способ переработки отходов жидкофазного окисления алкилароматических углеводородов

Классы МПК:C02F11/18 термическим воздействием
C01G45/02 оксиды; гидроксиды 
C01G51/04 оксиды; гидроксиды 
Автор(ы):, , , , , , , , ,
Патентообладатель(и):Государственный научно-исследовательский и проектный институт химических технологий
Приоритеты:
подача заявки:
1991-01-08
публикация патента:

Использование: для переработки отходов жидкофазного окисления алкилароматических углеводородов. Исходные вещества: перерабатываемый отход жидкофазного окисления алкилароматических углеводородов, содержащий металлоорганические соединения, инертный материал, кислород и катализатор. В качестве катализатора используют оксиды металлов переходной группы. Перерабатываемый отход подвергают жидкофазному каталитическому окислению в присутствии кислорода, катализатора и инертного материала при температуре не ниже 400°С в реакторе с нестационарным слоем инертного материала. В качестве катализатора используют оксиды кобальта и марганца, получаемые в данном процессе. Суммарное содержание оксидов кобальта и марганца во входе в реактор поддерживают равным не менее 1 мас. 2 з.п.ф-лы, 2 ил. 1 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9

Формула изобретения

1. СПОСОБ ПЕРЕРАБОТКИ ОТХОДОВ ЖИДКОФАЗНОГО ОКИСЛЕНИЯ АЛКИЛАРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ, содержащих металлоорганические соединения, включающий их жидкофазное каталитическое окисление в присутствии кислорода воздуха и инертного материала при использовании в качестве катализатора оксидов металлов переходной группы в реакторе с нестационарным слоем инертного материала при повышенной температуре с отделением неорганических металлсодержащих соединений, отличающийся тем, что, с целью обеспечения переработки отходов, содержащих в качестве металлоорганических соединений соединения кобальта и марганца, повышения чистоты продукта и повышения степени окисления перерабатываемых отходов, в качестве катализатора используют оксиды кобальта и марганца, получаемые в процессе окисления перерабатываемых отходов и возвращаемые на стадию окисления.

2. Способ по п. 1, отличающийся тем, что суммарное содержание оксидов кобальта и марганца на входе в реактор поддерживают равным не менее 1,0 мас.

3. Способ по п.1, отличающийся тем, что окисление проводят при температуре не ниже 400oС.

Описание изобретения к патенту

Изобретение относится к области химической технологии, в частности к способам переработки отходов жидкофазного окисления алкилароматических углеводородов с целью выделения используемого катализатора в виде оксидов металлов.

Известен способ переработки отходов жидкофазного окисления алкилароматических углеводородов сжиганием кубовых остатков производства диметилтерефталата (ДМТ). В результате получают смесь оксидов кобальта и марганца, а органическая часть отходов сгорает до СО2 и СО.

Недостаток описанного способа заключается в том, что зола после сжигания, помимо оксидов кобальта и марганца, содержит значительное количество оксидов других металлов (вследствие коррозии аппаратуры), а также углерод и минеральные примеси. Поэтому без дополнительной очистки, например на ионообменных смолах, дальнейшее использование полученных оксидов металлов для приготовления ацетатных катализаторов невозможно. Отходящий в атмосферу газ содержит монооксид углерода, другие продукты недожога в количества, превышающих санитарные нормы.

Цель изобретения обеспечение возможности переработки отходов, содержащих в качестве металлорганических соединений соединения кобальта и марганца, повышение чистоты пpодукта и степени окисления перерабатываемых отходов.

Поставленная цель достигается способом переработки отходов жидкофазного окисления алкилароматических углеводородов, заключающимся в том, что указанные отходы, содержащие металлоорганические соединения, подвергают переработке путем окисления в присутствии кислорода воздуха при повышенной температуре с выделением смеси оксидов кобальта и марганца. Отличием заявляемого способа от известного является то, что процесс осуществляют в псевдоожиженном слое твердого инертного материала в присутствии катализатора, в качестве которого используют оксиды кобальта и марганца, получаемые в процессе окисления перерабатываемых отходов при температуре 400-600оС и суммарном содержании оксидов кобальта и марганца на входе в реактор окисления не менее 1 мас. В случае низкого содержания кобальта и марганца в перерабатываемых отходах необходимое суммарное содержание их оксидов поддерживают за счет рецикла недостающего количества получаемых оксидов кобальта и марганца.

Особенностью заявляемого способа является осуществление процесса переработки отходов жидкофазного окисления алкилароматических углеводородов, содержащих металлоорганические соединения кобальта и марганца, в каталитически неактивной для реакций глубокого газофазного окисления форме, путем глубокого окисления. В процессе химических превращений в реакторе, куда вводится отход и воздух, происходит глубокое окисление органических соединений. Низкие температуры процесса окисления, 100%-ная степень превращения, нагрузка на реакционный объем определяются химическими превращениями кобальта и марганца, образованием и участием в реакциях оксидов этих соединений и технологией осуществления процесса. Именно в этих условиях соединения кобальта и марганца принимают оксидную форму, способствующую реакциям глубокого окисления органических соединений. Экспериментально установлена предельная нагрузка на катализатор, превышение которой приводит к снижению степени окисления (см.опыты 8,13,14 в таблице). Этот факт иллюстрирует и графин, представленный на фиг. 1 (кривая 1 опыты проведены при суммарном содержании оксидов кобальта и марганца 1 мас. и температуре 400оС, кривая 2 суммарное содержание оксидов кобальта и марганца 1 мас. температура 600оС; кривая 3 суммарное содержание оксидов кобальта и марганца 3 мас. температура 600оС).

Вместе с тем установлено, что необходимая эффективность процесса достигается при суммарном содержании оксидов кобальта и марганца на входе в реактор окисления не менее 1 мас. Снижение суммарного содержания упомянутых оксидов на входе в реактор не обеспечивает полноты окисления органической составляющей перерабатываемых отходов (опыты 15-17). Более высокое содержание обеспечивает глубокое окисление и конкретная величина суммарного содержания оксидов кобальта и марганца в этом случае определяется энергетикой процесса.

Проведение процесса при температуре, не превышающей 400оС, не обеспечивает полноту окисления, а за пределами 600оС нецелесообразно, т.к. дальнейшее повышение температуры не способствует существенному росту скорости реакции глубокого окисления органической составляющей перерабатываемых отходов.

Изобретение иллюстрируется следующими примерами. В качестве перерабатываемых отходов использованы реальные отходы (смолы) действующих производств: Могилевского ПО "Химволокно" (производств терефталевой кислоты и диметилтерефталата) и опытного производства ангидрида тримеллитовой кислоты ВНИПИМ (г.Тула), состав которых приведен ниже.

1. Кубовый остаток после ректификации плава ангидрида тримеллитовой кислоты (АТМК), мас. Ni+2 0,01 Cr+2 0,05 Fe+3 0,06 Co+2 1,61 Mn+2 0,38 HB2 6,49

Метилдикарбоновые кислоты 21,68 Тримезиновая кислота 0,98

Ангидрид тримел- литовой кислоты 50,82 Смолистые примеси 17,92

2. Кубовый остаток из роторного испарителя со стадии регенерации уксусной кислоты производства терефталевой кислоты (ТФК), мас. Co+2 5,2 Mn+2 2,7 Ni+2 0,08 Fe+3 0,05 Уксусная кислота 14,77 Бромистый водород 5,5 Бензойная кислота 13,9

Сумма изофталевых и терефталевых кислот 23,04 n-Карбоксибензальдегид 0,19 n-Толуиловая кислота 1,68 Вода 7,12 Смолистые примеси 25,77

3. Кубовый остаток со стадии дистилляции сырого эфира после метанолиза производства диметилтерефтала (ДМТ) Могилевского ПО "Химволкно", мас. Со+2 0,28 Mn+2 0,02 Метилацетат 0,09 Метанол 0,03 n-Ксилол 0,05 Уксусная кислота 0,12 Метилбензоат 1,86 n-Толуиловый альдегид 0,09 n-Толуиловый эфир 13,93 n-Толуиловый спирт 0,02 n-Толуиловая кислота 0,56 Диметилтерефталат 11,98

Диметилизофталат и диметилортофталат 0,64 Бензойная кислота 1,18 n-Карбметоксибензальдегид 0,62 Смолистые примеси 68,53

Процесс проводят в соответствии со схемой, приведенной на фиг.2.

В реактор 1 проточного типа с внутренним диаметром 0,05 м и высотой 0,46 м, температуру в котором поддерживают с помощью внешнего регулируемого электрообогрева, загружают на газораспределительную решетку 600 см3 твердого инертного материала. Для предотвращения уноса твердого инертного материала при различных режимах кипения в верхней части реактора находится зона сепарации диаметром 0,08 и высотой 0,15 м. В качестве окислителя используют воздух в количестве 3,0 м3/ч, предварительно подогретый до 200-250оС в электроподогревателе 2 (для компенсации теплопотерь в реакторе). После достижения температуры зажигания катализатора в реактор 1 дозатором 3 непрерывно подают смесь катализатора и измельченного пылевидного отхода жидкофазного окисления алкилароматических углеводородов (смолы) с содержанием суммы кобальта и марганца (в пересчете на оксиды) не менее 1 мас. в соотношении, соответствующем содержанию кобальта и марганца в перерабатываемом отходе. В зоне реакции происходит нагрев, частичное испарение и глубокое каталитическое окисление органической составляющей отходов до диоксида углерода и воды, а металлы превращаются в оксиды высшей валентности, в частности в оксиды кобальта (III), марганца (III) и катализируют процесс окисления. Образовавшуюся пылегазовую смесь, содержащую остаточный кислород, пары воды, диоксид углерода, оксиды металлов, после реактора 1 направляют в циклон 4 для отделения пылевидных частиц оксидов металлов от отходящей парогазовой смеси. Оксиды металлов поступают в бункер 5, из которого их выводят как целевой продукт или частично возвращают дозатором 6 для поддержания необходимой концентрации оксидов кобальта и марганца в реакторе. Выходящие из циклона 4 газы направляют на доочистку от катализаторной пыли в рукавный фильтр 7 и сбрасывают в атмосферу.

Состав оксидов металлов определяли атомно-абсорбционным методом (на приборе "Сатурн-2").

Результаты осуществления примера приведены в таблице.

Положительный эффект предлагаемого технического решения по сравнению с прототипом заключается в том, что изобретение позволяет:

повысить чистоту оксидов кобальта и марганца, получаемых в результате переработки отходов жидкофазного окисления алкилароматических углеводородов за счет полноты окисления органической составляющей;

повысить суммарное содержание оксидов кобальта и марганца в выделяемой смеси оксидов металлов до 70 мас.

улучшить экологические характеристики процесса вследствие глубокого окисления органической составляющей перерабатываемых отходов до СО2 и Н2О.

Класс C02F11/18 термическим воздействием

способ сжигания механически обезвоженных пастообразных осадков сточных вод -  патент 2522597 (20.07.2014)
устройство и способ непрерывного термического гидролиза биологического материала -  патент 2509730 (20.03.2014)
способ и устройство для термического гидролиза органического материала -  патент 2504521 (20.01.2014)
способ обезвреживания отходов, содержащих углеводороды, с одновременным осаждением растворенных солей металлов и устройство для его осуществления -  патент 2485400 (20.06.2013)
система утилизации мокрых углеродсодержащих отходов -  патент 2471726 (10.01.2013)
способ и установка для кондиционирования осадков перед сушкой -  патент 2449955 (10.05.2012)
способ обработки нефтешлама -  патент 2396219 (10.08.2010)
способ получения caco3 или mgco3 -  патент 2389687 (20.05.2010)
способ обезвоживания нефтесодержащих отходов -  патент 2333896 (20.09.2008)
установка дегельминтизации осадков сточных вод на очистных станциях -  патент 2327652 (27.06.2008)

Класс C01G45/02 оксиды; гидроксиды 

Класс C01G51/04 оксиды; гидроксиды 

магнитные наночастицы для применения при гипертермии, их приготовление и применение в магнитных системах для фармакологического использования -  патент 2481125 (10.05.2013)
литий-кобальт-оксидный материал и способ его приготовления -  патент 2473466 (27.01.2013)
стабилизатор ферментативной активности пероксидазы -  патент 2445271 (20.03.2012)
устройство и способ получения соединений путем осаждения -  патент 2437700 (27.12.2011)
гидроксид кобальта со(он)2 -  патент 2243164 (27.12.2004)
способ получения мелкодисперсного порошка твердых растворов гидроксидов никеля и кобальта и продукт для электрохимических производств, получаемый по этому способу -  патент 2226179 (27.03.2004)
способ получения труднорастворимых гидроокислов металлов -  патент 2143997 (10.01.2000)
порошковый кобальтовый компонент и способ его получения -  патент 2135416 (27.08.1999)
способ получения основных углекислых солей меди, цинка, никеля и кобальта и их оксидов -  патент 2043301 (10.09.1995)
способ получения оксида кобальта -  патент 2036153 (27.05.1995)
Наверх