способ модифицирования алюминия и его сплавов
Классы МПК: | C22C1/06 с применением особых средств для рафинирования или раскисления C22C21/08 с кремнием C22F1/043 сплавов с кремнием в качестве следующего основного компонента C22B9/10 с использованием рафинирующих средств или флюсов; использование материалов для этой цели C22B21/06 рафинирование алюминия |
Автор(ы): | Попова М.В., Герцен В.В., Доронченко А.В., Афанасьев В.К. |
Патентообладатель(и): | Сибирский государственный индустриальный университет |
Приоритеты: |
подача заявки:
1998-03-05 публикация патента:
10.09.1999 |
Использование: изобретение относится к области металлургии и может быть использовано при приготовлении высоколегированных сплавов, применяемых для получения изделий литьем и обработкой давлением. Способ заключается в обработке расплава алюминия или Al-Si сплавов смесью, содержащей углекислый кальций, при этом смесь дополнительно содержит углекислый магний, причем соотношение углекислого кальция и углекислого магния в смеси по массе равное, смесь вводят в расплав в количестве 1 - 7% по массе и обработку расплава ведут в течение 3 - 15 мин. Изобретение обеспечивает повышение технологических и физических свойств алюминия и его сплавов. 1 табл.
Рисунок 1, Рисунок 2
Формула изобретения
Способ модифицирования алюминия и его сплавов, включающий обработку расплава смесью, содержащей углекислый кальций, отличающийся тем, что смесь дополнительно содержит углекислый магний, при этом соотношение углекислого кальция и углекислого магния в смеси равное по массе, а смесь вводят в расплав в количестве 1 - 7% от массы расплава и обработку расплава ведут в течение 3 - 15 мин.Описание изобретения к патенту
Изобретение относится к области металлургии и может быть использовано при приготовлении высоколегированных сплавов, применяемых для получения изделия литьем и обработкой давлением. Известен способ модифицирования расплава алюминиевых сплавов, включающий обработку расплава смесью следующего соотношения компонентов, мас.%:динатрий фосфат - 45 - 80
карбонат калия - 8-30
карбонат натрия - 2-18
карбонат магния - 1-20
(см. а. с. N 1116080, кл. С 22 С 1/06, заявл. 11.01.83, опубл. 30.09.84, Бюл.N 36). Наиболее близким к заявляемому является способ модифицирования алюминия и его сплавов, включающий обработку расплава смесью, содержащей, мас.%:
кремнефтористый натрий - 4-8
углекислый кальций - 4-16
хлористый калий - остальное
(см. а.с. N 1271906, кл. С 22 В 9/10, С 22 С 1/06, заявл. 18.04.85, опубл. 23.11.86, Бюл. N 43). Недостатками известных способов являются низкие технологические свойства сплава (предельная степень пластической деформации) и довольно высокие значения коэффициента линейного расширения. Задачей изобретения является повышение технологических и физических свойств алюминия и его сплавов за счет повышения предельной степени пластической деформации и снижения коэффициента линейного расширения. Поставленная задача решается таким образом, что в способе модифицирования алюминия и его сплавов, включающем обработку расплава смесью, содержащей углекислый кальций, смесь дополнительно содержит углекислый магний, при этом соотношение углекислого кальция и углекислого магния в смеси по массе равное, смесь вводят в расплав в количестве 1 - 7% от массы расплава и обработку расплава ведут в течение 3-15 мин. В алюминиевых сплавах, подвергнутых обработке по предлагаемому способу, происходит разложение выделений промежуточных фаз, измельчение их вследствие модифицирующего эффекта, что, в свою очередь, обеспечивает повышение предельной степени пластической деформации сплавов с одновременным снижением значений коэффициента линейного расширения. Использование смеси карбонатов элементов с высоким сродством к водороду в указанном количестве позволяет повысить эффективность модифицирования алюминия и его сплавов, улучшить их технологические и физические свойства. Повышение свойств алюминия и его сплавов по сравнению с прототипом связано, видимо, с лучшим усвоением водорода и кислорода, вводимых в расплав в виде соединений. Кроме того, частицы тугоплавких оксидов MgO и CaO, содержащихся в смеси, служат дополнительными многочисленными центрами кристаллизации. При высоких скоростях охлаждения (кокильное литье) кристаллизация выделений промежуточных фаз происходит именно на этих частицах. Это приводит к значительному диспергированию выделений промежуточных фаз. Применение предлагаемого способа обработки расплава металлов снижает устойчивость интерметаллических фаз после гомогенизирующей термообработки перед обработкой давлением. Осуществление предлагаемого способа с параметрами, выходящими за указанные пределы, как в сторону уменьшения, так и в сторону увеличения, не приводит к достижению поставленной технической задачи. Предлагаемый способ с указанной совокупностью и последовательностью выполнения операций, а также выбором интервалов значений признаков в указанном диапазоне их изменений, обеспечивает достижение технического результата, заключающегося в значительном повышении предельной степени пластической деформации и снижении коэффициента линейного расширения. Получение данного технического результата достигнуто решением задачи на изобретательском уровне, например, выбор параметров обработки расплава, подбор компонентов смеси для обработки расплава, что и позволяет сделать вывод о соответствии заявляемого способа критерию "изобретательский уровень". Пример. В качестве примера обработке подвергали технический алюминий А7 и сплавы на его основе, содержащие 15, 20, 30, 40 и 50% кремния. Выплавку сплавов осуществляли в закрытой лабораторной печи сопротивления в алундовом тигле. Для приготовления использовали алюминий марки А7 и кремний КрО. После расплавления алюминия и растворения кремния расплав обрабатывали смесью карбоната кальция и карбоната магния, взятых в равном соотношении. Смесь вводили в количестве 1 - 7% от массы расплава. Обработку проводили в течение 3-15 минут при температуре, на 50 - 250oC превышающей температуру плавления металла - основы (710 - 910oC). По окончании обработки с поверхности удаляли шлак и проводили заливку в алюминиевый кокиль. Из полученных слитков изготавливали образцы для дилатометрического исследования. Коэффициент линейного расширения определяли на оптическом дифференциальном дилатометре системы Шевенара в интервале 20 - 200oC. Слитки после гомогенизирующей термообработки при температуре на 20 - 40oC ниже температуры солидуса сплавов подвергали горячей прокатке с максимально возможной степенью деформации (до появления первой трещины) на лабораторном прокатном стане мощностью 20 кВт. Параллельно для сравнения приготавливали сплавы, обработанные по известному способу. Как видно из приведенных в таблице данных, эффективность предлагаемого способа обработки расплава для алюминия и сплавов системы Al-Si выше, чем у известного способа: предельная степень пластической деформации до разрушения увеличивается в среднем на 7-25%, а коэффициент линейного расширения снижается на 7-14%.
Класс C22C1/06 с применением особых средств для рафинирования или раскисления
Класс C22F1/043 сплавов с кремнием в качестве следующего основного компонента
Класс C22B9/10 с использованием рафинирующих средств или флюсов; использование материалов для этой цели
Класс C22B21/06 рафинирование алюминия