней кромки лепестковых элементов интенсификации к оси канала впускной системы 90-30°, а концы лепестковых элементов интенсификации свободны и не пересекаются в центре, образуя радиальную лучистую структуру со свободным центральным проходом вблизи оси фронтового устройства. Изобретение повышает эффективность рабочего процесса камеры пульсирующего горения при одновременном обеспечении высоких показателей экологичности и технологичности устройства. 2 н. и 6 з.п. ф-лы, 3 ил.

2486410
выдан:
опубликован: 27.06.2013
РЕГУЛЯТОР РАСХОДА ТВЕРДОГО ТОПЛИВА

Регулятор расхода твердого топлива размещен между газогенератором и камерой дожигания ракетно-прямоточного двигателя и содержит управляющее устройство с приводом, регулируемую сопловую втулку и сопловую втулку постоянного проходного сечения, сообщающую газогенератор с камерой дожигания. Регулируемая сопловая втулка установлена в стенке газогенератора с возможностью подачи продуктов газогенерации в камеру дожигания и снабжена узлом регулирования проходного сечения, связанного с приводом управляющего устройства. Входная плоскость регулируемой сопловой втулки вынесена внутрь газогенератора. Входная плоскость сопловой втулки постоянного проходного сечения совпадает с плоскостью стенки газогенератора. Узел регулирования проходного сечения выполнен в виде поворотной профилированной заслонки переменного сечения. Утолщенная часть профилированной заслонки выполнена с возможностью регулирования проходного сечения, а утонченная часть выполнена с возможностью защиты регулируемого проходного сечения от прямого натекания продуктов газогенерации. Изобретение позволяет повысить надежность регулятора твердого топлива. 4 з.п. ф-лы, 4 ил.

2484281
выдан:
опубликован: 10.06.2013
СПОСОБ ОРГАНИЗАЦИИ РАБОЧЕГО ПРОЦЕССА В ЛАЗЕРНОМ РАКЕТНОМ ДВИГАТЕЛЕ И ЛАЗЕРНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ

Изобретение относится к реактивным двигателям летательных аппаратов, преимущественно орбитальных и аэрокосмических аппаратов. Способ включает подачу в камеру поглощения газообразного рабочего тела, создание в ней оптического плазменного ядра, фокусирования его через газодинамическое окно и инициирования непрерывного оптического разряда, нагрев им рабочего тела, создание реактивной тяги, за счет истечения рабочего тела из сопла, при этом лазерное излучение предварительно направляют через твердое окно, прозрачное для заданной длины волны излучения, в предварительную герметичную камеру, сообщенную с камерой поглощения лазерного ракетного двигателя, а отражение лазерного излучения и его фокусирование через газодинамическое окно осуществляют внутри вышеупомянутой предварительной герметичной камеры, внутри которой создают давление большее, чем в камере поглощения. Рабочее тело используют для охлаждения твердого окна. Лазерный ракетный двигатель содержит систему поворотных отражающих зеркал (наружное и внутреннее) и фокусирующее зеркало, камеру поглощения с газодинамическим окном 6 и сверхзвуковым соплом, систему подачи рабочего тела - коллектор, тракт охлаждения. Камера поглощения с газодинамическим окном, внутреннее поворотное отражающее зеркало и фокусирующее зеркало расположены внутри предварительной герметичной камеры, на поверхности которой имеется твердое окно, прозрачное для заданной длины волны лазерного излучения. Снаружи предварительной герметичной камеры перед твердым окном расположено наружное поворотное отражающее зеркало. Изобретение позволяет повысить КПД и удельный импульс лазерного ракетного двигателя. 2 н. и 3 з.п. ф-лы, 2 ил.

2484280
выдан:
опубликован: 10.06.2013
ВОЗДУШНО-РЕАКТИВНЫЙ БЕСКЛАПАННЫЙ ПУЛЬСИРУЮЩИЙ ДВИГАТЕЛЬ

Изобретение относится к авиационной технике, воздушно-реактивным двигателям для беспилотных летательных аппаратов, летающих мишеней, малых летательных аппаратов и может быть применено в качестве двигателя привода ротора реактивных вертолетов. Воздушно-реактивный бесклапанный пульсирующий двигатель летательного аппарата содержит камеру сгорания, резонансную трубу, многоэжекторную систему впуска топливовоздушной смеси, топливную форсунку, топливную систему, змеевик-перегреватель, расположенный с задней по ходу движения летательного аппарата стороны. Через вход змеевика-перегревателя подают топливо из топливной системы в многоэжекторную систему впуска топливовоздушной смеси. Выходная часть многоэжекторной системы соединена с камерой сгорания в ее передней по ходу движения летательного аппарата части. Топливная форсунка расположена во входной части многоэжекторной системы впуска. Выпуск выхлопных газов из резонансной трубы осуществляют в сторону, противоположную движению летательного аппарата. Резонансная труба расположена с внешней стороны камеры сгорания, а змеевик-перегреватель - внутри. Оси резонансной трубы, камеры сгорания и многоэжекторной впускной системы расположены параллельно друг другу. Выпуск выхлопных газов из камеры сгорания осуществляют с поворотом на 180 градусов по отношению к вектору движения двигателя. Изобретение направлено на уменьшение габаритов двигателя. 12 з.п. ф-лы, 4 ил.

2482312
выдан:
опубликован: 20.05.2013
ГИПЕРЗВУКОВОЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит топливную форсунку, размещенную в носовой части двигателя перед воздухозаборником, и расположенные за ним камеру сгорания и сопло, а также устройство возбуждения молекул кислорода резонансным лазерным излучением в камере сгорания. Устройство возбуждения молекул кислорода содержит источник лазерного излучения с частотой, резонансно совпадающей с частотой линии поглощения молекулярного кислорода из основного электронного состояния в возбужденное состояние, и оптическую систему. Оптическая система размещена в воздухозаборнике на входе в камеру сгорания и выполнена с возможностью непрерывного сканирования топливно-воздушного потока лазерным лучом от источника лазерного излучения перпендикулярно оси потока в области, удовлетворяющей условию h/D=0.025-0.05, где D - диаметр проточной части на входе в камеру сгорания, h - поперечный размер области сканирования. Изобретение направлено на уменьшение весогабаритных характеристик двигателя вследствие сокращения длины зон энерговыделения. 3 з.п. ф-лы, 1 ил.

2481484
выдан:
опубликован: 10.05.2013
ПУЛЬСИРУЮЩИЙ ДЕТОНАЦИОННЫЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ И СПОСОБ ФУНКЦИОНИРОВАНИЯ ДВИГАТЕЛЯ

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, воспламенитель топливовоздушной смеси и систему подачи топлива. Система подачи топлива включает коллекторы и пилоны с топливными каналами и соплами, установленные в сверхзвуковой камере смешения. Двигатель также содержит расположенный между сверхзвуковым воздухозаборником и сверхзвуковой камерой смешения канал газовоздушного тракта. Пилоны системы подачи топлива размещены на выходе из последнего. Воспламенитель топливовоздушной смеси размещен в сверхзвуковой камере сгорания в поперечной нише и выполнен постоянно работающим. Каналы системы подачи топлива выполнены открытыми с возможностью газодинамического перекрытия. Изобретение позволяет уменьшить теплонапряженность тракта рабочего тела двигателя на больших сверхзвуковых скоростях полета, обеспечить саморегулируемую подачу топлива в двигатель и расширить диапазон скоростей полета от сверхзвуковых до дозвуковых. 2 н.п. ф-лы, 3 ил.

2476705
выдан:
опубликован: 27.02.2013
ПУЛЬСИРУЮЩИЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ СО СТАБИЛИЗАЦИЕЙ ГОРЕНИЯ НА СОУДАРЯЮЩИХСЯ СТРУЙНЫХ ТЕЧЕНИЯХ

Изобретение относится к технике, преимущественно военной, а именно к двигателям летательных аппаратов, и может быть использовано вероятнее всего в качестве двигателя небольших беспилотных летательных аппаратов, таких как беспилотные разведчики, летающие мишени и т.п., а также в качестве сбрасываемых дополнительных двигателей. Пульсирующий воздушно-реактивный двигатель со стабилизацией горения на соударяющихся струйных течениях содержит, в частности, камеру сгорания, резонаторную трубу, впускные трубы, сопло подачи газа, змеевик нагрева газа и запальную свечу. Камера сгорания выполнена с оппозитными боковыми нишами, задние торцевые стенки которых перпендикулярны осям впускных труб. Змеевик нагрева газа размещен в начальной части резонаторной трубы, примыкающей к задним торцевым стенкам боковых ниш. Изобретение направлено на повышение термодинамического КПД путем увеличения амплитуды пульсаций давления. 4 ил.

2468236
выдан:
опубликован: 27.11.2012
ПУЛЬСИРУЮЩИЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ (ПуВРД)

Изобретение относится к технике, преимущественно военной, а именно к двигателям летательных аппаратов, и может быть использовано, вероятнее всего, в качестве двигателя небольших беспилотных летательных аппаратов, таких как беспилотные разведчики, летающие мишени и т.п., а также в качестве сбрасываемых дополнительных двигателей. Пульсирующий воздушно-реактивный двигатель содержит, в частности, камеру сгорания, резонаторную трубу, впускные трубы, сопло подачи газа, змеевик нагрева газа и запальную свечу. Впускные трубы выполнены сегментно-кольцевого сечения. Задняя торцевая стенка камеры сгорания выполнена с козырьком над входом в резонаторную трубу, которая расположена с эксцентриситетом относительно оси камеры сгорания. Изобретение направлено на повышение термодинамического КПД путем увеличения амплитуды пульсаций давления. 4 ил.

2468235
выдан:
опубликован: 27.11.2012
СИЛОВАЯ УСТАНОВКА РЕАКТИВНОГО ТИПА

Силовая установка реактивного типа относится к области энергомашиностроения и может быть использована в качестве источника электроэнергии как непосредственно, так и в составе привода различных транспортных средств. Силовая установка реактивного типа включает тепловой двигатель с установленным на его выходном валу мотор-генератором, который соединен с электрическим аккумулятором. В силовую установку введен волновой редуктор, расположенный между мотор-генератором и тепловым двигателем. Корпус теплового двигателя выполнен в виде стакана, с установленным в нем на подшипниках валом диска. На внешней поверхности диска расположены попарно, диаметрально противоположно, сверхзвуковые воздухозаборники рабочих трактов прямоточных воздушно-реактивных двигателей, выполненных в виде тангенциально расположенных на внутренней поверхности диска входных диффузоров, камер сгорания и сверхзвуковых сопел. Входные диффузоры соединены с источником топлива (жидкого или газообразного) повышенного давления через эжектор, активное сопло которого связано с источником топлива. Камера смешения выполнена в виде осесимметричного канала в вале, соединенного радиальными трубопроводами, расположенными на внутренней поверхности диска, с начальными участками входных диффузоров, в стенках которых выполнены отверстия. На поверхность корпуса теплового двигателя и внутреннюю поверхность диска нанесено термостойкое звукоизолирующее покрытие. Изобретение направлено на упрощение конструкции силовой установки, повышение энергетической эффективности и экологической чистоты. 1 з.п. ф-лы, 2 ил.

2467188
выдан:
опубликован: 20.11.2012
ВИХРЕВОЙ ДВИЖИТЕЛЬ

Изобретение относится к реактивным двигателям без газовых турбин. Вихревой эжекторный движитель выполнен в виде обтекаемой пустотелой гондолы, внутренняя поверхность которой образует воздушный тракт, состоящий из последовательно расположенных входного устройства, выполненного в виде конфузора, диффузора, вихревой камеры и выходного устройства. Гондола выполнена с устройством для подачи сжатого воздуха вовнутрь воздушного тракта в виде сопел, сообщающихся с источником сжатого воздуха, расположенных в передней части гондолы и направленных под углом, равным 10-60° к оси воздушного тракта, создавая вихрь. Изобретение направлено на уменьшение массы и повышение надежности. 1 з.п. ф-лы, 1 ил.

2465481
выдан:
опубликован: 27.10.2012
ВХОДНАЯ ЛОПАСТЬ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ, ВЕНТИЛЯТОР ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ

Группа изобретений относится к области подвижных лопастей газотурбинного двигателя, таких как лопасти вентилятора газотурбинного двигателя, и обеспечивает при использовании повышение производительности при уменьшении шума, вызываемого газовым потоком, при этом лопасть газотурбинного двигателя включает множество секций (22), набранных по радиальной оси (Z-Z), в которой проекция линии (28а), связывающая ребра атаки секций нижнего набора секций (28) в меридиональной плоскости, наклонена под первым углом продольного наклона ( ) к ребру атаки (24), который составляет от 10 до 25°, проекция линии (30а), связывающая ребра атаки секций среднего набора (30), наклонена под вторым углом продольного наклона ( ) к задней кромке (26), который составляет от 10 до 25°; проекция линии (32а), связывающая ребра атаки верхнего набора (32) секций лопасти, наклонена под третьим продольным углом наклона ( ) к задней кромке, который составляет от 20 до 50°, а нижняя граница (34) среднего набора (30) секций лопасти размещена между 30 и 40% общей радиальной высоты (h) набора секций лопасти. 3 н. и 3 з.п. ф-лы, 4 ил.

2459122
выдан:
опубликован: 20.08.2012
ДЕТОНАЦИОННЫЙ ПУЛЬСИРУЮЩИЙ ДВИГАТЕЛЬ

Детонационный пульсирующий двигатель, работающий с топливно-воздушной детонирующей смесью, содержит, по меньшей мере, одну жаровую трубу с поперечным дном, выполненным подвижным относительно последней, чтобы занимать первое и второе предельные положения, и закрытую поперечным упорным элементом, являющимся противоположным подвижному дну. Упругое возвратное средство воздействует на подвижное дно и выполнено с возможностью, с одной стороны, толкания последнего из первого положения во второе положение и, с другой стороны, замедления последнего в конце перемещения из второго положения в первое положение. Двигатель содержит также, по меньшей мере, один топливный бак, средство подачи топлива для подачи топлива в камеру сгорания жаровой трубы. Средство подачи топлива содержит передаточную камеру, изменяемую в объеме, ограниченную боковой стенкой жаровой трубы, подвижным дном и поперечным упорным элементом и выполненную с возможностью получения топлива из бака. Средство передачи топлива выполнено с возможностью передачи топлива из бака в передаточную камеру. Двигатель также содержит средство впрыска топлива для впрыска топлива в камеру сгорания из передаточной камеры. Упругое возвратное средство состоит, по меньшей мере, частично, из топлива, содержащегося в передаточной камере. Изобретение направлено на улучшение работы детонационного пульсирующего двигателя. 8 з.п. ф-лы, 4 ил.

2458242
выдан:
опубликован: 10.08.2012
Наверх