соли 2,4-диоксо-5-(2-гидрокси-3,5-дихлорбензилиден)имино-1,3-пиримидина

Классы МПК:C07D239/545 с другими гетероатомами или атомами углерода, связанными тремя связями с гетероатомами (из которых одна может быть с галогеном), непосредственно присоединенными к атомам углерода кольца
A61K31/505  пиримидины; гидрированные пиримидины, например триметоприм
A61P31/00 Противоинфекционные средства, те антибиотики, антисептики, химиотерапевтические средства
A61P31/12 противовирусные средства
A61P33/00 Антипаразитические средства
A61P35/00 Противоопухолевые средства
Автор(ы):, ,
Патентообладатель(и):Тец Виктор Вениаминович (RU)
Приоритеты:
подача заявки:
2004-04-20
публикация патента:

Изобретение относится к синтетическим биологически активным производным пиримидина, а именно калиевой, натриевой или аммониевой соли 2,4-диоксо-5-(2-гидрокси-3,5-дихлорбензилиден)имино-1,3-пиримидина общей формулы

соли 2,4-диоксо-5-(2-гидрокси-3,5-дихлорбензилиден)имино-1,3-пиримидина, патент № 2260590

где Х выбран из группы: Na, К, NH4 + . Заявляемое вещество имеет выраженную противомикробную активность, направленную преимущественно против различных грибов, бактерий, простейших и вирусов. 13 табл.

Формула изобретения

Соли 2,4-диоксо-5-(2-гидрокси-3,5-дихлорбензилиден)имино-1,3-пиримидина общей формулы

соли 2,4-диоксо-5-(2-гидрокси-3,5-дихлорбензилиден)имино-1,3-пиримидина, патент № 2260590

где Х выбран из группы: Na, К, NH4 + .

Описание изобретения к патенту

Изобретение относится к медицине, а именно к фармакологии, конкретно к синтетическим биологически активным производным пиримидина.

Заявляемое вещество имеет выраженную противомикробную активность, направленную преимущественно против различных грибов, а также некоторых бактерий, простейших и вирусов, а также обладает противоопухолевым и противоболевым действием.

Кроме того, указанные соединения могут быть использованы для тех же целей в ветеринарии, косметологии, в качестве консервантов в строительстве, пищевой, кожевенной, деревообрабатывающей и других типах промышленности для профилактики и уничтожения различных микроорганизмов, преимущественно грибов.

Как известно, одну из наиболее серьезных проблем современной медицины представляют грибковые, а также бактериальные и вирусные заболевания, многие из которых крайне плохо поддаются лечению, что связано как с недостаточной эффективностью существующих препаратов, так и их быстрой изменчивостью, приводящей к появлению устойчивых форм, Fidel P.L. Jr, Vazquez J.A., Sobel J.D. Candida glabrata: review of epidemiology, pathogenesis and clinical disease with comparison to C.albicans 1999, 1:80-96. White T. Antifungal drug resistance in Candida albicans., ASM News 8:427-433.

Схожие проблемы актуальны для ветеринарии и промышленности, где широко распространена порча продукта, связанная с развитием и распространением микроорганизмов. Наиболее распространенными препаратами для лечения грибковых заболеваний являются нистатин, флюконазол, тербинафин и некоторые другие (Энциклопедия лекарств РЛС-2000, М., 2000, стр.987). Вместе с тем, каждый из препаратов имеет определенные недостатки. Флюконазол, несмотря на широкий спектр действия, является фунгистатиком и не убивает грибы, а только блокирует их рост и размножение. Тербинафин не убивает дрожжеподобные грибы. Это крайне затрудняет использование этих препаратов для лечения людей с ослабленной иммунной системой. Другим распространенным препаратом является нистатин. Его главными недостатками следует считать низкую активность против многоклеточных грибов и распространенную к нему устойчивость у микробов. Наиболее активным противогрибковым препаратом является амфотерицин В, который является крайне токсичным и плохо переносимым большим числом пациентов.

Наиболее близким по химической природе к заявляемому является -2,4-диоксо-5-арилиденимино-1,3-пиримидины общей формулы

соли 2,4-диоксо-5-(2-гидрокси-3,5-дихлорбензилиден)имино-1,3-пиримидина, патент № 2260590

где R независимо выбран из группы: Н, ОН, низший алкоксил, галоген, нитро, ди(низший)алкиламино; n=1-3, или два близлежащих R вместе бензольным кольцом, к которому они присоединены, при n=2,4 образуют бензо, дибензо и при n=2 образуют 3,4-диоксолановое кольцо, RU 2198166.

Это вещество выбрано нами в качестве прототипа. Недостатком данного вещества является малая активность по отношению к некоторым микроорганизмам - микобактериям и хламидиям.

Задачей изобретения является разработка нового противогрибкового препарата широкого спектра действия, обладающего выраженной активностью против грамположительных и грамотрицательных бактерий, вирусов, простейших, а также опухолевых клеток; также решается задача предотвращения порчи продуктов.

Поставленная задача решается путем синтеза нового вещества, а именно калиевой, или натриевой, или аммониевой солей 2,4-диоксо-5-(2-гидрокси-3,5-дихлорбензилиден)имино-1,3-пиримидина общей формулы

соли 2,4-диоксо-5-(2-гидрокси-3,5-дихлорбензилиден)имино-1,3-пиримидина, патент № 2260590

где X выбран из группы: Na, К, NH4 + .

Перечень синтезированных и заявляемых соединений приведен в таблице 1.

Таблица 1
Название вещества ОбозначениеБрутто-формула
Натриевая соль 2,4-диоксо-5-(2-гидрокси-3,5-дихлорбензилиден)имино-1,3-пиримидина IС 11Н6Cl2N 3NaO3
Калиевая соль 2,4-диоксо-5-(2-гидрокси-3,5-дихлорбензилиден)имино-1,3-пиримидин IIС 11Н6Cl2KN 3О3
Аммониевая соль 2,4-диоксо-5-(2-гидрокси-3,5-дихлорбензилиден)имино-1,3-пиримидина IIIC 11H10Cl2N 4O3

Заявленные вещества новы, поскольку они не известны из доступных источников информации. Наличие широкого спектра эффективной биологической активности у вновь синтезированных заявленных веществ не вытекает явным образом из предшествующего уровня знаний.

Сущность изобретения поясняют приведенные далее:

- способ получения новых производных 2,4-диоксо-5-(2-гидрокси-3,5-дихлорбензилиден)имино-1,3-пиримидина;

- данные ПМР спектроскопии соединений I-III (таблица 2);

- данные экспериментов по определению противогрибковой активности заявляемых соединений в сопоставлении с известными эффективными современными средствами того же назначения, а именно:

эксперимент 1 - определение противогрибковой активности заявляемых соединений;

эксперимент 2 - определение совместного действия заявляемых соединений и противогрибкового препарата флюконазола;

эксперимент 3 - определение совместного действия заявляемых соединений и противогрибкового препарата - нистатина;

эксперимент 4 - определение терапевтического действия заявляемых соединений на экспериментальную инфекцию, вызванную грибами рода Candida;

эксперимент 5 - определение противоопухолевой активности заявляемых соединений;

эксперимент 6 - определение противоболевой активности заявляемых соединений;

эксперимент 7 - определение острой токсичности заявляемых соединений;

эксперимент 8 - определение действия на вирус простого герпеса;

эксперимент 9 - определение антимикобактериального действия;

эксперимент 10 - определение действия соединений по отношению к грамположительным и грамотрицательным бактериям;

эксперимент 11 - определение антипротозойного действия соединений по отношению к трихомонадам (Trichomonas vaginalis);

эксперимент 12 - определение возможности использования заявляемых соединений для борьбы со смешанной микробной инфекцией;

эксперимент 13 - определение возможности использования заявляемых соединений для предотвращения порчи продуктов.

Способ получения новых производных 2,4-диоксо-5-(2-гидрокси-3,5-дихлорбензилиден)имино-1,3 -пиримидина (I, II, III).

Целевые соли 2,4-диоксо-5-(2-гидрокси-3,5-дихлорбензилиден)имино-1,3-пиримидина общей формулы

соли 2,4-диоксо-5-(2-гидрокси-3,5-дихлорбензилиден)имино-1,3-пиримидина, патент № 2260590

где Х выбран из группы: К, Na, NH4 + , получаются взаимодействием 5-аминоурацила или его солей щелочных металлов с дихлорсалициловым альдегидом. В качестве растворителя использована смесь этанол-вода 1:1. Продукты получались с выходами выше 90% от теоретического.

Синтез натриевой соли 2,4-диоксо-5-(2-гидрокси-3,5-дихлорбензилиден)имино-1,3-пиримидина.

В колбу поместили 0,04 г едкого натра и 20 мл воды. К полученному раствору добавили 1,27 г 5-аминоурацила; полученную массу перемешивали до полного растворения аминоурацила. Параллельно в 50 мл этанола растворили 1,91 г 3,5-дихлорсалицилового альдегида и полученный раствор по каплям при перемешивании добавили к раствору натриевой соли 5-аминоурацила. Сразу же выпал осадок ярко-красного цвета. Реакционную смесь перемешивали в течение получаса. Полученный осадок отфильтровали, промыли спиртом, высушили. Выход продукта составил 98% от теоретического.

Соединения II и III были получены аналогичным способом, только вместо едкого натра были использованы едкое кали или гидроксид аммония.

Соединения общей формулы представляют собой бесцветные или ярко окрашенные кристаллические вещества, растворимые в диметилсульфоксиде, пиридине. Температуры плавления всех веществ превышают 300°С.

Индивидуальность веществ доказана методом тонкослойной хроматографии на пластинках Silufol UV-254, элюент четыреххлористый углерод - изопропанол=9:1. Структура синтезированных веществ доказана методом ПМР-спектроскопии. Данные ПМР-спектроскопии соединений I-III представлены в таблице 2.

Таблица 2
№ соединения CH-NNHCH(Ur)
I9,5 11,37,9
II 9,511,2 7,9
III9,5 11,47,9

Данные экспериментов по определению биологического действия заявляемых соединении.

Эксперимент 1. Определение противогрибковой активности заявляемых соединении.

Активность препаратов против грибов определяли методом серийных разведении (таблица 3). В качестве препарата сравнения использовался флюконазол. Соединения растворяли в диметилсульфоксиде (ДМСО) и титровали в среде N-1, RPMI, Сабуро, так, что данный препарат содержался в отдельных пробирках со средой в концентрациях от 200 до 0,025 мг/л. Концентрация препарата в среде соседних пробирок (лунок) отличалась в два раза. В контроле использовали ДМСО, который разводили так же, как и препарат. Результаты учитывали после культивирования грибов при использовании оптимальных временных и температурных режимов для каждого вида.

Таблица 3

Определение действия заявляемых соединений на дрожжи
Гриб ШтаммМинимальная подавляющая концентрация (МПК) (мкг/мл)
Флюконазол IIIIII
S.cervisiaeVT-2 211 1
G.candidum VT-0611 11

Показанные данные свидетельствуют о высокой активности препаратов по отношению к дрожжам.

Таблица 4

Определение действия заявляемых соединений на грибы рода Candida
Гриб ШтаммМинимальная подавляющая концентрация (МПК) (мкг/мл)
Флюконазол IIIIII
C.albicans21 211 1
C.albicans 37211 11
C.albicans 800,25 111,0
C.glabrata382 160,1250,125 0,125
C.glabrata 11164 0,250,250,25
C.glabrata160 320,125 0,1250,125
C.krusei524832 11 1

Показанные данные свидетельствуют о высокой активности препаратов по отношению к одноклеточным грибам рода Candida для большей части использованных штаммов, превосходящей таковую у препарата сравнения - флюконазола.

Таблица 5

Определение действия заявляемых соединений на многоклеточные грибы рода Aspergillus и Mucor
ГрибШтамм Минимальная подавляющая концентрация (МПК) (мкг/мл)
ФлюконазолIII III
Aspergillus VT-70>64 222
MucorVT-12 >6411 1

Показанные данные свидетельствуют о высокой активности заявляемых препаратов, многократно превосходящей таковую у препарата сравнения - флюконазола, по отношению к грибам родов Aspergillus и Mucor.

Эксперимент 2. Определение совместного действия заявляемых соединений и противогрибкового препарата флюконазола. Результаты эксперимента приведены в таблице 6.

Таблица 6

Совместное применение флюконазола и заявляемых соединений
Гриб ШтаммМинимальная подавляющая концентрация (МПК) (мкг/мл)
Флюконазол IIIФлюконазол +I Флюконазол + II
AspergillusVT-70>64 22 10,5
С. albicans VT-186 110,5 0,5

Полученные данные указывают на возможность применения заявляемых соединений совместно с существующими лекарственными препаратами.

Эксперимент 3. Определение совместное действия заявляемых соединений и противогрибкового препарата - нистатина. Результаты приведены в таблице 7.

Таблица 7

Совместное применение нистатина и заявляемых соединений
Гриб ШтаммМинимальная подавляющая концентрация (МПК) (мкг/мл)
Нистатин IIIНистатин + I Нистатин + II
C.kruseiVT-624 11 0,250,5
С. albicansVT-182 11 0,50,5

Полученные данные указывают на возможность применения заявляемых соединений совместно с нистатином.

Эксперимент 4. Определение терапевтического действия заявляемых соединений на экспериментальную инфекцию, вызванную грибами рода Candida.

Исследование проводили на беспородных белых мышах весом 24-26 г. Животным внутривенно водили патогенный штамм С.albicans VT-18 в количестве 1×109 бакт/животное. Вещество I вводили внутрибрюшинно. В контрольной группе по аналогичной схеме вводили изотонический раствор хлорида натрия или нистатин. Каждая группа включала 10 животных. Введение препарата продолжалось до момента гибели последнего животного в контрольной, нелеченной, группе. Испытуемый препарат вводили в дозе 5 мг/кг внутрибрюшинно. Флюконазол вводили аналогичным образом и в том же количестве. Эффективность действия оценивали по числу животных, выживших после гибели последнего погибшего в контрольной группе. В контрольной группе к 10 дню погибли все зараженные животные. Среди животных, получавших препарат I, остались живы все животные. Защита составила 100%. В группе, получавшей флюконазол, в живых остались 8 животных. Защита составила 80%. Полученные данные указывают на возможность и эффективность использования препарата I для лечения инфекционных состояний, вызванных грибами.

Эксперимент 5. Определение противоопухолевой активности заявляемых соединений. Результаты приведены в таблице 8.

Таблица 8
Вещество КонцентрацияПроцент роста опухолевых клеток по сравнению с контролем
Рак легкого Рак грудиРак нервной системы
I100 2452
II100 2052
III100 4212-5

Исследование выполнено согласно требованиям Национального института здоровья США.

Эксперимент 6. Определение противоболевой активности заявляемых соединений.

В группе из 3 крыс оценивали время, необходимое для отдергивания хвоста, помещенного под направленный источник теплового излучения. Удлинение времени реакции более чем на 50% после внутрибрюшинного введения препарата (30 мг/кг) указывало на наличие анальгезирующей активности. В качестве препарата сравнения использовали анальгин (2 мг/кг). Результаты приведены в таблице 9.

Таблица 9

Оценка анальгезирующего действия заявляемых соединений
Препарат Удлинение латентного периода реакции (%)
I79
II 80
III 82
Анальгин 83

Полученные данные указывают на наличие у заявляемых соединений противоболевой активности.

Эксперимент 7. Определение острой токсичности заявляемых соединений.

Испытуемое соединение вводили перорально с помощью желудочного зонда (1000 мг/кг) или внутрибрюшинно (300 мг/кг) белым нелинейным мышам массой 20-25 г (по 5 самцов и 5 самок в каждой из испытуемых групп), после чего наблюдали за их состоянием на протяжении 14 дней. Отсутствие симптоматики, свойственной токсическим эффектам, и отсутствие гибели животных в течение указанного времени позволяет сделать вывод о низкой токсичности изучаемого соединения. При наличии острых токсических эффектов доза уменьшается до выявления максимальной переносимой дозы.

Таблица 10

Острая токсичность
СоединениеКонцентрация испытуемых соединений (мг/л)
Введение через ротВведение внутрибрюшинное
I1000 300
II 1000300
III 1000300

Таким образом, проведенные исследования свидетельствуют, что в пределах использованных доз вещества не проявляют острой токсичности в использованной модели.

Эксперимент 8. Определение действия на вирус простого герпеса.

Антивирусная активность изучалась по отношению к вирусу простого герпеса I типа (ВПГ-I/Ленинград/248/88) по общепринятому методу [Gentry G.A., Lawrency N., Lushbaugh N. Isolation and differentiation of Herpes simplex virus and Trichomonas vaginalis in cell culture, J. of Clinical Microbiology 1985, Vol.22, No.2, P.199-204]. Вирусы выращивали на перевиваемой культуре клеток Vero, полученной из банка клеточных культур Института цитологии РАН.

Результаты оценивали по наличию цитопатогенного действия вируса на клетки через 36 часов культивирования при 37°С в СО2-инкубаторе.

Для оценки цитопатического действия вируса подсчитывали число неизмененных клеток. Результаты приведены в таблице 11.

Таблица 11

Действие препарата при концентрации 100 мкг/мл на вирус простого герпеса
Соединение Число неизмененных клеток (% защиты)
Ацикловир8000*(30 мкг/мл) (80%)
Контроль клеток 1000
DMSO 10000
I 9500 (95%)
II 9500 (95%)
III 9500 (95%)
прототип 9000 (90%)
* число клеток в 100 полях учета.

Полученные результаты указывают, что приведенные в таблице соединения обладают активностью против вируса герпеса, сравнимой с таковой у стандартного препарата ацикловира, и превосходят по активности вещество - прототип.

Эксперимент 9. Определение антимикобактериального действия.

Для определения активности был использован стандартный штамм Mycobacterium tuberculosis H37Rv, чувствительный ко всем антимикробным препаратам. Оценку антимикобактериального действия проводили методом серийных разведений.

Соединения растворяли в диметилсульфоксиде (ДМСО) и титровали так, что данный препарат содержался в отдельных пробирках со средой в концентрациях от 200 до 0,025 мг/л. Концентрация препарата в среде соседних пробирок отличалась в два раза. В контроле использовали ДМСО, который разводили так же, как и препарат. Результат учитывали после 72-часового культивирования бактерий при 37°С. Результаты приведены в таблице 12.

Таблица 12

Минимальная подавляющая концентрация (МПК) по отношению к M.tuberculosis H37Rv (мг/л)
СоединениеМПК
I10
II 50
III 50
Прототип 100
Этамбутол 5,0

Приведенные данные показывают, что испытанные соединения обладают антимикобактериальной активностью по отношению к использованному штамму М. tuberculosis. Активность заявляемых соединений превосходит таковую у вещества - прототипа.

Эксперимент 10. Определение действия соединений по отношению к грамположительным и грамотрицательным бактериям.

В экспериментах использованы стандартные коллекционные штаммы и бактерии, выделенные от больных. Оценку проводили методом серийных разведений с использованием питательных сред, пригодных для культивирования соответствующих видов микроорганизмов.

Соединения растворяли в диметилсульфоксиде (ДМСО) и титровали в концентрациях от 500 до 0,025 мг/л. Концентрация препарата в среде соседних пробирок отличалась в два раза. Результат учитывали после 72-часового культивирования бактерий при 37°С. Результаты приведены в таблице 13.

Таблица 13
Вещество Минимальная подавляющая концентрация (мг/л)
E.coli

АТСС922
K.pneumoniaeP.aeruginosa ATCC27853 S.typhimur. VT-191S.aureus B.cereusE.fecalis
I50 150300 5025100 150
II100 150200 100100100 150
III50 100250 5050100 150

Полученные данные указывают, что изученные вещества обладают широким спектром антимикробной активности по отношению к различным бактериям, в том числе к вегетативным формам спорообразующих бацилл (Bacillus cereus). Уровень активности указывает на возможность использовать данные вещества в качестве антисептика или в промышленности в качестве консервантов различных материалов.

Эксперимент 11. Определение антипротозойного действия соединений по отношению к трихомонадам (Trichomonas vaginalis).

В экспериментах использованы штаммы, выделенные от больных. Оценку проводили методом серийных разведений с использованием питательных сред, пригодных для культивирования соответствующих видов микроорганизмов.

Соединения растворяли в диметилсульфоксиде (ДМСО) и титровали в концентрациях от 500 до 0,025 мг/л. Концентрация препарата в среде соседних пробирок отличалась в два раза. Результат учитывали после 72-часового культивирования бактерий при 37°С. Установлено, что препараты I-III угнетают размножение использованных простейших в концентрациях от 50 до 0,1 мкг/мл.

Эксперимент 12. Определение возможности использования заявляемых соединений для борьбы со смешанной микробной инфекцией.

У лабораторных животных (морские свинки) выбривали часть волосяного покрова, наносили поверхностные царапины и втирали микробную смесь, состоящую из грибов рода Candida, стафилококка, кишечной палочки и энтерококка (штаммы см. пример 12). Через 24 часа у всех животных возникал местный воспалительный процесс. Для лечения использовали мазь, приготовленную из веществ I или II и ланолина. Вещества были добавлены в количестве 300 мг/кг. В контролях наносили чистый ланолин или стандартную мазь флюконазола. Каждая группа включала 5 животных. Критерием эффективности был срок полного заживления и восстановления кожного покрова. У животных в группах, леченных веществами, выздоровление наступило через 5 дней. В группах, получавших лечение ланолином или флюконазолом, через 6 дней все животные были больны и в дальнейшем были пролечены препаратами II и III.

Выздоровление этих групп наступило еще через 7 дней. Таким образом, полученные данные свидетельствуют, что заявляемые препараты могут быть использованы местно для борьбы со смешанными инфекциями, вызванные грамположительными и грамотрицательными бактериями и грибами.

Эксперимент 13. Определение возможности использования заявляемых соединений для предотвращения порчи продуктов.

В качестве модели было использовано сливочное масло, в которое были добавлены микробы, поименованные в примере 12 в количестве 105 бактерий каждого вида на 1 грамм масла. В масло также были добавлены испытуемые вещества I, II, III (готовили по 10 проб на каждое вещество). Вещества добавляли в количестве 200 или 300 мг/кг. Пробы инкубировали при 37°С, каждый день делая количественные высевы на питательные среды, предназначенные для роста соответствующих бактерий и грибов. В контроле, в масло был добавлен растворитель - ДМСО, использованный для приготовления проб испытуемых препаратов. После 24 часов инкубации в контрольных пробах зарегистрировано нарастание количества внесенных микробов в 10 раз. Из проб, где вещества были внесены в количестве 300 мг/кг, микроорганизмы не высевались. При внесенных 200 мг/кг у пробы II зарегистрировано сохранение внесенного количества псевдомонад. Через две недели (время наблюдения) в пробах, содержащих 300 мкг/мл веществ II и III, роста микробов не наблюдалось.

Полученные данные свидетельствуют о возможности защиты пищевых продуктов от смешанной микробной порчи.

Промышленная применимость

Приведенные выше примеры и практические результаты синтеза и анализа заявляемых соединений подтверждают возможность лабораторного и промышленного синтеза заявляемых соединений средствами, освоенными современной фармацевтической и химической промышленностью, а также их строгую идентификацию общепринятыми методами контроля.

Серия экспериментов по определению биологической активности, представленная в отчетах, показала, что заявляемые соединения обладают выраженными противогрибковым (против одно- и многоклеточных грибов), а также противобактериальным и противовирусным, а также противоопухолевым и противоболевым действием. Приведенные факты доказывают достижение задач, поставленных изобретением.

Класс C07D239/545 с другими гетероатомами или атомами углерода, связанными тремя связями с гетероатомами (из которых одна может быть с галогеном), непосредственно присоединенными к атомам углерода кольца

фунгицидное средство -  патент 2525911 (20.08.2014)
средство, стимулирующее физическую работоспособность -  патент 2515247 (10.05.2014)
6-(4-бензилпиперазино)-1,3-диметилурацила дигидрохлорид, проявляющий биологическую активность -  патент 2449994 (10.05.2012)
фунгицидное средство -  патент 2448960 (27.04.2012)
способ получения 5-амино-6-метилурацила -  патент 2417991 (10.05.2011)
6-(3-ацетилфенил)аминоурацил -  патент 2207337 (27.06.2003)
2,4-диоксо-5-арилиденимино-1,3-пиримидины -  патент 2198166 (10.02.2003)

Класс A61K31/505  пиримидины; гидрированные пиримидины, например триметоприм

ингибиторы поли(адф-рибозо)полимеразы-1 человека на основе производных урацила -  патент 2527457 (27.08.2014)
производное бензола или тиофена и его применение в качестве ингибитора vap-1 -  патент 2526256 (20.08.2014)
способ лечения больных облитерирующим атеросклерозом артерий нижних конечностей с сочетанной ибс -  патент 2525157 (10.08.2014)
ингибиторы кинуренин-3-монооксигеназы -  патент 2523448 (20.07.2014)
производные фенилпиримидона, фармацевтические композиции, способы их получения и применения -  патент 2522578 (20.07.2014)
производное 5-оксипиримидина, обладающее противоопухолевой активностью -  патент 2518889 (10.06.2014)
способ лечения больных с местно-распространенными формами рака матки -  патент 2514342 (27.04.2014)
фармацевтическая композиция для лечения нарушений липидного обмена -  патент 2508109 (27.02.2014)
способы и композиции для лечения шизофрении с использованием атипичной нейролептической комбинированной терапии -  патент 2508106 (27.02.2014)
способы и композиции для лечения шизофрении с использованием нейролептической комбинированной терапии -  патент 2508096 (27.02.2014)

Класс A61P31/00 Противоинфекционные средства, те антибиотики, антисептики, химиотерапевтические средства

способ получения алкилбензилдиметиламмонийфторидов, обладающих противовирусным и антибактериальным действием -  патент 2529790 (27.09.2014)
5-метил-6-нитро-7-оксо-4,7-дигидро-1,2,4-триазоло[1,5-альфа]пиримидинид l-аргининия моногидрат -  патент 2529487 (27.09.2014)
способ комплексного лечения коров при послеродовом эндометрите -  патент 2528916 (20.09.2014)
способ лечения ран мягких тканей различной этиологии -  патент 2528905 (20.09.2014)
новое производное пиразол-3-карбоксамида, обладающее антагонистической активностью в отношении рецептора 5-нт2в -  патент 2528406 (20.09.2014)
диариловые эфиры -  патент 2528231 (10.09.2014)
вакцины на основе солюбилизированных и комбинированных капсулярных полисахаридов -  патент 2528066 (10.09.2014)
штамм бактерий serratia species, являющийся продуцентом внеклеточной рибонуклеазы и дезоксирибонуклеазы, обладающих противовирусной активностью -  патент 2528064 (10.09.2014)
модуляторы транспортеров атф-связывающей кассеты -  патент 2528046 (10.09.2014)
использование альгинатных олигомеров в борьбе с биопленками -  патент 2527894 (10.09.2014)

Класс A61P31/12 противовирусные средства

способ получения алкилбензилдиметиламмонийфторидов, обладающих противовирусным и антибактериальным действием -  патент 2529790 (27.09.2014)
5-метил-6-нитро-7-оксо-4,7-дигидро-1,2,4-триазоло[1,5-альфа]пиримидинид l-аргининия моногидрат -  патент 2529487 (27.09.2014)
новое производное пиразол-3-карбоксамида, обладающее антагонистической активностью в отношении рецептора 5-нт2в -  патент 2528406 (20.09.2014)
фармацевтическая композиция и способ получения противовирусных фракций (антивирус-с) -  патент 2526799 (27.08.2014)
средство для снижения репродукции вируса гепатита с -  патент 2526179 (20.08.2014)
применение соли ацетилсалициловой кислоты для лечения вирусных инфекций -  патент 2524304 (27.07.2014)
пептидные производные 1-(1-адамантил)этиламина и их противовирусное действие -  патент 2524216 (27.07.2014)
способ получения противовирусного средства и противовирусное средство -  патент 2522880 (20.07.2014)
способ изготовления вакцины против ящура -  патент 2522868 (20.07.2014)
способ получения антирабической вакцины -  патент 2522866 (20.07.2014)

Класс A61P33/00 Антипаразитические средства

системное лечение кровососущих паразитов и паразитов-консументов крови посредством перорального введения антипаразитного средства -  патент 2526169 (20.08.2014)
способ лечения кокцидиоза птицы -  патент 2526166 (20.08.2014)
способ получения растворимых комплексных препаратов из нерастворимых в воде субстанций лекарственных средств -  патент 2524652 (27.07.2014)
способ лечения телят больных симулиидотоксикозом -  патент 2524633 (27.07.2014)
антигельминтное средство -  патент 2521335 (27.06.2014)
средство, обладающее противоописторхозным действием и способ его получения -  патент 2519666 (20.06.2014)
противопаразитарное средство для сельскохозяйственных животных -  патент 2519085 (10.06.2014)
способ лечения ларвального эхинококкоза лабораторных животных -  патент 2517044 (27.05.2014)
способ лечения арахноэнтомозов животных -  патент 2516891 (20.05.2014)
1-омега-арилоксиалкил- и 1-бензилзамещенные 2-иминобензимидазолины и их фармакологически приемлемые соли, обладающие протистоцидной и антимикробной активностью -  патент 2514196 (27.04.2014)

Класс A61P35/00 Противоопухолевые средства

способ лечения рака толстой кишки -  патент 2529831 (27.09.2014)
способ оценки эффекта электромагнитных волн миллиметрового диапазона (квч) в эксперименте -  патент 2529694 (27.09.2014)
новые (поли)аминоалкиламиноалкиламидные, алкил-мочевинные или алкил-сульфонамидные производные эпиподофиллотоксина, способ их получения и их применение в терапии в качестве противораковых средств -  патент 2529676 (27.09.2014)
производные 1, 2-дигидроциклобутендиона в качестве ингибиторов фосфорибозилтрансферазы никотинамида -  патент 2529468 (27.09.2014)
фармацевтическое средство, содержащее эпитопные пептиды hig2 и urlc10, для лечения рака, способы и средства для индукции антигенпрезентирующей клетки и цитотоксического т-лимфоцита (цтл), антигенпрезентирующая клетка и цтл, полученные таким способом, способ и средство индукции иммунного противоопухолевого ответа -  патент 2529373 (27.09.2014)
модульный молекулярный конъюгат для направленной доставки генетических конструкций и способ его получения -  патент 2529034 (27.09.2014)
модулирующие jak киназу хиназолиновые производные и способы их применения -  патент 2529019 (27.09.2014)
лечение опухолей с помощью антитела к vegf -  патент 2528884 (20.09.2014)
способ лечения местнораспространенного неоперабельного рака поджелудочной железы -  патент 2528881 (20.09.2014)
новые бензолсульфонамидные соединения, способ их получения и применение в терапии и косметике -  патент 2528826 (20.09.2014)
Наверх